Bounding Mean First Passage Times in Stochastic Reaction Networks

Michael Backenköhler, Luca Bortolussi, Verena Wolf

Background and Goal

Reaction network

CTMC semantics

First-passage times

Finding bounds

Method

Moment dynamics

Derive the dynamics of statistical moments from the CME.

\[
\frac{d}{dt} \mathbb{E}(X(t)) = \sum_i \mathbb{E}((X_t + i \mu_i) - X(t)) \nu_i(X(t))
\]

Weighting & integration

Multiply a time-weighting \(w(t) = t^\alpha \) and integrate symbolically.

\[
w(t) = t^\alpha \Rightarrow \mathbb{E}(X(t)) = \int_0^t t^\alpha \mathbb{E}(X(t) \mid t) dt
\]

Finding a martingale

The expectation implies a process

\[
x_t = x_t^{(0)} + \int_0^\tau X_t^{(0)} \mu(X_t) dt + \sum_i \int_0^\tau X_t^{(i)} \nu_i(X_t) dt
\]

\(\forall \tau \geq 0, \mathbb{E}(x_t) = 0 \)

Linear constraints

By Doob's theorem

\[
\mathbb{E}(x_t) = 0
\]

for stopping times \(\tau \) under mild conditions.

Defining appropriate measures

We define three measures \(\nu_1, \nu_2, \mu \) restricted to distinct subsets of the state-space \(\mathcal{X} \times \mathcal{S} \). In the relaxation the domain restrictions are expressed through semi-definite constraints.

A semi-definite relaxation

We can formulate constraints on the moments of the measures \(\nu_1, \nu_2, \mu \).

- In particular, the moment matrix of all measures must be positive semi-definite.

\[
M(y) = \begin{pmatrix} y_1 & y_2 & y_3 \\
 y_2 & y_4 & y_5 \\
 y_3 & y_5 & y_6 \end{pmatrix} \quad \mathbb{E}(X(t)) = y_6
\]

- A matrix \(M \) is positive semi-definite if

\[
\forall y \in \mathbb{R}^n, y^T M y \geq 0
\]

- The maximum / minimum 0-th moment of EOM (\(\sim \mathbb{E}(\tau) \)) such that linear moment constraints hold moment matrices are PSD proper measure domains.

Results and Challenges

Convergence

We can vary the time horizon \(T \) and compute bounds on the MFPT and the probability of reaching the target region before \(T \).

Transient analysis

Challenges / Future work

Vastly different orders of magnitude lead to numerical difficulties for the SDP solver.

- Re-scale the state-space to reduce the differences in the moment matrices.
- Modify linear constraints such that low and high order moments become independent.