Hybrid AI - Integrating Machine Learning and Mechanistic Models: Unlocking the Potential of Hybrid Approaches

Prof. Verena Wolf

Saarland University and German Research Center for Artificial Intelligence (DFKI)

Mechanistic Modeling

Describe mechanistic relationships by mathematical models.

 long history and key driver for scientific discoveries

Data-driven Al

Flexible function approximation to recognize patterns in high-dim. data.

measurements of real-world system

Quelle: https://models.physiomeproject.org/

Mechanistic Modeling

Describe mechanistic relationships by mathematical models.

 long history and key driver for scientific discoveries

Data-driven Al

Flexible function approximation to recognize patterns in high-dim. data.

- Artificial neural networks (1950s/1960s)
- boom in the 21st century: Deep Learning

real-world system

measurements of

Quelle: https://models.physiomeproject.org/

Two orthogonal approaches with different strength and weaknesses. Can we combine them to get the best of both worlds?

Mechanistic Model

describes the underlying mechanisms of a system in a quantitative manner based on hypotheses, established principles and laws.

Quelle: https://models.physiomeproject.org/

Mechanistic Model

describes the underlying mechanisms of a system in a quantitative manner based on hypotheses, established principles and laws.

Quelle: https://models.physiomeproject.org/

Docking Simulation

Quelle: https://www.compobelisk.com/

Digital twin, automotive plant

Quelle: https://www.faro.com/

Advantages of Mechanistic Models

- after validation: simulation of the model produces
 "artificial data" (generative/forward model)
- reusable for subsequent use
- what-if simulation: modify parameters/initial conditions, additional rules, noise, ...
- interpretable by design
- **deductive capability** via mechanistic principles

What-If Simulation Example: Spreading Processes

Heterogeneity matters: Contact structure and individual variation shape epidemic dynamics.

Großmann, Backenköhler, Wolf, PlosOne, 2021. How do network characteristics and individual variation influence the spreading dynamics? → average number of infected individuals changes drastically over time

Drawbacks of Mechanistic Models

- model complexity limited to human-understandable rules/known laws/mechanistic understanding
- oversimplified assumptions
- difficult to handle high-dimensional data

Machine Learning, in particular Deep Learning

data-driven approach that learns patterns from raw data input (without necessarily understanding the underlying mechanisms of the system).

Machine Learning (with Neural Networks)

Typical setting:

- inverse problem: from data to properties
- train discriminative models with low inductive bias (e.g. large number of neurons, several layers)
- detect statistical relationships (patterns) between input and output

Advantages of Deep Learning

- discriminative/inverse models: extremely accurate and fast in making predictions (once it is trained on a welldefined domain with many examples)
- very **flexible**: not limited by human imagination
- able to process high-dimensional data

Drawbacks of "pure" deep learning (1/2)

Over-reliance on Data:

- requires vast amounts of labeled data to perform accurately
- collecting and annotating is time-consuming, expensive, and often impractical

Poor Integration of Existing Domain Knowledge:

- no utilization of existing knowledge (focus on raw data-driven insights)
- sub-optimal or even incorrect solutions

not aromatic)

(not aromatic)

Drawbacks of "pure" deep learning (1/2)

Lack of Interpretability:

- neural networks are "black boxes"
- understanding a particular decision or prediction is difficult
- but important for sensitive applications (e.g. healthcare) and novel scientific insights

 \rightarrow ? \rightarrow

NNs can accurately predict planetary motion. But: Can we extract the underlying mechanism of planetary motions from NNs?

Drawbacks of "pure" deep learning (2/2)

Overfitting:

- NNs with more parameters can overfit the training data
- poor generalization to new or unseen data and limited reusability

Lack of Robustness:

- fail unexpectedly under slight variations in input data
- but: robustness is required for critical applications where failure is not an option

But how can we inject expert knowledge and information from mechanistic models into neural networks?

Integrating Domain Knowledge into Neural Networks (1/3)

1. Observational Bias:

Example: In-silico data augmentation for drug discovery

<u>Goal</u>: predict binding affinity for kinase ligand pairs based on 3D structures <u>Problem</u>: PDB has only ~6000 samples (with 3D information) <u>Idea</u>: exploit existing docking simulation methods to generate new data (3D Docking Pose & Score) \rightarrow ~ 120 000 new samples

Guided Docking as Data Generation Approach for Kinase-Based Deep Learning Tasks. M. Backenköhler, J. Gross, **V. Wolf**, A. Volkamer. Submitted.

Integrating Domain Knowledge into Neural Networks (2/3)

Integrating Domain Knowledge into Neural Networks (3/3)

3. Inductive Bias: e.g. relational inductive bias

Example: Optimal sequence control in an automotive plant

Exploit known symmetries: train the NN such that solution is independent of line enumeration.

e.g. use "Deep Sets"

"Deep Sets", Zaheer et al, 2017

21

Integrating Domain Knowledge into Neural Networks

- 1. Observational Bias: data augmentation
- 2. Learning Bias: informed loss function/ constraint-based regularization terms
- 3. Inductive Bias: adapt network architecture/information flow in the NN

Often it is a combination of these three!

The Promise of Hybrid AI Approaches

Don't try to learn what you already know: guide the learning (loss; data) according to existing knowledge/mechanistic models and give inductive biases.

→ model is more robust
→ need less training samples
→ better generalize to unseen data
→ more understandable and may drive forward scientific understanding

Acknowledgements

PhD Students and Post-Docs

Dr. Gerrit Grossmann

Timo Gros

Joschka Gross

Thank you for your attention!

Collaborators

Prof. Andrea Volkamer, Helmholtz Institute for Pharmaceutical Research Saarland

Prof. Luca Bortolussi, University of Trieste

Some extra slides

Integrating Domain Knowledge into Neural Networks (2/3)

•

Example: Natural Product Discovery

Tandem mass spectrometry (MS/MS)

Easy if compound is part of a spectral database

Contrastive MS/MS – metabolite latent space

- Learn a contrastive latent space
- Maximize similarity of matching molecular and spectral embeddings
- Trained on NIST23 (~600k data points, ie, matching pairs)

GNNs