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Mechanistic Modeling 
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measurements of 
real-world system

validate 
hypotheses/
reproduce and 
explain data

generate 
hypotheses/ 
calibrate 
model

mechanistic model

Data-driven AI
Describe mechanistic relationships by 
mathematical models.

Flexible function approximation to 
recognize patterns in high-dim. data.

• long history and key driver for scientific 
discoveries

Quelle: https://models.physiomeproject.org/



3

mechanistic modelmeasurements of 
real-world system

validate 
hypotheses/
reproduce and 
explain data

generate 
hypotheses/ 
calibrate 
model

• Artificial neural networks (1950s/1960s)
• boom in the 21st century:                   

Deep Learning 

Source: https://deepmind.com/

Protein Folding

• long history and key driver for scientific 
discoveries

Mechanistic Modeling Data-driven AI
Describe mechanistic relationships by 
mathematical models.

Flexible function approximation to 
recognize patterns in high-dim. data.

Quelle: https://models.physiomeproject.org/



Two orthogonal approaches with different 
strength and weaknesses. 

Can we combine them to get the best of both 
worlds? 
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mechanistic model machine learning model/ ANN



Mechanistic Model 

describes the underlying mechanisms of a system in a 
quantitative manner based on hypotheses, 

established principles and laws.
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Hodgkin-Huxley Model 1952, Cell Excitability

Quelle: https://models.physiomeproject.org/



Mechanistic Model 

describes the underlying mechanisms of a system in a 
quantitative manner based on hypotheses, 

established principles and laws.
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Hodgkin-Huxley Model 1952, Cell Excitability Docking Simulation

Quelle: https://www.faro.com/

Digital twin, automotive plant

Quelle: https://www.compobelisk.com/Quelle: https://models.physiomeproject.org/
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• after validation: simulation of the model produces 

“artificial data” (generative/forward model)

• reusable for subsequent use 

• what-if simulation: modify parameters/initial 

conditions, additional rules, noise, …

• interpretable by design

• deductive capability via mechanistic principles

Advantages of Mechanistic Models

Hodgkin-Huxley Model 1952, Cell Excitability



What-If Simulation Example:  
Spreading Processes
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Heterogeneity matters: 
Contact structure and 
individual variation shape 
epidemic dynamics. 

Großmann, Backenköhler, Wolf, 
PlosOne, 2021.

How do  network 
characteristics and 
individual variation 
influence the spreading 
dynamics?
→ average number of 
infected individuals 
changes drastically over 
time
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• model complexity limited to human-understandable 

rules/known laws/mechanistic understanding

• oversimplified assumptions

• difficult to handle high-dimensional data

Drawbacks of Mechanistic Models



Machine Learning, in particular Deep Learning 

data-driven approach that learns patterns from raw data 
input (without necessarily understanding the underlying 

mechanisms of the system).
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MLP GNN Transformer
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Typical setting: 

• inverse problem: from data to properties

• train discriminative models with low inductive bias (e.g. large number of neurons, 

several layers)

• detect statistical relationships (patterns) between input and output

raw data properties/class labels/…

Machine Learning (with Neural Networks) 
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• discriminative/inverse models: extremely accurate and 

fast in making predictions (once it is trained on a well-

defined domain with many examples) 

• very flexible: not limited by human imagination

• able to process high-dimensional data

Advantages of Deep Learning



Drawbacks of “pure” deep learning (1/2)

Over-reliance on Data:

• requires vast amounts of labeled data to perform accurately
• collecting and annotating is time-consuming, expensive, and often impractical

Poor Integration of Existing Domain Knowledge:

• no utilization of existing knowledge (focus on raw data-driven insights)
• sub-optimal or even incorrect solutions
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Drawbacks of “pure” deep learning (1/2)

Lack of Interpretability:

• neural networks are "black boxes"  
• understanding a particular decision or prediction is difficult 
• but important for sensitive applications (e.g. healthcare) 

and novel scientific insights
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NNs can accurately predict 
planetary motion. But:
Can we extract the
underlying mechanism of 
planetary motions from NNs?



Drawbacks of “pure” deep learning (2/2)

Overfitting:

• NNs with more parameters can overfit the training data
• poor generalization to new or unseen data and limited 

reusability  

Lack of Robustness:

• fail unexpectedly under slight variations in input data
• but: robustness is required for critical applications where failure is 

not an option

15



But how can we inject expert knowledge and 
information from mechanistic models 

into neural networks? 
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Integrating Domain Knowledge into Neural Networks (1/3) 

1. Observational Bias:

Training 
Samples

ANN
Simulator (based on DK)

Measurements
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Example: In-silico data augmentation for drug discovery

Goal: predict binding affinity for kinase 
ligand pairs based on 3D structures
Problem: PDB has only ~6000 samples 
(with 3D information) 
Idea: exploit existing docking simulation 
methods to generate  new data (3D 
Docking Pose & Score) 
→ ~ 120 000 new samples
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Guided Docking as Data Generation Approach for Kinase-Based Deep Learning Tasks. 
M. Backenköhler, J. Gross, V. Wolf, A. Volkamer. Submitted.



Integrating Domain Knowledge into Neural Networks (2/3) 

2. Learning Bias: Training 
Samples

ANN
Loss = prediction loss + structural error

e.g. Physics Informed
Neural Networks

Image Source: “Scientific Machine Learning 
through Physics-Informed Neural 
Networks: Where we are and What’s 
next”, Cuomo et al, 2022
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Integrating Domain Knowledge into Neural Networks (3/3) 

3. Inductive Bias: e.g. relational inductive bias

NN Component Entities Relations

Fully connected Units All-to-all

Convolutional Grid elements Local

Recurrent Timesteps Sequential

Graph network Nodes Edges

Graph 
Neural 
Networks

Inductive bias allows a learning algorithm to 
prioritize one solution over another, independent 
of the observed data (Mitchell, 1980)
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Example: Optimal sequence control in an automotive plant
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incoming car bodies

→  car bodies entering the buffer

line 1

line 2

line 3

line 4

line 5

line 6
→  car bodies leaving the buffer for final assembly

assembly stations
DRL agent selects 
cars in optimal order

Objective: minimize 
probability of line stops

Exploit known symmetries: train the NN 
such that solution is independent of line 
enumeration.  

e.g. use 
“Deep Sets”

“Deep Sets”, Zaheer et al, 2017

“Real-time decision making for a car 
manufacturing process using deep 
reinforcement learning”, Gros et al., 
Winter Simulation Conference, 2020 



Integrating Domain Knowledge into Neural Networks

1. Observational Bias: data augmentation

2. Learning Bias: informed loss function/ constraint-based regularization terms

3. Inductive Bias: adapt network architecture/information flow in the NN

Often it is a combination of these three!
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Simulator (based on DK)

Measurements
Training Samples ANN with 

inductive bias Loss = 
prediction loss + structural error
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Don’t try to learn what you already know: 
guide the learning (loss; data) according to 
existing knowledge/mechanistic models and 
give inductive biases.

→ model is more robust
→ need less training samples
→ better generalize to unseen data  
→ more understandable and may drive 
forward scientific understanding

The Promise of Hybrid AI Approaches
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Some extra slides
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Integrating Domain Knowledge into Neural Networks (2/3) 
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Example: Natural Product Discovery

Structural 
elucidation

Tandem mass spectrometry (MS/MS)

• Easy if compound is part of a spectral database
• However: database size is microscopic compared to 

natural product space!



Contrastive MS/MS – metabolite latent space

• Learn a contrastive latent 
space

• Maximize similarity of 
matching molecular and 
spectral embeddings

• Trained on NIST23 (~600k 
data points, ie, matching 
pairs)

Matching
Pairs!



GNNs
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