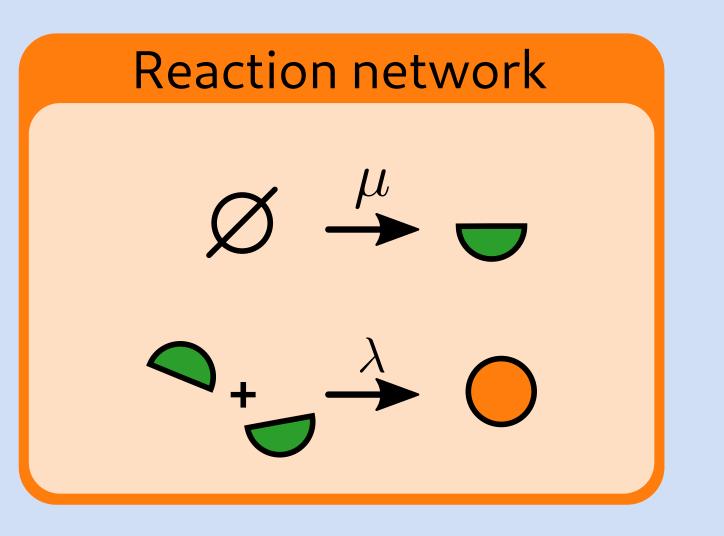
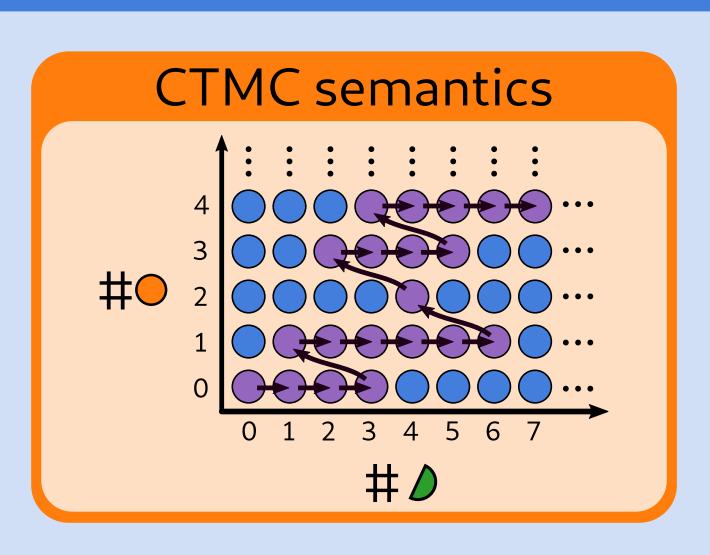
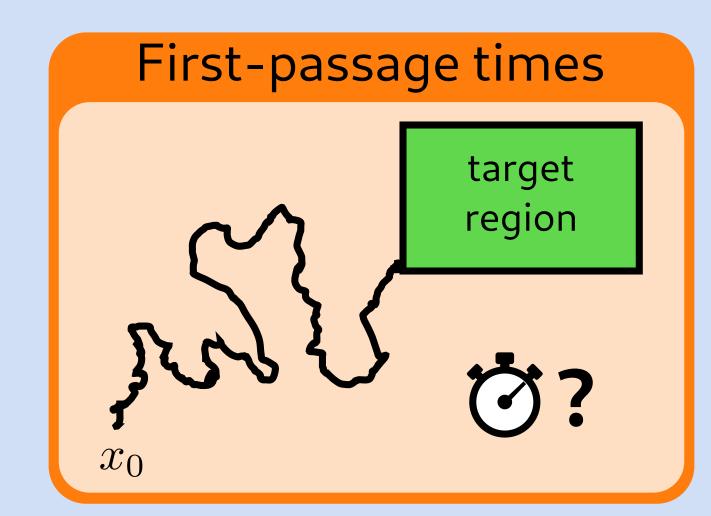
Bounding Mean First Passage Times in Stochastic Reaction Networks

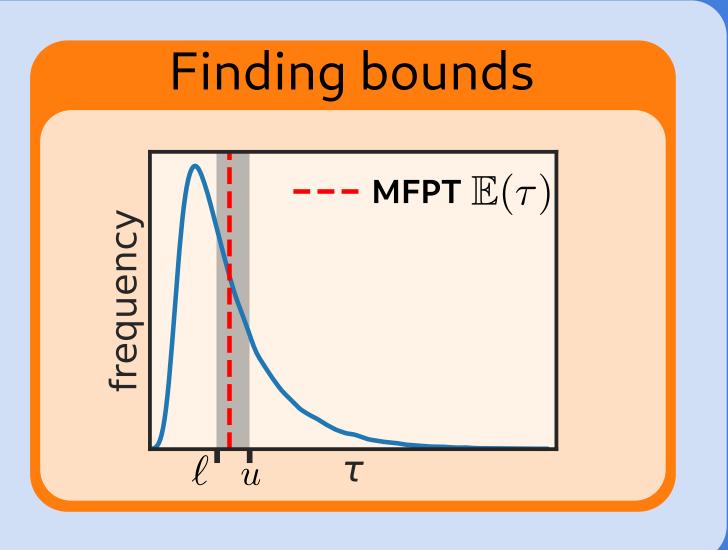
Michael Backenköhler, Luca Bortolussi, Verena Wolf

Background and Goal









Method

Moment dynamics

Derive the dynamics of statistical moments from the CME.

$$\frac{d}{dt}\mathbb{E}(X_t^m) = \sum_{j} \mathbb{E}\left(\left(\left(X_t + v_j\right)^m - X_t^m\right)\alpha_j(X_t)\right)$$

Weighting & integration

Multiply a time-weighting $w(t)=t^s$

and integrate symbolically.

no moment closure

Finding a martingale

The expectation implies a process

$$Z_t = t^k X_t^m - t_0^k X_0^m + \sum_i c_i \int_0^t s^{m_i} X_s^{m_i} ds$$

$$\forall t \ge 0. \ \mathbb{E}(Z_t) = 0$$

Linear constraints

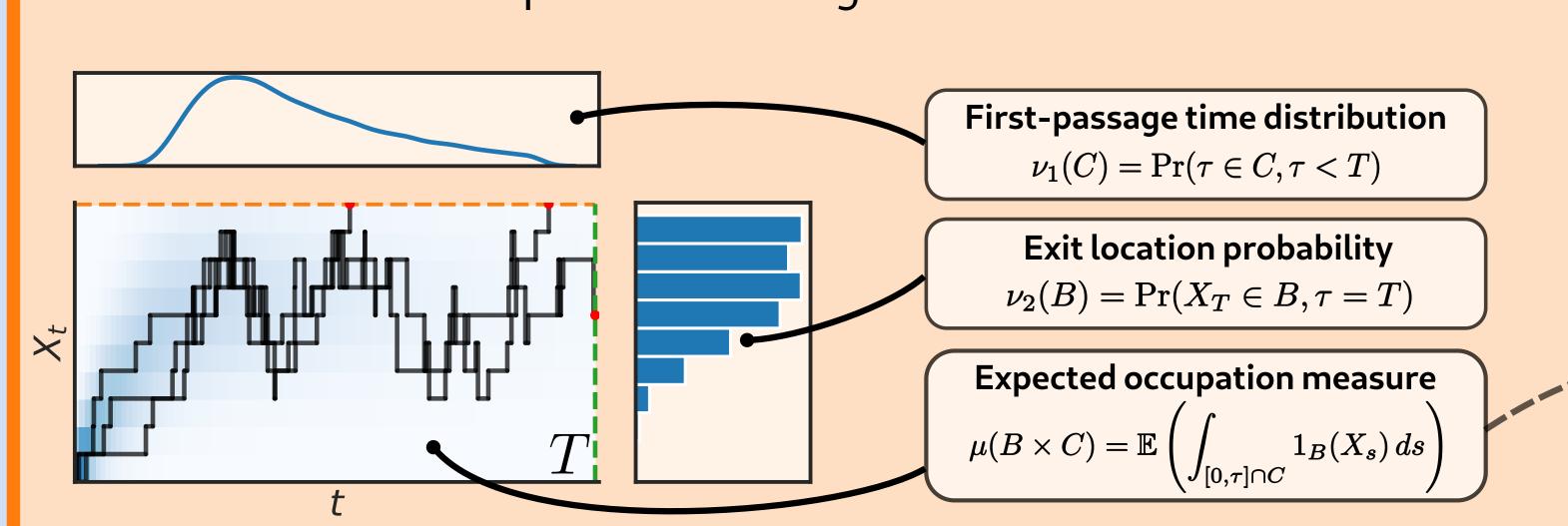
By Doob's theorem

$$\mathbb{E}(Z_{\tau}) = 0$$

for stopping times τ under mild conditions.

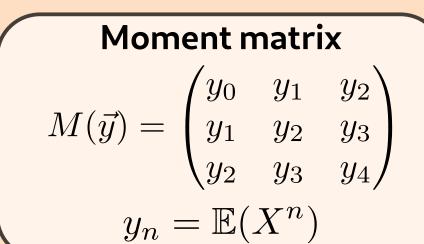
Defining appropriate measures

We define three measures ν_1, ν_2 and μ restricted to distinct subsets of the state-time space $[0,T] \times \mathcal{S}$ In the relaxation the domain restrictions are expressed through semi-definite constraints.



A semi-definite relaxation

We can formulate constraints on the moments of the measures ν_1, ν_2 and μ . In particular, the **moment matrix** of all measures must be **positive semi-definite**.

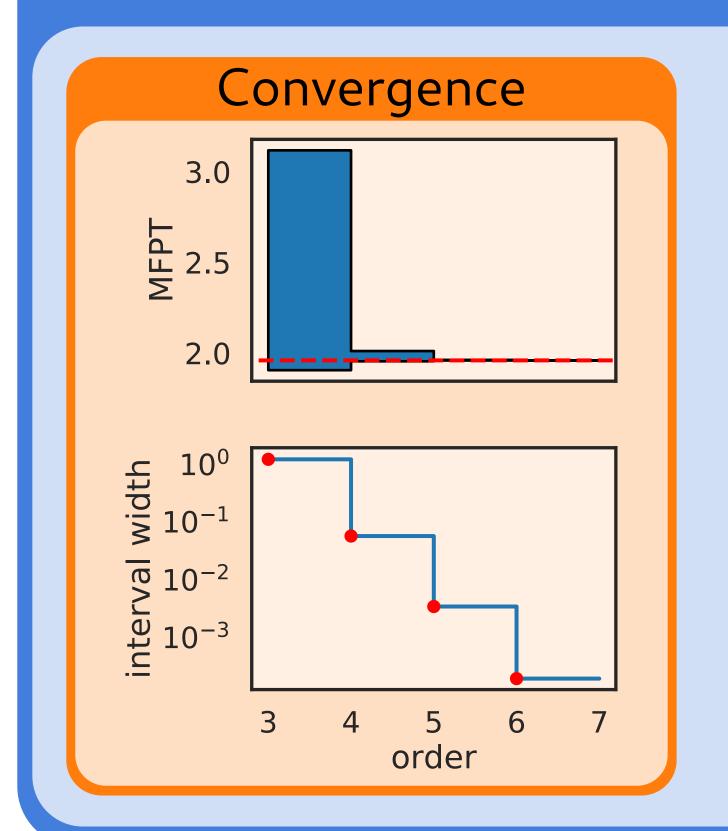


Positive semi-definite

A matrix M is positive semi-definite iff. $\forall v \in \mathbb{R}^n . v^\top M v \geq 0.$

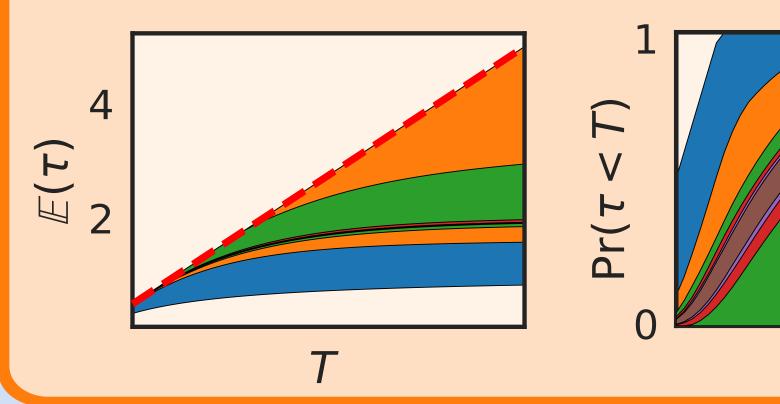
-• max / min 0-th moment of EOM $(\sim \mathbb{E}(\tau))$ such that linear moment constraints hold moment matrices are psd proper measure domains

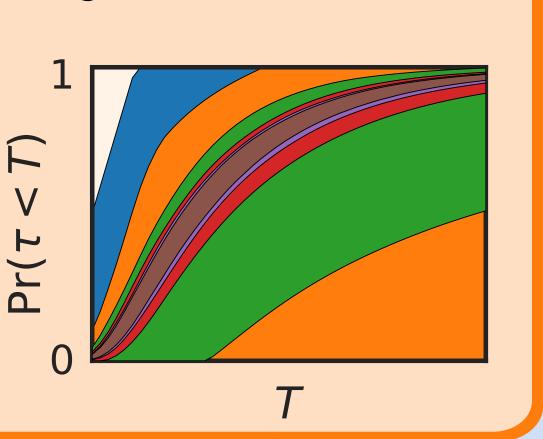
Results and Challenges



Transient analysis

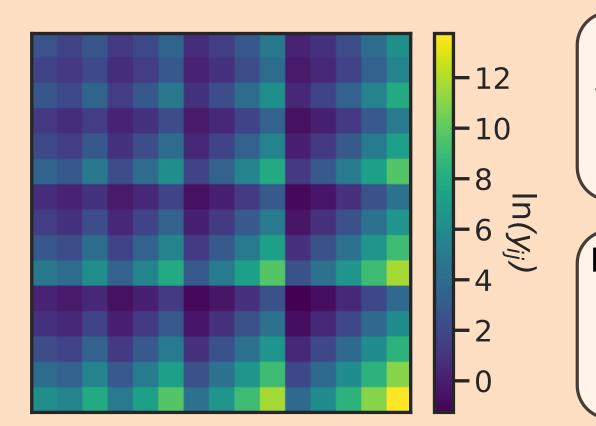
We can vary the time horizon T and compute bounds on the MFPT and the probability of reaching the target region before T.





Challenges / Future work

Vastly different orders of magnitude lead to numerical difficulties for the SDP solver.



Re-scale the state-space to reduce the differences in the moment matrices.

Modify linear constraints
such that low and high
order moments
become independent.

