
Per-Domain Generalizing Policies: On Validation Instances and Scaling Behavior

Timo P. Gros1,2, Nicola J. Müller1,2, Daniel Fišer3, Isabel Valera1, Verena Wolf1,2, Jörg Hoffmann1,2

1Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
2German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany

3Aalborg University, Denmark
{timopgros,nmueller,ivalera,wolf,hoffmann}@cs.uni-saarland.de, danfis@danfis.cz

Abstract

Recent work has shown that successful per-domain general-
izing action policies can be learned. Scaling behavior, from
small training instances to large test instances, is the key ob-
jective; and the use of validation instances larger than training
instances is one key to achieve it. Prior work has used fixed
validation sets. Here, we introduce a method generating the
validation set dynamically, on the fly, increasing instance size
so long as informative and feasible. We also introduce refined
methodology for evaluating scaling behavior, generating test
instances systematically to guarantee a given confidence in
coverage performance for each instance size. In experiments,
dynamic validation improves scaling behavior of GNN poli-
cies in all 9 domains used.

1 Introduction
Per-domain generalization in PDDL planning is a useful and
popular setting for learning policies. Prior work has shown
that successful policies of this kind can be learned using neu-
ral architectures (e.g., Groshev et al. 2018; Garg, Bajpai, and
Mausam 2019; Toyer et al. 2018, 2020; Rivlin, Hazan, and
Karpas 2020; Ståhlberg, Bonet, and Geffner 2022a,b, 2024;
Sharma et al. 2023; Rossetti et al. 2024; Wang and Thiébaux
2024). Scaling behavior, the ability to generalize from small
training instances to large test instances, is the key objec-
tive in this setting. Selecting the final policy based on its
performance on validation instances, larger than the training
instances, is one key to achieve that objective.

Intuitively, the larger the size difference between train-
ing and validation instances, the better policy selection can
assess scaling behavior. However, prior work has relied on
fixed validation sets, thereby limiting the size difference.1
As we show here, one can instead dynamically generate
larger validation instances where informative and feasible.
We measure instance size in terms of the number of objects,
and we fix a size-scaling scheme and random instance gen-
erator per domain. Given training instances of maximal size
n0, we generate validation instances starting at n0 + 1, and
we keep generating larger instances – a fixed number for
each size – so long as policy coverage remains informative

1This also pertains to works on learning per-domain heuris-
tic functions (e.g., Chen, Thiébaux, and Trevizan 2024); some
works (Toyer et al. 2018, 2020) do not use validation at all.

(above a threshold). To ensure feasibility of this process, we
impose a plan length bound.

As an additional contribution, we introduce refined
methodology for rigorously evaluating scaling behavior in
scientific experiments. Similarly as for validation sets, prior
work has used fixed test sets, in particular ones used in
International Planning Competitions (IPCs). This is, how-
ever, hardly adequate to meaningfully measure scaling
behavior—consider Figure 1.

Figure 1: Scaling behavior (average coverage over instance
size) of a Blocksworld policy trained following (Ståhlberg,
Bonet, and Geffner 2022a), measured on IPC’23 (Taitler
et al. 2024) test sets compared to our evaluation method.

Given the non-systematic nature of IPC instance sets,
there are large gaps in instance size, and the average cov-
erage per size mostly trivializes to 0% or 100%. Yet one
can do much better than this, based on the same size-scaling
schemes we use for validation. For each size value, we gen-
erate a sufficient number of instances to guarantee a given
confidence interval. The resulting plot very clearly shows
how policy performance degrades over instance size, a key
insight not visible in the IPC data at all.

We also generate the training set using the same size-
scaling schemes, giving much better justification to the i.i.d.
assumption between training, validation, and test data.

We run experiments with graph neural network (GNN)
policies trained following Ståhlberg, Bonet, and Geffner
(2022a) on 9 IPC’23 domains. Dynamic validation consis-
tently improves scaling behavior across all of these domains,
with substantial advantages in 8 of them.

Our code and data are publicly available.2

2https://doi.org/10.5281/zenodo.15314878

ar
X

iv
:2

50
5.

00
43

9v
1

 [
cs

.L
G

]
 1

 M
ay

 2
02

5

2 Dynamic Validation
We here introduce our dynamic validation method. We give
an overview of prior work, explain our scheme to scale in-
stance size in a domain, then describe the method itself.

Prior work. Per-domain policy learning typically relies
on a form of supervised learning (Ståhlberg, Bonet, and
Geffner 2022a,b, 2024; Müller et al. 2024; Rossetti et al.
2024), training the policy to imitate an optimal planner on a
set of small training instances. To identify when the policy
achieves the best scaling behavior – generalization to larger
domain instances – it is validated after every epoch, assess-
ing its current performance on a set of larger validation in-
stances. From all policies encountered during this process,
the one with the best validation set performance is selected
as the final policy. Algorithm 1 outlines this training loop.

Algorithm 1: Per-domain policy training loop.
Input: Training set T , validation set V , epochs E
Output: Policy πbest

1 π0 ← random ; πbest ← π0 ; vbest ← 0 ;
2 for i = 1, . . . , E do
3 πi = train(πi−1, T) ;
4 vi = validate(πi, V) ;
5 if vi better than vbest then
6 πbest ← πi ; vbest ← vi ;

For the validation in line 4 of this loop, a common ap-
proach is to compute a loss between the policy’s predic-
tions and a teacher planner’s decisions (Ståhlberg, Bonet,
and Geffner 2022a,b, 2024). This, however, limits the in-
stances available for validation to only those that can be
solved by a planner. Alternatively, the policy can be vali-
dated by running it on the validation instances and comput-
ing coverage, i.e., the fraction of solved instances, which has
the benefit of not requiring to run the teacher planner on the
validation set (Rossetti et al. 2024).

All prior approaches to validation in per-domain policy
learning, to the best of our knowledge, rely on a pre-defined
fixed validation set. Yet this limits their ability to assess scal-
ing behavior. The data on a fixed validation set is not infor-
mative if the policy already has perfect coverage/loss there.
Further, the fixed validation sets are typically taken from IPC
instance suits, limiting the number of available validation in-
stances and hence the ability to see fine-grained differences
between policies.

These limitations are quite unnecessary. As we discuss
next, one can generate validation instances on the fly, ensur-
ing informativity for policy selection as well as feasibility of
the validation process.

Systematic instance size scaling. Much work has been
done in the past on benchmark instance scaling for the pur-
pose of evaluating planning systems (e.g., Hoffmann et al.
2006; Torralba, Seipp, and Sievers 2021). Here, we merely
require a systematic scheme to generate instances of scal-
ing size. In designing such a scheme, we stick to commu-
nity conventions and existing instance generators as much
as possible.

We define instance size as the number of objects. This
leaves open the question of which objects, i.e., given a de-
sired size n, how to compose the object universe from the
different sub-types. Our answer is a uniform distribution
over the possible compositions given the respective IPC
instance generator. Obtaining the possible compositions is
non-trivial as IPC instance generators often do not allow to
directly set the number of objects of any given type (re-
quiring, e.g., to instead set the x- and y-dimensions of a
map), and often implement implicit assumptions across ob-
ject types (e.g., at least one truck per city). We capture these
constraints in terms of constraint satisfaction problem (CSP)
encodings, and use a CSP solver to find valid generator in-
puts that yield instances of size n.

Specifically, we model instance size as a constraint n =
c1v1+· · ·+ckvk+c0, where vi are the CSP variables encod-
ing the generator’s arguments, and the constants ci capture
the numbers of objects created by the generator. We repre-
sent any implicit assumptions made by the generator as ad-
ditional constraints. These CSP encodings tend to be very
small, and CSP solving time is negligible. For example, in
Childsnack the task is to prepare and serve different kinds
of sandwiches to children. The generator parameters are the
number of children v1, trays v2, and sandwiches v3. The
generator always adds c0 = 3 tables, as well as bread and
content objects for each child yielding c1 = 3; it returns an
error if there are fewer sandwiches than children. Accord-
ingly, our CSP encoding is n = 3v1+v2+v3+3∧v1 ≤ v3.

Another example is the Rovers domain where several
rovers need to navigate between waypoints to fulfill objec-
tives, such as gathering soil data or taking images. The gen-
erator inputs are the number of rovers v1, waypoints v2,
cameras v3, and objectives v4. The generator requires at
least 2 waypoints, 1 lander object , 3 objects representing the
camera modes, and 1 storage object for each rover. Thus, the
CSP encoding is n = 2 · v1 + v2 + v3 + v4 + 4 ∧ 2 ≤ v2.

For the purpose of generating an individual instance in
dynamic validation, we compute a fixed number (here set to
100) of solutions to the CSP, sample one of these uniformly,
and pass it as input to the generator.3 If some of the generator
parameters do not affect instance size, for instance the ratio
of allergic children in Childsnack, we sample their values
uniformly from the possible range.

Dynamic validation. Algorithm 2 outlines our dynamic
validation method. Given training instances of maximal size
n0, we generate validation instances starting at n0 + 1. We
keep generating m instances of each size so long as policy
coverage remains above a threshold τ . To ensure feasibility
of this process, we impose a plan length bound L. The final
validation score vπ of policy π is computed as the sum of
achieved coverages Ci.

In the algorithm, we skip over values of n for which no
domain instance exists according to the generator param-
eters and assumptions (and hence our CSP is unsolvable).
CSP(n, 100) returns 100 solutions to the CSP for size n.

3In scaling behavior evaluation (see Section 3), to be even more
faithful to the generator, we compute all solutions to the CSP and
sample from these uniformly.

Algorithm 2: Dynamic coverage validation.
Input: Policy π, instance generator G, CSP , size n0

Parameters: per-size #instances m, plan length bound L,
coverage threshold τ

Output: Validation score vπ
1 n← n0 ;
2 repeat
3 n← n+ 1 ;
4 if not instanceOfSizeExists(n) then
5 Cn ← 0 ; continue ;
6 possibleInp = CSP(n, 100) ;
7 for i ∈ {1, . . . ,m} do
8 Inp← uniform(possibleInp) ;
9 I ← generateInstance(G, Inp) ;

10 Ri ← runPolicy(π, I, L) ;
11 Cn ←

∑
iRi/m ;

12 until Cn < τ ;
13 vπ ←

∑n
i=n0+1 Ci ;

Ri is a Boolean whose value is 1 iff the policy found a plan.
The parameters m and τ are set manually, to a fixed value
used across all domains; in our experiments we use m = 10
and τ = 30%. To obtain the more domain-sensitive parame-
ter L automatically, we use L = 3N where N is the average
length of the teacher plans on the largest training instances.

3 Scaling Behavior Evaluation
We now introduce our refined methodology for evaluating
scaling behavior encapsulated in Algorithm 3.

Algorithm 3: Scaling behavior evaluation.
Input: Policy π, instance generator G, CSP
Parameters: Statistical parameters ϵ and κ, plan length

bound L, coverage threshold τ , consecutive
fails threshold ζ

Output: Statistical coverage Ĉn per instance size n
1 n← 0 ; fails← 0 ;
2 while fails < ζ do
3 n← n+ 1 ; L← L+ 1;
4 if not instanceOfSizeExists(n) then continue ;
5 Ĉn ← −∞ ; i← 0 ;
6 possibleInp = CSP(n,∞) ;
7 while P (|Ĉn − Cn| > ϵ) < κ do
8 Inp← uniform(possibleInp) ;
9 I ← generateInstance(G, Inp) ;

10 Ri ← runPolicy(π, I, L) ;
11 i← i+ 1 ;
12 Ĉn ←

∑i
j=1Rj/i ;

13 if Ĉn < τ then fails← fails + 1 else fails← 0

The overall mechanics of the procedure are similar to dy-
namic validation. The differences are as follows. We start
from n = 1, so as to evaluate policy performance across the
entire domain. We again impose a plan length bound L on
policy executions. Here, we set L = 3N + n, i.e., we add
the current instance size, as the optimal plan length typically
increases with the number of objects. We only stop after ζ

consecutive failures to meet the coverage threshold τ , to al-
low for temporary lapses in policy performance. For instance
generation, we draw uniformly from all possible size-n in-
stances (CSP(n,∞) returns all solutions to the CSP for size
n). Instead of looking at a fixed number of instances for each
size, we generate a sufficient number of instances to guaran-
tee a given confidence interval – precisely, with parameters
κ and ϵ, we follow the Chow-Robbin’s method (Chow and
Robbins 1965) using a Student’s t-inverval (also called se-
quential Student’s t-inverval method): we keep generating
runs until, with confidence (1−κ), the half-width of the cur-
rent Student’s t-interval is at most ϵ. Thus, we reach a confi-
dence of (1−κ) that the error between average coverage Ĉn
and real coverage Cn is at most ϵ. We refer to the resulting
value Ĉn as statistical coverage. The algorithm outputs that
value as a function of n.

4 Experiments
Our experiments evaluate our dynamic validation method
for GNN policies against loss-based and coverage-based val-
idation on fixed validation sets as used in prior work. We
employ our scaling behavior evaluation methods to obtain
fine-grained comparisons. In what follows, we outline our
benchmarks, training and validation set construction, policy
training and selection setup, and empirical results.

Benchmarks. We use 9 different domains which is a
common number for papers on per-domain policy learn-
ing (e.g., Rivlin, Hazan, and Karpas 5 (2020), Ståhlberg,
Bonet, and Geffner 8 (2022a), 9 (2022a), 10 (2023)). 7 of
our domains have already been used in the context of per-
domain generalization, while we additionally use Ferry and
Childsnack from the learning track of the latest IPC in 2023
(Taitler et al. 2024). We did not add the IPC’23 domains
Floortile (none of the trained GNNs could solve any in-
stance), Spanner and Miconic (all learned policies always
achieve 100% coverage, making them uninteresting for our
experiments), and Sokoban (its generator throws an error in
case an unsolvable instance is generated, requiring to run
the generator over and over again, making it unfeasible). The
generators were taken from IPC’23 where available, and oth-
erwise from the FF domain collection.4

Instance sets. We use the architecture of Ståhlberg, Bonet,
and Geffner (2022a). The GNN learns a state value function
and the policy is obtained by greedily following the best ac-
tion, i.e., the action leading to the state with the lowest state
value. To prevent cycles, we prohibit the policy from vis-
iting states more than once (Ståhlberg, Bonet, and Geffner
2022b). The training hyperparameters can be found in Ap-
pendix A.

We construct the training sets by uniformly sampling 100
instances per size, discarding duplicates. For the fixed vali-
dation sets, we start at size n0 + 1 where n0 is the largest
training size. Per size, we generate 100 instances discarding
duplicates, and uniformly select 4 of these. Full details about
the training and validation sets are provided in Appendix B.
We use the seq-opt-merge-and-shrink configuration of Fast

4https://fai.cs.uni-saarland.de/hoffmann/ff-domains.html

(a) Blocksworld. (b) Ferry. (c) Satellite.

(d) Transport. (e) Childsnack. (f) Rovers.

(g) Gripper. (h) Visitall. (i) Logistics.

Figure 2: Statistical coverage Ĉn over n of policies selected using fixed-set loss (blue), fixed-set coverage (orange), and dynamic
coverage (purple) validation on 9 domains. The instance sizes used for training are within the vertical red lines, the instance
sizes used in fixed validation sets are within the two green lines. Dynamic covarage validation starts at the lower green line. We
observed that the largest validation instance sizes seen during dynamic validation are often close to those seen in evaluation.
Note that we terminated the evaluation of Ferry’s dynamic coverage policy early at size 150, as Ĉ stabilized above the threshold.

Downward (Helmert 2006) with limits of 20 minutes and 64
GB as the teacher planner, computing optimal plans for both
sets.

Joint policy training and selection. Our setup is designed
such that the training procedure is performed jointly for all
3 validation methods. After every training epoch, we apply
each method in turn, fixed-set loss (henceforth: loss), fixed-
set coverage (henceforth: coverage), and our dynamic-set
coverage method as introduced in Section 2 (henceforth: dy-
namic coverage). At the end of training, for each validation
method, we select the respective best policy. In this manner,
we guarantee that any differences in policy performance are
exclusively due to the difference in validation methods.

In coverage, we imposed the same plan length limit as in
dynamic coverage. We also imposed a one-hour time limit
on the validation processes, but this was never reached in
our experiments. In our experiments, dynamic coverage val-
idation took about 8 times as long as coverage validation.
However, this overhead only occurs during training.

Results. Figure 2 shows the scaling behavior evaluation
of the policies validated based on loss (blue), coverage (or-
ange), and dynamic coverage (purple).

The policies selected by the two fixed-set validation meth-
ods (loss and coverage) have mixed performances, which are
similar only in the Satellite, Childsnack, and Logistics do-

Loss Coverage Dynamic
Domain Scale SumCov Scale SumCov Scale SumCov
Blocksworld 56 45.42 24 17.97 59 52.25
Ferry 107 72.24 57 37.74 148 99.34
Satellite 25 15.03 27 17.03 32 19.33
Transport 23 11.46 37 24.0 67 41.25
Childsnack 67 37.06 54 26.45 95 51.59
Rovers 15 3.41 27 12.57 32 16.32
Gripper 40 29.84 27 24.39 74 53.98
Visitall 64 4.81 196 9.88 484 17.13
Logistics 13 6.13 15 7.44 29 15.33

Table 1: Scale and SumCov scores of policies selected using
loss, coverage, and dynamic coverage validation.

mains. Dynamic validation, however, consistently yields the
best scaling behavior across all domains. Table 1 provides a
summary view of these results. We measure scaling behav-
ior here in two ways:
• Scale is the largest instance size n before the policy falls

below the threshold τ for ζ consecutive times, measuring
how far the policy can generalize with a sufficient perfor-
mance; and

• SumCov sums up statistical coverage up to instance size
n, measuring the “area below the coverage curve”.

(a) Blocksworld. (b) Ferry. (c) Satellite.

(d) Transport. (e) Childsnack. (f) Rovers.

(g) Gripper. (h) Visitall. (i) Logistics.

Figure 3: Evaluation of plan length using the same policies and instance sizes as in Figure 2.

Our dynamic validation method performs best in all do-
mains in both measures: The Scale measure shows that the
policies selected by dynamic validation generalize consis-
tently to larger instance sizes than the policies selected by
loss or coverage validation. According to the SumCov mea-
sure, dynamic validation policies also achieve higher total
coverages across all instance sizes than either the loss or the
coverage validation policies.

Recall that the policy selection was performed on the
same training run, so the superiority of dynamic validation
is exclusively due to policy selection.

Analyzing further properties. So far, scaling behavior
evaluation was only used to analyze coverage, as it is the
main objective of per-domain generalizing policies. How-
ever, this method can also be applied to any other trajectory-
based property. As an example, consider Figure 3, where
we analyze the average plan length (by discarding runs that
timeout) of the same policies and for the same instance sizes
used in Figure 2.

We observe that the policies selected using dynamic cov-
erage not only scale to larger instance sizes but addition-
ally find plans of equal or even shorter length, with the sole
exception of the Satellite domain. Given that the dynamic
coverage policies solve more instances, which means also
harder ones where more actions are needed, this is a very
promising insight. (Another interesting comparison would
be to compare the average plan length only on instances
that all of the 3 approaches solve, which we leave for future
work.)

5 Conclusion
Per-domain generalization is a natural and popular setting
for policy learning. Our work contributes new insights into
the use of validation for policy selection in this context, and
into the evaluation of scaling behavior for empirical perfor-
mance analysis. The results are highly encouraging, showing
improvements in all 9 domains used.

An intriguing aspect of these improvements is that they
are obtained through policy seclection exclusively. Perhaps
there are ways to feed back insights from validation into
training, guiding the training process towards better scal-
ing behavior. We note that similar approaches have been
successfully employed in the context of deep reinforcement
learning (Gros et al. 2023, 2024). Another interesting di-
rection is the application of our ideas in training processes
based on reinforcement learning instead of supervised learn-
ing (e.g., Rivlin, Hazan, and Karpas 2020; Ståhlberg, Bonet,
and Geffner 2023). Since our methods are agnostic to the
policy representation, all this can in principle be done in ar-
bitrary frameworks (e.g., Toyer et al. 2020; Rossetti et al.
2024).

From the point of view of scientific experiments, an inter-
esting analysis could be to vary the size of the training data
as well, and determine its impact on scaling behavior. We
could, for example, examine Scale and SumCov scores as a
function of training data size.

Acknowledgments
This work was partially supported by the German Research
Foundation (DFG) under grant No. 389792660, as part
of TRR 248, see https://perspicuous-computing.science, by
the German Federal Ministry of Education and Research
(BMBF) as part of the project MAC-MERLin (Grant Agree-
ment No. 01IW24007), by the German Research Foundation
(DFG) - GRK 2853/1 “Neuroexplicit Models of Language,
Vision, and Action” - project number 471607914, and by
the European Regional Development Fund (ERDF) and the
Saarland within the scope of (To)CERTAIN.

References
Chen, D. Z.; Thiébaux, S.; and Trevizan, F. 2024. Learning
Domain-Independent Heuristics for Grounded and Lifted
Planning. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 38, 20078–20086.
Chow, Y. S.; and Robbins, H. 1965. On the Asymptotic The-
ory of Fixed-Width Sequential Confidence Intervals for the
Mean. The Annals of Mathematical Statistics, 36(2): 457–
462.
Garg, S.; Bajpai, A.; and Mausam. 2019. Size Independent
Neural Transfer for RDDL Planning. In Proceedings of the
29th International Conference on Automated Planning and
Scheduling (ICAPS’19), 631–636. AAAI Press.
Gros, T. P.; Groß, J.; Höller, D.; Hoffmann, J.; Klauck, M.;
Meerkamp, H.; Müller, N. J.; Schaller, L.; and Wolf, V.
2023. DSMC Evaluation Stages: Fostering Robust and Safe
Behavior in Deep Reinforcement Learning–Extended Ver-
sion. ACM Transactions on Modeling and Computer Simu-
lation, 33(4): 1–28.
Gros, T. P.; Müller, N. J.; Höller, D.; and Wolf, V. 2024. Safe
Reinforcement Learning Through Regret and State Restora-
tions in Evaluation Stages. In Principles of Verification:
Cycling the Probabilistic Landscape: Essays Dedicated to
Joost-Pieter Katoen on the Occasion of His 60th Birthday,
Part III, 18–38. Springer.
Groshev, E.; Goldstein, M.; Tamar, A.; Srivastava, S.; and
Abbeel, P. 2018. Learning Generalized Reactive Poli-
cies Using Deep Neural Networks. In Proceedings of the
28th International Conference on Automated Planning and
Scheduling (ICAPS’18), 408–416. AAAI Press.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.
Hoffmann, J.; Edelkamp, S.; Thı́ebaux, S.; Englert, R.; Li-
porace, F.; and Trüg, S. 2006. Engineering Benchmarks for
Planning: the Domains Used in the Deterministic Part of
IPC-4. Journal of Artificial Intelligence Research, 26: 453–
541.
Kingma, D. P. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980.
Müller, N. J.; Sánchez, P.; Hoffmann, J.; Wolf, V.; and Gros,
T. P. 2024. Comparing State-of-the-art Graph Neural Net-
works and Transformers for General Policy Learning. In
ICAPS Workshop on Planning and Reinforcement Learning
(PRL).

Rivlin, O.; Hazan, T.; and Karpas, E. 2020. Generalized
planning with deep reinforcement learning. arXiv preprint
arXiv:2005.02305.
Rossetti, N.; Tummolo, M.; Gerevini, A. E.; Putelli, L.; Se-
rina, I.; Chiari, M.; and Olivato, M. 2024. Learning General
Policies for Planning through GPT Models. In Proceedings
of the International Conference on Automated Planning and
Scheduling, volume 34, 500–508.
Sharma, V.; Arora, D.; Singla, P.; et al. 2023. SymNet
3.0: exploiting long-range influences in learning generalized
neural policies for relational MDPs. In Uncertainty in Arti-
ficial Intelligence, 1921–1931. PMLR.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2022a. Learning
general optimal policies with graph neural networks: Ex-
pressive power, transparency, and limits. In Proceedings of
the International Conference on Automated Planning and
Scheduling, volume 32, 629–637.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2022b. Learning
generalized policies without supervision using gnns. arXiv
preprint arXiv:2205.06002.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2023. Learning
general policies with policy gradient methods. In Proceed-
ings of the International Conference on Principles of Knowl-
edge Representation and Reasoning, 647–657.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2024. Learning
General Policies for Classical Planning Domains: Getting
Beyond C 2. arXiv preprint arXiv:2403.11734.
Taitler, A.; Alford, R.; Espasa, J.; Behnke, G.; Fišer, D.;
Gimelfarb, M.; Pommerening, F.; Sanner, S.; Scala, E.;
Schreiber, D.; Segovia-Angus, J.; and Seipp, J. 2024. The
2023 International Planning Competition. The AI Magazine,
45(2).
Torralba, Á.; Seipp, J.; and Sievers, S. 2021. Automatic In-
stance Generation for Classical Planning. In Proceedings of
the 31st International Conference on Automated Planning
and Scheduling (ICAPS’21), 376–384.
Toyer, S.; Thiébaux, S.; Trevizan, F. W.; and Xie, L. 2020.
ASNets: Deep Learning for Generalised Planning. Journal
of Artificial Intelligence Research, 68: 1–68.
Toyer, S.; Trevizan, F.; Thiébaux, S.; and Xie, L. 2018. Ac-
tion schema networks: Generalised policies with deep learn-
ing. In Proceedings of the AAAI Conference on Artificial
Intelligence.
Wang, R. X.; and Thiébaux, S. 2024. Learning Gener-
alised Policies for Numeric Planning. In Proceedings of the
34th International Conference on Automated Planning and
Scheduling (ICAPS’24), 633–642.

A Hyperparameters
We use similar training hyperparameters as Ståhlberg,
Bonet, and Geffner with 30 GNN layers, a hidden size of 32,
a learning rate of 0.0002 for the Adam optimizer (Kingma
2014), and a gradient clip value of 0.1 (Ståhlberg, Bonet,
and Geffner 2022a,b). However, we use a fixed number of
100 training epochs and a batch size of 1024 for fast train-
ing. For each domain, the training was repeated with three
random seeds.

For each instance size, dynamic coverage validation gen-
erates m = 10 instances and stops when the coverage drops
below τ = 30%. For scaling behavior evaluation, confidence
intervals are computed with ϵ = 0.05 and κ = 0.1, and the
evaluation stops when the estimated coverage drops below
τ = 30% for ζ = 2 consecutive instances.

Whereas during validation we use fixed plan length
bounds L, during scaling behavior evaluation, they are
scaled linearly with the instance size. The plan length
bounds for each domain are listed in Table 2.

Domain Validation Evaluation
Blocksworld 120 120 + n

Ferry 78 78 + n
Satellite 39 39 + n

Transport 33 33 + n
Childsnack 15 15 + n

Rovers 60 60 + n
Gripper 60 60 + n
Visitall 114 114 + n

Logistics 27 27 + n

Table 2: Plan length bounds used during validation and eval-
uation.

B Datasets
During plan generation, we discard instances for which the
planner fails to find a plan within the given time and memory
limits. Additionally, we terminate the plan generation early
if the planner fails to find a plan for 10 consecutive instances.

For each domain, except Visitall, we assign the instances
of the eight smallest sizes to the training set. Similarly, for
the validation set, we randomly select 12 instances, equally
distributed (if possible) among the three largest instance
sizes. The instance sizes used for each domain are presented
in Table 3.

We note that strictly separating instance sizes of training
and validation sets is critical for generalization. Without this
separation, the policy with the best validation performance
may be the one that has only learned to generalize up to the
largest instance size shared between both the training and
validation sets.

Domain Training Validation
Blocksworld [7− 14] [15− 17]

Ferry [8− 15] [16− 18]
Satellite [8− 15] [16− 18]

Transport [8− 15] [16− 18]
Childsnack [8− 15] [16− 18]

Rovers [10− 17] [18− 20]
Gripper [8− 15] [16− 18]
Visitall {4, 9, 16, . . . , 49} {64, 81}

Logistics [8− 15] [16− 18]

Table 3: Number of objects in instances used for training and
validation sets.

