PyDSMC: Statistical Model Checking for Neural
Agents Using the Gymnasium Interface

QE_ST QEST
FORMATS Timo P. Gros''2® Arnd Hartmanns? @, FORMATS
Ehetuation Ivo Hoese?, Joshua Meyer!2©, Jrtifacts

Nicola J. Miiller’2® | and Verena Wolf'?

! Cerman Research Center for Artificial Intelligence (DFKI), Saarbriicken, Germany
{timo.gros, ivo.hoese, joshua.meyer, nicola.mueller, verena.wolf}@dfki.de
2 Saarland University, Saarland Informatics Campus, Saarbriicken, Germany
3 University of Twente, Enschede, The Netherlands
a.hartmanns@utwente.nl

Abstract. Artificial intelligence (AI) has achieved remarkable success
in sequential decision-making. However, evaluating its neural agents re-
mains challenging, as current methods often rely on interpreting training
curves only, overlooking key statistical factors. Existing tools that allow
a formal evaluation also require white-box formal models, making them
impractical for most Al benchmarks based on the black-box Gymnasium
interface. We introduce PyDSMC, a lightweight and easy-to-use Python
tool for statistical model checking of neural agents on arbitrary Gymna-
sium environments. PyDSMC automates the selection of statistical methods
to compute confidence intervals, supporting both convergence-based and
resource-limited evaluation settings. We empirically demonstrate the im-
portance of rigorous agent evaluation and showcase PyDSMC’s capabilities
to more reliably judge and report an Al agent’s performance.

1 Introduction

Artificial intelligence (AI) exerts a significant impact on both everyday life and
contemporary research. Deep learning, in particular, is increasingly utilized for
sequential decision-making (SDM) where it achieved considerable success in ar-
eas such as the training of large language models [1,17], improving the prediction
of protein foldings [61], or mastering complex computer games such as Star-
Craft [68] or Dota 2 [12]. We call such Al-based decision-makers neural agents.
Despite these great achievements, a critical gap remains in accurately measur-
ing the performance of neural agents. Even landmark papers introducing state-
of-the-art algorithms like DQN [52], PPO [60], SAC [41], RND [22], and Dream-
erV2 [42] typically assess agent performance only through training curves, i.e.,
the accumulated sum of rewards/scores over training time. These assessments
typically fail to account for important influences, such as the system’s variance,
the limited number of samples used for each score in the training curve, or the
effects of exploration strategies [35,36]. This calls for a more formal approach.

http://orcid.org/0000-0002-1100-1952
http://orcid.org/0000-0003-3268-8674
http://orcid.org/0009-0009-8703-1136
http://orcid.org/0000-0002-5932-3395
http://orcid.org/0000-0001-8460-6007

2 T. P. Gros et al.

In recent years, the gap between the AI and verification communities was
bridged by tools that adapt and extend verification methods to neural agents.
Notably, COOL-MC [40] and MoGYM [34] provide ways to apply probabilistic |6,
7] and statistical model checking (SMC) [3,49,69], respectively, to evaluate the
behavior of neural agents. These tools leverage the capabilities of established
model checkers—Storm [28], and MODES [19] of the MODEST TOOLSET [43],
respectively—to enhance the rigor of evaluations.

However, they crucially require a formal model of the environment, encoded
in modeling languages such as JANI [20] or PRISM |[48], while the benchmarks
most commonly used for SDM in the AI context follow the Farama Foundation’s
Gymnasium [65] interface (the successor to OpenAl Gym [15]). COOL-MC and
MoGyYM implement this interface for formal models, giving Gymnasium-based
tools access to formal models, but not the reverse. Thus, formal evaluation meth-
ods remain inaccessible to the majority of AI community benchmarks—e.g.,
MuJoCo [63], PROCGEN [26], or Atari 2600 [10]—that are based on arbitrary
(black-box) simulations.

With this paper, we aim to bridge this Al-verification gap from the other
side: We introduce PyDSMC (publicly available at github.com /neuro-mechanistic-
modeling/PyDSMC), a lightweight, easy-to-install, and easy-to-use tool that
facilitates SMC of neural agents (in prior work called Deep Statistical Model
Checking (DSMC) [35]) across any environment conforming to the Gymnasium
interface, irrespective of the underlying implementation. PyDSMC provides prede-
fined trajectory-based properties to evaluate, such as accumulated rewards, the
number of steps until termination, or the goal-reaching probability. In addition,
a simple interface allows users to define custom properties. PyDSMC computes
confidence intervals to either (1) achieve a predefined error margin and level of
confidence, or (2) report the error margin given a confidence level once a specified
resource limit (runtime or number of samples) is reached. For every property,
PyDSMC automatically selects the appropriate statistical method. Thus, it pro-
vides accurate and adaptable statistical verification capabilities.

PyDSMC is designed for ease of use and compatibility with a broad range of
environments using the Gymnasium interface. Notably, using SMC as the un-
derlying analysis technique allows PyDSMC to remain agnostic w.r.t. the environ-
ment’s underlying implementation. We believe that these features will facilitate
greater adoption of SMC within the AT community and improve the state of the
art in how the performance of neural agents is measured and reported.

Related Work. COOL-MC and MoGYM make Al algorithms available for use
with formal models—whereas PyDSMC makes formal evaluation available for use
with Al agents. A similar goal is achieved by MultiVeStA for economic agent-
based models [66,67]. The area of neural network verification (see, e.g., [4,9,27,
54,59]) is a wide field that includes constraint- and abstraction-based symbolic
and explicit verification methods and tools, typically aimed at ensuring the cor-
rectness or safety [5,39,47] of a neural agent w.r.t. a specification. In contrast,
PyDSMC’s purpose is specifically to provide a toolbox for the AI practitioner to
easily evaluate the performance of their agent in a sound, formally justified way.

https://github.com/neuro-mechanistic-modeling/PyDSMC
https://github.com/neuro-mechanistic-modeling/PyDSMC

PyDSMC: Statistical Model Checking for Neural Agents 3

Outline. We elaborate the motivation to use SMC for neural agents in Section 2.
Then Sections 3 and 4 introduce Gymnasium and the statistical methods used
in our work, respectively. In Section 5 we present the PyDSMC Python package
and demonstrate some exemplary results in Section 6.

2 The Importance of Verifying Neural Agents

This section highlights the critical role of verification in assessing the perfor-
mance of neural agents effectively.

2.1 Current State of the Art of Reporting Agents’ Performances

Several papers evaluate the performance of their neural agent using the training
curve. The training curve plots the number of training steps on the x-axis against
the estimated expected return, i.e., the cumulative sum of (discounted) rewards,
on the y-axis. Broadly, there are three common ways how the learning curve’s
data is used for agent evaluation:

Single Random Seed. It is common for papers—including those introducing
influential algorithms such as DQN [52], DreamerV2 [42], PPO [60], or Rain-
bow [44]—to present the training curve of a single training run/random seed.
Typically, this curve is smoothed using a sliding mean over the most recent
steps. Regularly, this is done without providing any confidence interval or any
additional information beyond the training curve itself. Consider the blue curve

80

) B,
60 _/\V\A,./\\/_\ 0.0

0.6 train
max train
0 08 / eval
max eval
~1.0

0 1 2 3 4 5 0.0 0.2 0.4 0.6 0.8 1.0
Steps x10¢ Steps %100

Mean Return
IS
|
= o

(a) RACETRACK (b) MINIGRIDSAFE

Fig. 1: Mean return on two common benchmarks during training for a single seed.
The blue curve depicts the values observed during training, whereas the orange
curve was additionally computed after every training step through PyDSMC by
using additional evaluation runs. The shaded area represents the 95% confidence
interval over the sliding window (training) or over the evaluation samples (eval-
uation), respectively.

4 T. P. Gros et al.

0:2 12000 —

10000 /

8000

Mean Return
L4
PN

6000

—— mean train
best eval
4000 —— mean eval

0.0 0.2 0.4 0.6 0.8 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Steps x100 Steps x107

(a) MINIGRIDSAFE (b) HALF CHEETAH (MUJoCo)

Fig. 2: Mean return on two common benchmarks during training over 10 seeds.
The blue curve depicts the values observed during training, whereas the red and
orange curves were additionally computed after every training step using PyDSMC
by performing additional evaluation runs. The orange curve was computed by
using the best random seed, while the red curve averages over all used random
seeds. The shaded area represents the 95% confidence interval over the 10 dif-
ferent random seeds.

of Fig. 1, which exemplarily provides the training curves for two different bench-
marks (left RACETRACK [8,31,38], right MINIGRIDSAFE [57]) trained with PPO.
The shaded blue area here additionally provides the 95% confidence interval
computed with the sequential Student’s-t method (details in Section 4) using
the samples from the sliding mean.

Mean of Multiple Random Seeds with Additional Confidence Information. An-
other common approach is to report the mean over several training runs, for
example, done by Burda et al. [22], Duan et al. [29], or Agarwal et al. [2]|. In
addition to the mean, these papers typically report either the standard devia-
tion [2], or the 95% confidence interval across these multiple runs [29].

Consider Figure Fig. 2, which provides an example for such a training curve
in blue for two different benchmarks (MINIGRIDSAFE trained with PPO and Half
Cheetah (MuJoCo) [63] trained with SAC [41]). The shaded blue area provides
the 95% confidence interval over the 10 different random seeds used.

Mean of Multiple Random Seeds with Additional Min/Maz Information. Alter-
natively, some papers report the minimum and maximum values observed across
multiple runs, e.g., SAC [41]. Consider Figure Fig. 3, providing such an example
for RACETRACK and MINIGRIDSAFE. While the blue curve still represents the
mean, the shaded blue area now represents the range of observed values across
the different training runs.

PyDSMC: Statistical Model Checking for Neural Agents 5

/A/M‘W
10

—05
0.50 20

—— mean train
—0.75 0 best eval

0.50 100

0.25 80

0.00 60

Mean Return
>
o

—— mean eval

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Steps %109 Steps x10°

(a) MINIGRIDSAFE (b) RACETRACK

Fig. 3: Mean return on two common benchmarks during training over 10 seeds.
The blue curve depicts the values observed during training, whereas the red
and orange curves were additionally computed after every training step through
PyDSMC by using additional evaluation runs. The orange curve was computed by
using the best random seed, while the red curve averages over all used random
seeds. The shaded area represents the 95% confidence interval (red and orange)
or the range of minimal and maximal observed values (blue), respectively, over
the 10 different random seeds.

2.2 Failure to Assess the Agents’ Real Performances

Although all three approaches described to measure a neural agent’s performance
are common, we will now show that they fail to capture their real performance.
To measure their actual performance, we use PyDSMC throughout the training
to perform additional evaluation runs, i.e., runs without additional exploration
influences that are exclusively used to measure the current performance and not
for training. In Fig. 1, the orange curve depicts the results of these additional
evaluation runs, with the shaded area indicating the 95% confidence interval.
In Fig. 2 and Fig. 3, we provide two additional curves computed with PyDSMC:
the orange curve depicts the performance of the best-performing seed, while
the red curve shows the average performance across all seeds. For both curves,
the shaded area indicates the 95% confidence interval computed over the used
evaluation samples. We measure both the best and the average performance to
enable a more comprehensive comparison: while most papers report the aver-
age over several training runs, in practice, one naturally selects the best agent
for (real-world) deployment after training. Thus, we compare against both the
actual best and the actual average performance.

Two major discrepancies become apparent when comparing the performance
captured by PyDSMC (orange, red) with the training curves (blue):

Discrepancy in Performance Measurement. The substantial gap between the
training and the evaluation curves underscores the inadequacy of training curves
as reliable indicators of the expected return. Mostly, the training curves do not
even lie within the confidence interval of the PyDSMC’s calculated value, and vice

6 T. P. Gros et al.

versa. This is evident from the difference between the orange and blue curves for
a single seed in Fig. 1, as well as when comparing in the multiple seed setting:
both the orange curve (best seed) and the red curve (mean over seeds) differ
significantly from the training curve (blue), mostly falling outside each other’s
confidence interval.

Comparing the confidence interval of the best (orange) and average (red)
performance to the min/max shaded area (blue) in Fig. 3 area reveals that the
min/max information does not provide any insights about agents’ performances.

Therefore, the blue training curve must be considered insufficient for accu-
rately measuring an agent’s performance.

Variability in Optimal Performance Timing. There is considerable variation in
the timing of peak returns between training and evaluation. While this occurs
in both single-seed and multiple-seed settings, it can most clearly be observed
when considering a single seed (Fig. 1).

For both RACETRACK and MINIGRIDSAFE, we compare (i) the time z; where
the training curve (blue) reaches its maximum-—corresponding to the point
where the agent would typically be selected for deployment after training—with
(ii) the time z. at which the evaluation curve (orange) reaches its maximum,
indicating the agent’s true peak performance. These two points in time, x; and
x., differ significantly. Moreover, the evaluation curve (orange) reveals that the
performance at agent selection time x; is substantially lower than at its actual
peak x.. This implies that the selected agent is far from optimal at the point it
would be chosen based on the training curve alone.

2.3 Consequence for Training Neural Agents

These experiments' reveal a significant discrepancy in performance measure-
ment. The training curve is affected by additional factors such as exploration,
limited samples (especially in the multiple-seed setting), and policy changes dur-
ing sampling due to ongoing learning steps. Therefore, it does not reflect the true
performance, which can only be determined through rigorous verification.?
Additionally, the observed variability in optimal performance timing indi-
cates a substantial risk of selecting suboptimal agents when relying solely on

! It is important to note that the experiments presented in this section—involving eval-

uation after every learning step—are computationally expensive and might (depend-
ing on the domain) therefore be impractical. Nevertheless, they clearly demonstrate
the importance of incorporating verification at regular intervals during training.
It is worth noting that, in rare cases that we were especially looking for, the training
curve was expressive enough for performance measures. We observed either only
negligible differences between the training and evaluation curves, i.e., the training
curve resembled the actual performance, or that the extraction point z; yielded
performance comparable to that at z.. However, the fact that such discrepancies
can occur—even if not always—demonstrates the necessity of rigorous verification,
as otherwise the actual performance will remain unknown.

PyDSMC: Statistical Model Checking for Neural Agents 7

training performance. Therefore, selecting the best-performing agent and accu-
rately assessing its performance requires repeated verification throughout and
after the training process.

These observations underscore the necessity of employing robust verification
tools like PyDSMC to ensure that the reported performance of neural agents ac-
curately reflects their true capabilities.

3 The Gymnasium Interface

The Farama Foundation’s Gymnasium [64], the successor to OpenAl Gym [16],
is an open-source library designed to standardize the interface between neu-
ral agents and their environments. To this end, it provides a feature-rich and
extensible API to abstract the agent-environment interactions, enabling easy in-
teroperability between libraries and tools. Its widespread adoption across various
libraries, tools, and environments serves as evidence of its success.

Awailable Tools. Stable Baselines3 [58], a popular reinforcement learning frame-
work, allows users to train agents based on a broad variety of algorithms, such as
PPO [60] and DQN [52], given that they follow the Gymnasium interface. Other
training libraries supporting the Gymnasium interface include CleanRL [46],
which provides clean and minimalistic implementations of learning algorithm,
and Dopamine [23], a research framework developed by Google that focuses on
reproducibility and simplicity.

Having access to numerous training algorithms naturally requires compat-
ible environments. While Gymnasium already bundles example environments
like MOUNTAINCAR, and MuJoCo [63], there is no shortage of custom envi-
ronments implementing the Gymnasium interface either. Examples include the
Atari Learning Environment [11], running original Atari 2600 games on an emula-
tor, and MINIGRID [24], providing easy access to implement arbitrary grid-based
environments.

Interface. An environment striving to be Gymnasium API-compatible has to
implement two methods: step and reset. Both return a tuple consisting of an
observation, a reward, a termination flag, a truncated flag, and an info dictionary,
defining additional (possibly environment-specific) information.

On top of that, keeping efficiency in mind, Gymnasium provides easy vec-
torization functionality by grouping environments together, enabling batch in-
ference. By default, each contained environment can either be managed by its
proper subprocess, or by the main thread itself. The better choice depends on
many factors, including the environment’s complexity.

4 Statistical Methods

The core of SMC is Monte Carlo simulation: Generate k simulation runs (i.e.
random executions of the neural agent acting within its Gymnasium environ-
ment), which give rise to samples X7, ..., Xj of the random variable X of the

8 T. P. Gros et al.

property of interest, and return the sample mean X = % Zle X, as an estimate
for the value of the property. For example, if the property concerns the proba-
bility p to reach a goal, then X is 1 for every run that reaches a goal and 0 for
all others (i.e. we estimate a binomial proportion), so p = P(X = 1) = E(X); if
the property queries for the expected accumulated discounted reward r, then X
for a run is the discounted sum of the rewards along that run, and r» = E(X).
In the latter case, if we know that rewards are non-negative and the maximum
reward of any step is < 7,42, We can derive that the support of the distribution
of X lies within [0, {22] for discount factor v < 1, and we say that X is bounded.
Without knowledge of 7,4z, or for v = 1, we have to assume unbounded X.

SMC additionally provides a formal statistical guarantee on the correctness
of its results. PyDSMC uses confidence intervals (CIs) as an easy-to-understand
way to express its guarantee: In addition to X, it returns an interval I = [4,u]
such that, in (1 — k) -100 % of the times such an interval is returned by PyDSMC,
the (unknown) true value = E(X) lies within I. Additionally, we ensure that
u—{ < 2e (absolute width) or u—¢ < - (£+u) (relative width). The significance
level k must always be specified. The absolute or relative error bound € can be
specified by the user. If it is, then PyDSMC generates runs until it can deliver an
e-interval with confidence 1 — k (the sequential setting). If € is not given, k must
be specified—either directly, or indirectly via a bound on the runtime after which
to stop generating runs. Then, once k runs have been collected, PyDSMC returns
an interval with confidence 1 — k (the fized-runs setting), and ¢ is implicitly
given by the interval’s half-width (and thus the distinction between absolute
and relative € does not apply). PyDSMC uses the sequential setting with relative
e =0.05 and x = 0.05 (i.e. a =5 % error with 95 % confidence) by default.

The statistics literature provides many different statistical methods (SMs) to
obtain CIs. PyDSMC implements the most widely-used “standard” SMs as well as
a set of state-of-the-art “sound” methods recommended in recent surveys [21,51].
An important aspect of an SM is its coverage probability p..,: the fraction of
intervals that in the limit, if we perform SMC again and again to generate a
sequence of independent Cls, contain the true value. A sound SM guarantees
Deov > 1 — K, no matter what parameters we use and what distribution (from
those supported by the SM) we sample from.

Standard Methods. The most widely-used SMs, in fields ranging from psychology
over medical sciences to economics as well as in many SMC tools [21, Table 1],
rely on the central limit theorem (CLT) and assume that they are used with a
“large enough” number of samples. These CLT-based standard SMs are not
sound [21,51]: They only attain pe, ~ 1 — £ on average over the supported
distributions—e.g. on average when ranging over p € (0, 1) for binomial propor-
tion intervals. We nevertheless include them in PyDSMC as they are the de-facto
standard in statistical evaluation of results, flawed as they may be, and require
few runs. Notably, for unbounded distributions, they are the only methods avail-
able [21, Section 4]. In PyDSMC, we offer the following standard methods:

— Normal intervals approximate the distribution of error by a normal distri-

bution: [= [X — %, X+ %] where z is a 1 — 1 quantile from the standard

PyDSMC: Statistical Model Checking for Neural Agents 9

normal distribution and s is the sample standard deviation. As they require
k, normal intervals apply to the fixed-runs setting.

— Student’s-t intervals use a quantile from the Student’s-t distribution with
k — 1 degrees of freedom instead, which works a little better for small k.

— Chow-Robbins’ method keeps generating runs until the normal interval
for the current set of runs has half-width at most £ (absolute) or ¢ - X. Chow
and Robbins showed that this method attains coverage 1 — k in the limit as
€ — 0 [25]. For any concrete € > 0, peo, may be much lower than 1 — k.

— Sequential Student’s-t intervals work the same way as the Chow-Robbins
method but use Student’s-t instead of normal intervals.

Sound Methods. If we know we estimate a binomial proportion, or the distribu-
tion’s support is bounded to [a, b], then sound SMs are available for all settings.
In general, these require more runs than standard methods—but are arguably
the methods of choice to evaluate any (safety-)critical application of Al. Finding
efficient sound SMs is an area of active research [55,56]; in PyDSMC, we provide the
methods recommended by [21] for the fixed-runs setting and for the sequential
setting with absolute error, and EBStop [53] for relative error:

— Clopper-Pearson intervals [18] apply to binomial proportions only, where
the method guarantees coverage > 1—k. It requires around 2 X as many runs as
normal intervals in our experiments using PyDSMC’s defaults. For the sequential
setting, we precompute k via exponential and binary search assuming the
worst-case of p = 0.5 [51] before any runs are performed.

— Hoeffding’s inequality [45] gives the relation k > (b—a)?-(In2/8)/2c%. We
can thus precompute k to solve the sequential setting with absolute error, or
solve for ¢ instead for the fixed-runs setting. Due to the quadratic influence
of the range of the distribution, £ may become very large.

— DKW uses the Dvoretzky-Kiefer-Wolfowitz(-Massart) inequality [30,50] to
obtain CIs on the mean in the fixed-runs setting for bounded distributions as
described in [21, Section 4.1]. This method delivers smaller CIs than Hoeffd-
ing’s inequality that are usually asymmetric: the worst case of DKW coincides
with Hoeffding’s inequality; in the best case, intervals are half as wide.

— EBStop [53] is a truly sequential SM (i.e., it does not precompute k but
determines whether to stop after every run) for the relative-error case based
on Bernstein’s inequality [13,14] used with an estimation of X’s variance.

Choice of SM. Fig. 4 provides an overview of the SMs available in PyDSMC and the
decision tree that it employs to select the method to use. The choice depends
on the setting (fixed-runs or sequential), the kind of distribution underlying
the property (binomial, bounded, or unbounded), how the interval width e is
specified (absolute or relative), and whether the user requests a sound method
to be used. By default, PyDSMC uses the standard methods.

10 T. P. Gros et al.

fixed run sequential
no

i m "
property property property property

binorial bounded
unbounded i bounded binomial | 2terval interval unbounded 0 i
bounded g width width bounded
absolite absolute

relative

normal Clopper- . Hoeffding’s sequential
intervals Pearson w inequality Student’s-t

Fig. 4: Automated statistical method selection.

Student’s-t
intervals

Chow-
Robbins

5 The PyDSMC Python Package

PyDSMC is implemented as a Python package that offers numerous SMC tech-
niques and, thus, can easily be integrated into existing training pipelines. To
access these functions, users only need to interact with two classes: First, the
Property class, which allows specifying arbitrary trajectory-based properties,
and second, the Evaluator class, which handles the sampling and checking of
the properties.

Properties. PyDSMC offers various predefined properties, e.g., the return, the
episode length, or the goal-reaching probability. These properties may be pa-
rameterized, for instance, by the discount factor used in the return calculation.
Further, users can easily define custom properties by providing functions that
check the property. The properties are thereby assumed to be trajectory-based,
i.e., they can use the Gymnasium-provided information for all steps of the tra-
jectory. If the user specifies € to be None, PyDSMC uses the fixed run setting,
and the sequential setting otherwise. Since the statistical methods depend on
property-specific attributes (e.g., bounded, binomial), these have to be set dur-
ing property initialization. For each property, the user can additionally set: (i) a
name, (ii) a flag whether sound methods should be used, and (iii) a flag to toggle
between absolute and relative error ¢.

Evaluator. Having defined the properties, they have to be registered in an
Evaluator instance, which manages the environment and the logging directory.
The evaluation can then be started by calling eval on the Evaluator and provid-
ing the agent to verify. Additionally, eval takes the following arguments: (i) an
optional resource limit (time, number of samples, or both), (ii) the number of
samples taken between convergence checks, (iii) a flag whether to stop on con-
vergence of all properties or to run until the specified resources are exhausted,
(iv) a logging interval, (v) a flag whether to store every sample of every property,
and (vi) the number of threads used for parallelization.

10

11

12

13

PyDSMC: Statistical Model Checking for Neural Agents 11

from pydsmc import Evaluator, property as prop

Create a predefined property

return_property = prop.create_predefined_property(

«— property_id='return', epsilon=0.025, kappa=0.05,

< relative_error=True, bounds=(-1, 1), sound=True, gamma=0.99)

Create a custom property

collision_property = prop.create_custom_property(

— name='obstacle_collision_prob',

< check_fn=lambda self, t: float(t[-1]J[2] == -1), epsilon=0.05,
< kappa=0.05, relative_error=False, bounds=(0, 1), binomial=True)

Create the evaluator and register the properties
evaluator = Evaluator(env=env, log_dir="./example_logs")
evaluator.register_properties([return_property, collision_property])

Evaluate the agent with respect to the registered properties
results = evaluator.eval(agent=agent, save_every_n_episodes=1000,
< time_limit=150, stop_on_convergence=True, num_threads=2)

Fig.5: Example usage of PyDSMC.

Storing Results. Within the logging directory, PyDSMC creates a subdirectory for
each property, where all files containing its evaluation results and its parameters
are stored. PyDSMC additionally saves files storing the evaluation parameters and
the utilized resources corresponding to the number of episodes and runtime.

Parallelization. To decrease runtime, PyDSMC supports vectorized environments
and multithreading, where each thread manages a separate vector environment.
We observed that vectorization significantly accelerates PyDSMC’s execution.

Ezxample. Consider the example in Fig. 5 which shows how PyDSMC can be used to
evaluate an agent on a given MINIGRID environment(see Fig. 6a). We first create
a predefined return property with parameters epsilon=0.025, kappa=0.05, and
the property-specific discount factor gamma=0.99, where € describes the maxi-
mum tolerated relative error. Since the rewards in the sample environment lie
within the interval [—1, 1], we can use a bounded SM by setting bounds=(-1, 1).

Second, we define a custom, environment-specific property that corresponds
to the agent’s probability of colliding with an obstacle, which, in this domain, can
be identified by a negative reward in the trajectory’s last step. The remaining
arguments specify that we want to evaluate the absolute error of this binomial
property. As the sound flag is not specified, PyDSMC defaults to an unsound SM.

Afterward, the evaluator is initialized and the properties are registered. We
limit the evaluation to 2.5 hours, but stop early if all properties have converged
while using two threads.

12 T. P. Gros et al.
6 Analyzing Neural Agents Using PyDSMC

We demonstrate PyDSMC by evaluating neural agents trained using state-of-the-
art deep reinforcement learning algorithms on eight Gymnasium benchmarks,
including four from MuJuCo [63].

(a) MINIGRID (b) MoUNTAINCAR (¢) PGTG V3 (d) Atari BREAKOUT

(f) HALr CHEETAH (g) HumaANoID (h) HUMANOID STANDUP

Fig. 6: The eight Gymnasium benchmark environments used in this section. The
second row depicts the four MuJoCo Benchmarks, all in version V5.

6.1 Benchmarks

We present exemplary results on eight benchmarks commonly used in the Al
community: (a) MINIGRID [24], (b) MOUNTAINCAR [65], (¢) ProcGrid Traffic
Gym [33], (d) BREAKOUT [10] , and four MuJOCo benchmarks (e) ANT, (f)
HALF CHEETAH, (g) HUMANOID, and (h) HuMANOID STANDUP. Fig. 6 shows
the eight benchmarks.

MINIGRID. A MINIGRID environment corresponds to a 2D navigation task, where
the agent has to traverse a grid to reach a goal cell. The available actions are
moving forward by one cell, rotating by 90 degrees to the left or right, picking up
objects, and interacting with objects (e.g., opening doors). Based on its current
direction, the agent can only observe a limited section of the grid.

We focus on the MINIGRID Dynamic Obstacles environment, where, starting
from a random cell, the agent has to reach the goal cell while avoiding three
randomly moving obstacles. A reward of 1 — 0.9 - ££2% i given when reaching

144
the goal, —1 when colliding with an obstacle, and 0 otherwise.

PyDSMC: Statistical Model Checking for Neural Agents 13

MOUNTAINCAR. MOUNTAINCAR is a classic control benchmark, where a car
is randomly placed in a valley. The goal is to reach the top of the right hill
by accelerating either to the left or the right. The actions represent the car’s
directional force, which is within the range [—1; 1]. The agent observes its current
location and velocity. At each time step, a negative reward of —0.1 - action? is
given, with an additional positive reward of 100 if the agent reaches the goal. The
(undiscounted) return bounds are [—999; 100], and the episode length bounds are
[1;999].

ProcGrid Traffic Gym. ProcGrid Traffic Gym (PGTG) is an extension of the
popular RACETRACK benchmark. The task is a rough simplification of autonomous
driving, where the agent needs to drive from a starting line to a goal line across
a randomly generated racetrack. Additionally, environments can be customized
with different features such as ice, sand, or traffic. The observation is limited to
the agent’s surroundings, where a green lines function as a guidance toward the
goal line. A reward of ﬁ&ubgom is given when reaching a subgoal for the
first time, a reward of 150 is given when reaching the goal line, a reward of —100
is given for crashing, and a reward of 0 otherwise. The (undiscounted) return

bounds are [—100; 150], and the episode length bounds are [1;100].

BREAKOUT. BREAKOUT is a classic Atari 2600 game in which the agent moves
a paddle horizontally to bounce a ball such that it destroys the blocks at the
top. Whenever the ball touches the bottom, the agent loses a life and a new
ball spawns. The game is over when the agent has either lost all of its 5 lives or
has destroyed all blocks. A reward is given when a block is destroyed, with the
values ranging from 1 for blue blocks and 7 for red blocks. The (undiscounted)
return bounds are [0; 864], but the episode length is unbounded as no time step
limit is given.

ANT. In this MuJoCo environment, a four-legged 3D robot is tasked to move
forward from a random initial state. The actions correspond to applying torque
to the ant’s joints, and an episode ends when the height of the ant’s torso is
outside a predefined range. ANT features a dense reward function, where the
agent is rewarded for moving forward, and keeping its torso at a certain height,
and is penalized for applying too much torque to the joints or when the external
contact forces on the ant’s body parts are too high. We do not assume any
bounds on the return for all MuJoCO benchmarks.

HaALF CHEETAH. This environment features a 2D robot resembling a cheetah,
that ought to run as fast as possible from a random initial state. The action
space represents the torque applied to the cheetah’s joints. All episodes end
after a fixed number of timesteps. The agent’s rewards are based on how fast it
moves forward, and it is penalized for applying too much torque.

HumANoOID. A 3D robot resembling a human needs to quickly walk forward
without falling from a random initial state. The actions are the torques applied

14 T. P. Gros et al.

to the robot’s legs, arms, and torso, and an episode ends when the torso’s height
is outside a predefined range. The agent is rewarded for moving forward and
keeping its torso at a certain height, and it is penalized for applying too much
torque or when the external contact forces are too high.

HuMANOID STANDUP. This environment is similar to HUMANOID, with the dif-
ference that the robot does not have to move forward but starts lying on the
ground and the task is to stand up. Unlike in humanoid, the episodes are not
terminated early.

6.2 Properties

We evaluate the agent by using some standard properties. To further highlight
PyDSMC’s flexibility, we also define a custom property for each environment.

Standard Properties. We evaluate the return with a discount factor of v = 0.99,
the undiscounted return (i.e., ¥ = 1.0), the average episode length, and the goal-
reaching probability. For all properties, we use a significance level k = 0.05, and
an error bound € = 0.025, which is relative for all properties but the goal-reaching
probability, where we use the absolute setting.

Custom Properties. We define a custom property for each benchmark. In MIN-
IGRID, we define the custom property Collision Prob. as the probability of the
agent moving onto a cell that is already occupied. In MOUNTAINCAR we con-
sider the average acceleration Awg. Acceleration. For PGTG, we examine the
probability of crashing into a wall (Crash Prob). In BREAKOUT, we analyze the
number of steps until the agent loses its first life First Life Lost. In ANT, we
consider Sum. Control Cost as the sum of all obtained penalties for applying
too much torque. For HALF CHEETAH, we analyze the probability of ending
an episode with a negative return (Neg. Return Prob). In HUMANOID and Hu-
MANOID STANDUP, we customize Sum. Contact Cost as the sum of penalties
that was given because of too much contact force.

6.3 Exemplary Evaluation

Setup. All experiments were performed on a single machine with an AMD Ryzen
Threadripper PRO 5965WX 24 Core CPU, an NVIDIA RTX A6000 GPU, and
512 GB of memory.> We provide details about the used hyperparameters in
Appendix A.

3 Note that memory was never an issue and the machine used does not need this large
amount of memory.

PyDSMC: Statistical Model Checking for Neural Agents 15

Property Stat. Method Mean St.D. C.I. Conv.
MINIGRID (® = 45m)
Return’ (7=0.99) EBStop 0.14 021 [0.14;0.15] 249000
Return® (y=1.0) EBStop 0.25 0.3 [0.25;0.26] 153000
Episode Length Student’s-t 112.2 41.73 [112.04;112.37] 1000
Goal-reaching Prob. Normal Interval 0.49 0.5 [0.49;0.49] 2000
Collision Prob.* Normal Interval 0.0 0.0 [0.0;0.0] 1000
MOUNTAINCAR (® = 3m)
Return' (v=0.99) EBStop 4143 2.05 [40.39:42.46] 80000
Return® (y=1.0) EBStop 95.12 0.49 [92.78;97.53] 31000
Episode Length Student’s-t 81.21 4.48 [81.18;81.24] 1000
Goal-reaching Prob. Normal Interval 1.0 0.0 [1.0;1.0] 1000
Avg. Acceleration® Student’s-t 0.08 0.08 [0.08;0.08] 1000
PGTG (® =~ 2m)
Return' (7-0.99) EBStop 170.49 77.3 [166.22;174.74] 23000
Return' (y=1.0) EBStop 208.79 97.48 [203.56:214.0] 23000
Episode Length Student’s-t 31.69 19.77 [31.43;31.95] 3000
Goal-reaching Prob. Normal Interval 0.84 0.36 [0.84;0.85] 1000
Crash Prob.* Normal Interval 0.08 0.28 [0.08;0.09] 1000
BREAKOUT (® ~ 10h 38m)
Return® (y=0.99) DKW 1.55 043 [1.52;13.28] —
Return’ (y=1.0) DKW 95.81 1541 [24.84;37.54] = —
Episode Length Student’s-t 26484.0 15207.3 [26186;26782] —
First Life Lost™ Student’s-t 259.26 353.02 [252.34;266.18] —
ANT (® = 33m)
Return (y=0.99) Student’s-t 137.75 31.60 [137.27;138.22] 1000
Return (y=1.0) Student’s-t 1017.36 497.49 [1009.88;1024.84] 2000
Episode Length' EBStop 779.53 325.81 [760.08;799.03] 17000
Sum. Control Cost* Student’s-t -502.42 208.53 [-505.6;-499.3] 2000
HaLr CHEETAH (O = 2m)
Return (y=0.99) Student’s-t 247.67 101.01 [243.24;252.10] 2000
Return (y=1.0) Student’s-t 3247.40 1146.31 [3197.13;3297.67] 2000

Neg. Return Prob.” Normal Interval ~ 0.009 0.09444 [0.0049;0.0131] 1000
HumaNoID (® &~ 12m)

Return (y=0.99) Student’s-t 485.97 9.64 [485.72;486.22] 1000

Return (y=1.0) Student’s-t 4782.39 886.35 [4759.96;4804.82] 1000

Episode Length' EBStop 937.04 172.30 [913.59;960.41] 6000

Sum. Contact Cost* Student’s-t -119.48 22.34 [-120.0;-118.9] 1000

HuMANOID STANDUP (® = 2m)

Return (y=0.99)
Return (y=1.0)
Sum. Contact Cost™

Student’s-t 13940.7 285.2 [13928.2;13953.2] 1000
Student’s-t 146413.7 6684.6 [146120;146707] 1000
Student’s-t -51.97 3.96 [-52.14;-51.79] 1000

Table 1: Evaluation results. Properties marked with * are custom properties,
whereas T denotes the usage of a sound statistical method. For BREAKOUT, the
Conv. column is empty since the fixed runs setting was used. The reported time
corresponds to the total runtime of all listed properties analyzed simultaneously,
rounded to the nearest full minute.

16 T. P. Gros et al.

Results. Table 1 provides all results obtained with PyDSMC. For all benchmarks,
we provide the automatically selected SM, the approximated mean with its stan-
dard deviation, and the confidence interval. The Conv. column reports the num-
ber of samples that were needed to achieve the target confidence interval. Since
we used the fixed runs setting with 10,000 episodes for BREAKOUT, the Conv.
column is empty. We marked those properties where we enforced a sound SM.

Further Insights. Additionally analyzing other properties and not only the stan-
dard objective, i.e., the accumulated discounted return, can provide deeper in-
sights about the agent.

For example, consider the MINIGRID results. Despite the low return (v =
0.99) of 0.14, the goal-reaching probability is 49%, indicating that the agent
reaches the goal almost every other try. By also taking into account the episode
length of 112 and the obstacle collision probability of 0, we can conclude that
the poor performance is due to the agent frequently standing still until the step
limit is reached.

As another example, consider MOUNTAINCAR. We observe a goal-reaching
probability of 100%, indicating that the agent has learned to always reach the
top of the hill. The undiscounted return of 95.12 suggests that it does so with
little acceleration, which is further confirmed by the small average acceleration
of 0.08.

In ANT, the high standard deviation of the episode lengths suggests that
sometimes the agent quickly fails to keep its torso at the required height. This
can be explained by the large value of the summed control penalties, showing
that the agent tends to apply large torques, which can lead to situations where
it is impossible to prevent early termination.

Lastly, consider the results of HALF CHEETAH. The discounted return already
indicates that the agent is performing well. While the additional information of
the undiscounted reward already strengthens this finding, the custom property
Neg. Return Prob. additionally shows that the agent rarely uses too much torque,
which indicates that the agent has learned to precisely control the joints.

7 Conclusion and Future Work

In this paper, we presented PyDSMC, a Python tool for applying statistical model
checking to arbitrary neural agents in any Gymnasium environment, independent
of the underlying implementation. We highlighted the importance of statistical
model checking for neural agents, as standard evaluation methods like training
curves fail to capture key influences, potentially leading to suboptimal agent
selection and misleading performance assessments. We demonstrated PyDSMC’s
usage and illustrated how it can provide critical insights into agents’ behaviors.

For the future, we have planned several extensions of PyDSMC. These in-
clude expanding the set of predefined properties and extending compatibility
to PettingZoo [62], the standard interface for multi-agent reinforcement learn-
ing. Additionally, we aim to adapt PyDSMC for symbolic Al approaches such as

PyDSMC: Statistical Model Checking for Neural Agents 17

planning. The algorithms DSMC Evaluation Stages [32,37] and RARE [39] have
already integrated DSMC results into the training procedure to improve the per-
formance of neural agents. In the future, we plan to integrate PyDSMC into these
algorithms.

With an increasing range of applications, we also plan to integrate additional
statistical methods to enhance both evaluation accuracy and efficiency.

Funding. This work was partially supported by the German Federal Ministry of
Education and Research (BMBF) as part of project MAC-MERLin (grant agree-
ment no. 01IW24007), by the German Research Foundation (DFG) under grant
no. 389792660, as part of TRR 248, see https://perspicuous-computing.
science and as GRK 2853/1 “Neuroexplicit Models of Language, Vision, and
Action” (project no. 471607914), by the European Regional Development Fund
(ERDF) and Saarland within the scope of (To)CERTAIN, by the European
Union’s Horizon 2020 research and innovation programme under Marie Sktodow-
ska-Curie grant agreement no. 101008233 (MISSION), by the Interreg North Sea
project STORM _SAFE, and by NWO VIDI grant VI.Vidi.223.110 (TruSTy).

Data Awvailability. The models, scripts, and tools to reproduce our exper-
imental evaluation are archived and publicly available at DOI 10.5281/zen-
0do.15267298.

References

1. Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F.L., Almeida,
D., Altenschmidt, J., Altman, S., Anadkat, S., et al.. GPT-4 Technical Re-
port. arXiv preprint arXiv:2303.08774 (2024). https://doi.org/10.48550/arXiv.
2303.08774

2. Agarwal, R., Schuurmans, D., Norouzi, M.: An optimistic perspective on of-
fline reinforcement learning. In: Proceedings of the 37th International Confer-
ence on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event. Pro-
ceedings of Machine Learning Research, vol. 119, pp. 104-114. PMLR (2020),
http://proceedings.mlr.press/v119/agarwal20c.html

3. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.
Comput. Simul. 28(1), 6:1-6:39 (2018). https://doi.org/10.1145/3158668

4. Albarghouthi, A.: Introduction to neural network verification. Found. Trends Pro-
gram. Lang. 7(1-2), 1-157 (2021). https://doi.org/10.1561/2500000051

5. Alshiekh, M., Bloem, R., Ehlers, R., Kénighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: Proceedings of the AAAI conference on
artificial intelligence. vol. 32 (2018)

6. Baier, C.: Probabilistic model checking. In: Esparza, J., Grumberg, O., Sickert,
S. (eds.) Dependable Software Systems Engineering, NATO Science for Peace and
Security Series — D: Information and Communication Security, vol. 45, pp. 1-23.
I0S Press (2016). https://doi.org/10.3233/978-1-61499-627-9-1

https://perspicuous-computing.science
https://perspicuous-computing.science
https://doi.org/10.5281/zenodo.15267298
https://doi.org/10.5281/zenodo.15267298
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
http://proceedings.mlr.press/v119/agarwal20c.html
https://doi.org/10.1145/3158668
https://doi.org/10.1145/3158668
https://doi.org/10.1561/2500000051
https://doi.org/10.1561/2500000051
https://doi.org/10.3233/978-1-61499-627-9-1
https://doi.org/10.3233/978-1-61499-627-9-1

18

10.

11.

12.

13.

14.
15.
16.

17.

18.

19.

20.

21.

T. P. Gros et al.

Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilistic
systems. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Hand-
book of Model Checking, pp. 963-999. Springer (2018). https://doi.org/10.
1007/978-3-319-10575-8_28

Baier, C., Christakis, M., Gros, T.P., Grof, D., Gumhold, S., Hermanns, H., Hoff-
mann, J., Klauck, M.: Lab conditions for research on explainable automated deci-
sions. In: Trustworthy Al-Integrating Learning, Optimization and Reasoning: First
International Workshop, TAILOR 2020, Virtual Event, September 4-5, 2020, Re-
vised Selected Papers 1. pp. 83-90. Springer (2021). https://doi.org/10.1007/
978-3-030-73959-1_8

Banerjee, D., Xu, C., Singh, G.: Input-relational verification of deep neural net-
works. Proc. ACM Program. Lang. 8(PLDI), 1-27 (2024). https://doi.org/10.
1145/3656377

Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research 47, 253-279 (jun 2013)

Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The Arcade Learning Envi-
ronment: An Evaluation Platform for General Agents. Journal of Artificial Intelli-
gence Research 47, 253-279 (2013). https://doi.org/10.1613/jair.3912
Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P., Dennison, C.,
Farhi, D., Fischer, Q., Hashme, S., Hesse, C., et al.: Dota 2 with Large Scale
Deep Reinforcement Learning. arXiv preprint arXiv:1912.06680 (2019). https:
//doi.org/10.48550/arXiv.1912.06680

Bernstein, S.: On a modification of Chebyshev’s inequality and of the error formula
of Laplace. Ann. Sci. Inst. Sav. Ukraine, Sect. Math 1(4), 38-49 (1924)
Bernstein, S.: Theory of Probability. 2 edn. (1934)

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: Openai gym (2016)

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: OpenAl Gym. arXiv preprint arXiv.1606.01540 (2016). https://
doi.org/10.48550/arXiv.1606.01540

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language Models are Few-
Shot Learners. In: Advances in Neural Information Processing Systems. vol. 33,
pp. 1877-1901. Curran Associates, Inc. (2020), https://proceedings.neurips.
cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract . html

Bu, H., Sun, M.: Clopper-pearson algorithms for efficient statistical model checking
estimation. IEEE Transactions on Software Engineering (01), 1-20 (2024). https:
//doi.org/10.1109/TSE.2024.3392720

Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: An efficient statistical
model checker for nondeterminism and rare events. Int. J. Softw. Tools Technol.
Transf. 22(6), 759-780 (2020). https://doi.org/10.1007/S10009-020-00563-2
Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
Jani: quantitative model and tool interaction. In: Tools and Algorithms for the
Construction and Analysis of Systems: 23rd International Conference, TACAS
2017, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part
IT 23. pp. 151-168. Springer (2017)

Budde, C.E., Hartmanns, A., Meggendorfer, T., Weininger, M., Wienhoft, P.:
Sound statistical model checking for probabilities and expected rewards. In: 31st

https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-030-73959-1_8
https://doi.org/10.1007/978-3-030-73959-1_8
https://doi.org/10.1007/978-3-030-73959-1_8
https://doi.org/10.1007/978-3-030-73959-1_8
https://doi.org/10.1145/3656377
https://doi.org/10.1145/3656377
https://doi.org/10.1145/3656377
https://doi.org/10.1145/3656377
https://doi.org/10.1613/jair.3912
https://doi.org/10.1613/jair.3912
https://doi.org/10.48550/arXiv.1912.06680
https://doi.org/10.48550/arXiv.1912.06680
https://doi.org/10.48550/arXiv.1912.06680
https://doi.org/10.48550/arXiv.1912.06680
https://doi.org/10.48550/arXiv.1606.01540
https://doi.org/10.48550/arXiv.1606.01540
https://doi.org/10.48550/arXiv.1606.01540
https://doi.org/10.48550/arXiv.1606.01540
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1109/TSE.2024.3392720
https://doi.org/10.1109/TSE.2024.3392720
https://doi.org/10.1109/TSE.2024.3392720
https://doi.org/10.1109/TSE.2024.3392720
https://doi.org/10.1007/S10009-020-00563-2
https://doi.org/10.1007/S10009-020-00563-2

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

PyDSMC: Statistical Model Checking for Neural Agents 19

International Conference on Tools and Algorithms for Construction and Analy-
sis of Systems (TACAS). Lecture Notes in Computer Science, Springer (2025), to
appear, preprint available at https://doi.org/10.48550/arXiv.2411.00559
Burda, Y., Edwards, H., Storkey, A., Klimov, O.: Exploration by random network
distillation. arXiv preprint arXiv:1810.12894 (2018)

Castro, P.S., Moitra, S., Gelada, C., Kumar, S., Bellemare, M.G.: Dopamine:
A Research Framework for Deep Reinforcement Learning. arXiv preprint
arXiv.1812.06110 (2018). https://doi.org/10.48550/arXiv.1812.06110
Chevalier-Boisvert, M., Dai, B., Towers, M., de Lazcano, R., Willems, L., Lahlou,
S., Pal, S., Castro, P.S., Terry, J.: Minigrid & miniworld: Modular & cus-
tomizable reinforcement learning environments for goal-oriented tasks. CoRR
abs/2306.13831 (2023)

Chow, Y.S., Robbins, H.: On the Asymptotic Theory of Fixed-Width Sequential
Confidence Intervals for the Mean. The Annals of Mathematical Statistics 36(2),
457-462 (1965). https://doi.org/10.1214/aoms/1177700156

Cobbe, K., Hesse, C., Hilton, J., Schulman, J.: Leveraging procedural generation to
benchmark reinforcement learning. In: International conference on machine learn-
ing. pp. 2048-2056. PMLR (2020)

Corsi, D., Marchesini, E., Farinelli, A.: Formal verification of neural networks for
safety-critical tasks in deep reinforcement learning. In: de Campos, C.P., Maathuis,
M.H., Quaeghebeur, E. (eds.) 37th Conference on Uncertainty in Artificial Intel-
ligence (UAI). Proceedings of Machine Learning Research, vol. 161, pp. 333-343.
AUALI Press (2021), https://proceedings.mlr.press/v161/corsi2la.html
Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A storm is coming: A modern
probabilistic model checker. In: Computer Aided Verification: 29th International
Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part
IT 30. pp. 592-600. Springer (2017)

Duan, J., Guan, Y., Li, S.E., Ren, Y., Sun, Q., Cheng, B.: Distributional
soft actor-critic: Off-policy reinforcement learning for addressing value esti-
mation errors. IEEE Trans. Neural Networks Learn. Syst. 33(11), 6584-6598
(2022). https://doi.org/10.1109/TNNLS.2021.3082568, https://doi.org/10.
1109/TNNLS.2021.3082568

Dvoretzky, A., Kiefer, J., Wolfowitz, J.: Asymptotic Minimax Character of the
Sample Distribution Function and of the Classical Multinomial Estimator. The
Annals of Mathematical Statistics 27(3), 642-669 (1956). https://doi.org/10.
1214/aoms/1177728174

Gros, T.P.: Tracking the race: Analyzing racetrack agents trained with imitation
learning and deep reinforcement learning. Master’s thesis 5 (2021)

Gros, T.P., Grofs, J., Holler, D., Hoffmann, J., Klauck, M., Meerkamp, H., Miiller,
N.J., Schaller, L., Wolf, V.: Dsmc evaluation stages: Fostering robust and safe
behavior in deep reinforcement learning—extended version. ACM Transactions on
Modeling and Computer Simulation 33(4), 1-28 (2023)

Gros, T.P., Grof, D., Kamp, J., Gumhold, S., Hoffman, J.: Visual analysis of
action policy behavior: A case study in grid-world driving. In: World Conference
on Explainable Artificial Intelligence. Springer (2025)

Gros, T.P., Hermanns, H., Hoffmann, J., Klauck, M., Kohl, M.A., Wolf, V.: Mo-
gym: Using formal models for training and verifying decision-making agents. In:
International Conference on Computer Aided Verification. pp. 430—443. Springer
(2022)

https://doi.org/10.48550/arXiv.2411.00559
https://doi.org/10.48550/arXiv.1812.06110
https://doi.org/10.48550/arXiv.1812.06110
https://doi.org/10.1214/aoms/1177700156
https://doi.org/10.1214/aoms/1177700156
https://proceedings.mlr.press/v161/corsi21a.html
https://doi.org/10.1109/TNNLS.2021.3082568
https://doi.org/10.1109/TNNLS.2021.3082568
https://doi.org/10.1109/TNNLS.2021.3082568
https://doi.org/10.1109/TNNLS.2021.3082568
https://doi.org/10.1214/aoms/1177728174
https://doi.org/10.1214/aoms/1177728174
https://doi.org/10.1214/aoms/1177728174
https://doi.org/10.1214/aoms/1177728174

20

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

T. P. Gros et al.

Gros, T.P., Hermanns, H., Hoffmann, J., Klauck, M., Steinmetz, M.: Deep statisti-
cal model checking. In: Formal Techniques for Distributed Objects, Components,
and Systems: 40th IFIP WG 6.1 International Conference, FORTE 2020, Held as
Part of the 15th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2020, Valletta, Malta, June 15-19, 2020, Proceedings 40.
pp. 96-114. Springer (2020)

Gros, T.P., Hermanns, H., Hoffmann, J., Klauck, M., Steinmetz, M.: Analyzing
neural network behavior through deep statistical model checking. International
Journal on Software Tools for Technology Transfer 25(3), 407426 (2023)

Gros, T.P., Holler, D., Hoffmann, J., Klauck, M., Meerkamp, H., Wolf, V.: Dsmc
evaluation stages: Fostering robust and safe behavior in deep reinforcement learn-
ing. In: Quantitative Evaluation of Systems: 18th International Conference, QEST
2021, Paris, France, August 23-27, 2021, Proceedings 18. pp. 197-216. Springer
(2021)

Gros, T.P., Holler, D., Hoffmann, J., Wolf, V.: Tracking the race between deep rein-
forcement learning and imitation learning. In: Quantitative Evaluation of Systems:
17th International Conference, QEST 2020, Vienna, Austria, August 31-September
3, 2020, Proceedings 17. pp. 11-17. Springer (2020)

Gros, T.P., Miiller, N., Héller, D., Hoffmann, J., Wolf, V.: Safe reinforcement learn-
ing through regret and state restorations in evaluation stages. Currently in publi-
cation (2024)

Gross, D., Jansen, N., Junges, S., Pérez, G.A.: Cool-mc: a comprehensive tool
for reinforcement learning and model checking. In: International Symposium on
Dependable Software Engineering: Theories, Tools, and Applications. pp. 41—49.
Springer (2022)

Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. In: International
conference on machine learning. pp. 1861-1870. PMLR (2018)

Hafner, D., Lillicrap, T., Norouzi, M., Ba, J.: Mastering atari with discrete world
models. arXiv preprint arXiv:2010.02193 (2020)

Hartmanns, A., Hermanns, H.: The modest toolset: An integrated environment for
quantitative modelling and verification. In: International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. pp. 593-598. Springer
(2014)

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W.,
Horgan, D., Piot, B., Azar, M., Silver, D.: Rainbow: Combining improvements in
deep reinforcement learning. In: Proceedings of the AAAI conference on artificial
intelligence. vol. 32 (2018)

Hoeffding, W.: Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association 58(301), 13-30 (1963). https:
//doi.org/10.1080/01621459.1963.10500830

Huang, S., Dossa, R.F.J., Ye, C., Braga, J., Chakraborty, D., Mehta, K., Araujo,
J.G.M.: CleanRL: High-quality Single-file Implementations of Deep Reinforcement
Learning Algorithms. Journal of Machine Learning Research 23(274), 1-18 (2022),
http://jmlr.org/papers/v23/21-1342 . html

Jansen, N.; Konighofer, B., Junges, S., Serban, A., Bloem, R.: Safe reinforcement
learning using probabilistic shields. In: 31st International Conference on Concur-
rency Theory (CONCUR 2020). Schloss-Dagstuhl-Leibniz Zentrum fiir Informatik
(2020)

https://doi.org/10.1080/01621459.1963.10500830
https://doi.org/10.1080/01621459.1963.10500830
https://doi.org/10.1080/01621459.1963.10500830
https://doi.org/10.1080/01621459.1963.10500830
http://jmlr.org/papers/v23/21-1342.html

48.

49.

50.

51.

52.

53.

54.

53.

56.

57.

58.

59.

60.

61.

PyDSMC: Statistical Model Checking for Neural Agents 21

Kwiatkowska, M., Norman, G., Parker, D.: Prism 4.0: Verification of probabilistic
real-time systems. In: Computer Aided Verification: 23rd International Conference,
CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings 23. pp. 585-591.
Springer (2011)

Legay, A., Lukina, A., Traonouez, .M., Yang, J., Smolka, S.A., Grosu, R.: Sta-
tistical model checking. In: Steffen, B., Woeginger, G.J. (eds.) Computing and
Software Science — State of the Art and Perspectives, Lecture Notes in Com-
puter Science, vol. 10000, pp. 478-504. Springer (2019). https://doi.org/10.
1007/978-3-319-91908-9_23

Massart, P.: The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. The
Annals of Probability 18(3), 1269-1283 (1990). https://doi.org/10.1214/aop/
1176990746

Meggendorfer, T., Weininger, M., Wienhoft, P.: What are the odds? Improving the
foundations of statistical model checking. CoORR abs/2404.05424 (2024). https:
//doi.org/10.48550/ARXIV.2404.05424

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. nature 518(7540), 529-533 (2015)
Mnih, V., Szepesvari, C., Audibert, J.Y.: Empirical Bernstein stopping. In: Cohen,
W.W., McCallum, A., Roweis, S.T. (eds.) 25th International Conference on Ma-
chine Learning (ICML). ACM International Conference Proceeding Series, vol. 307,
pp. 672-679. ACM (2008). https://doi.org/10.1145/1390156.1390241
Narodytska, N.: Formal verification of deep neural networks. In: Bjgrner, N.S.,
Gurfinkel, A. (eds.) 18th Conference on Formal Methods in Computer Aided Design
(FMCAD). IEEE (2018). https://doi.org/10.23919/FMCAD.2018.8603017
Parmentier, M., Legay, A.: Adaptive stopping algorithms based on concentration
inequalities. In: Steffen, B. (ed.) 2nd International Conference on Bridging the Gap
Between Al and Reality (AISoLA). Lecture Notes in Computer Science, vol. 15217,
pp. 336-353. Springer (2024). https://doi.org/10.1007/978-3-031-75434-0_23
Phan, M., Thomas, P.S., Learned-Miller, E.G.: Towards practical mean bounds for
small samples. In: Meila, M., Zhang, T. (eds.) 38th International Conference on Ma-
chine Learning (ICML). Proceedings of Machine Learning Research, vol. 139, pp.
8567-8576. PMLR (2021), http://proceedings.mlr.press/v139/phan2la.html
Pranger, S.: Minigridsafe: An extension of the minigrid library for safe reinforce-
ment learning. https://github.com/PrangerStefan/MinigridSafe (2025)
Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-
Baselines3: Reliable Reinforcement Learning Implementations. Journal of Machine
Learning Research 22(268), 1-8 (2021), http://jmlr.org/papers/v22/20-1364.
html

Schliiter, M., Steffen, B.: Affinitree: A compositional framework for formal anal-
ysis and explanation of deep neural networks. In: Huisman, M., Howar, F. (eds.)
18th International Conference on Tests and Proofs (TAP). Lecture Notes in Com-
puter Science, vol. 15153, pp. 148-167. Springer (2024). https://doi.org/10.
1007/978-3-031-72044-4_8

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

Senior, A.W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre, L., Green, T., Qin,
C., Zidek, A., Nelson, A.W., Bridgland, A., et al.: Improved protein structure
prediction using potentials from deep learning. Nature 577(7792), 706-710 (2020)

https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1214/aop/1176990746
https://doi.org/10.1214/aop/1176990746
https://doi.org/10.1214/aop/1176990746
https://doi.org/10.1214/aop/1176990746
https://doi.org/10.48550/ARXIV.2404.05424
https://doi.org/10.48550/ARXIV.2404.05424
https://doi.org/10.48550/ARXIV.2404.05424
https://doi.org/10.48550/ARXIV.2404.05424
https://doi.org/10.1145/1390156.1390241
https://doi.org/10.1145/1390156.1390241
https://doi.org/10.23919/FMCAD.2018.8603017
https://doi.org/10.23919/FMCAD.2018.8603017
https://doi.org/10.1007/978-3-031-75434-0_23
https://doi.org/10.1007/978-3-031-75434-0_23
http://proceedings.mlr.press/v139/phan21a.html
https://github.com/PrangerStefan/MinigridSafe
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://doi.org/10.1007/978-3-031-72044-4_8
https://doi.org/10.1007/978-3-031-72044-4_8
https://doi.org/10.1007/978-3-031-72044-4_8
https://doi.org/10.1007/978-3-031-72044-4_8

22

62.

63.

64.

65.

66.

67.

68.

69.

T. P. Gros et al.

Terry, J., Black, B., Grammel, N., Jayakumar, M., Hari, A., Sullivan, R., Santos,
L.S., Dieffendahl, C., Horsch, C., Perez-Vicente, R., et al.: Pettingzoo: Gym for
multi-agent reinforcement learning. Advances in Neural Information Processing
Systems 34, 1503215043 (2021)

Todorov, E., Erez, T., Tassa, Y.: MuJoCo: A physics engine for model-based con-
trol. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems. pp. 5026-5033 (2012). https://doi.org/10.1109/IR0S.2012.6386109
Towers, M., Kwiatkowski, A., Terry, J., Balis, J.U., Cola, G.D., Deleu, T., Goulao,
M., Kallinteris, A., Krimmel, M., KG, A., Perez-Vicente, R., Pierré, A., Schul-
hoff, S., Tai, J.J., Tan, H., Younis, O.G.: Gymnasium: A Standard Interface for
Reinforcement Learning Environments. arXiv preprint arXiv.2407.17032 (2024).
https://doi.org/10.48550/arXiv.2407.17032

Towers, M., Kwiatkowski, A., Terry, J., Balis, J.U., De Cola, G., Deleu, T., Goulao,
M., Kallinteris, A., Krimmel, M., KG, A.] et al.: Gymnasium: A standard interface
for reinforcement learning environments. arXiv preprint arXiv:2407.17032 (2024)
Vandin, A.: Statistical model checking of python agent-based models: An inte-
gration of multivesta and mesa. In: Steffen, B. (ed.) 2nd International Confer-
ence on Bridging the Gap Between AI and Reality (AISoLA). Lecture Notes in
Computer Science, vol. 15217, pp. 398-419. Springer (2024). https://doi.org/
10.1007/978-3-031-75434-0_26

Vandin, A., Giachini, D., Lamperti, F., Chiaromonte, F.: Multivesta: Statistical
analysis of economic agent-based models by statistical model checking. In: Bowles,
J., Broccia, G., Pellungrini, R. (eds.) 10th International DataMod Symposium —
From Data to Models and Back. Lecture Notes in Computer Science, vol. 13268,
pp. 3-6. Springer (2021). https://doi.org/10.1007/978-3-031-16011-0_1
Vinyals, O., Babuschkin, I., Czarnecki, W.M., Mathieu, M., Dudzik, A., Chung,
J., Choi, D.H., Powell, R., Ewalds, T., Georgiev, P., et al.: Grandmaster level in
starcraft ii using multi-agent reinforcement learning. nature 575(7782), 350-354
(2019)

Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event sys-
tems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) 14th In-
ternational Conference on Computer Aided Verification (CAV). Lecture Notes in
Computer Science, vol. 2404, pp. 223-235. Springer (2002). https://doi.org/10.
1007/3-540-45657-0_17

https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.48550/arXiv.2407.17032
https://doi.org/10.48550/arXiv.2407.17032
https://doi.org/10.1007/978-3-031-75434-0_26
https://doi.org/10.1007/978-3-031-75434-0_26
https://doi.org/10.1007/978-3-031-75434-0_26
https://doi.org/10.1007/978-3-031-75434-0_26
https://doi.org/10.1007/978-3-031-16011-0_1
https://doi.org/10.1007/978-3-031-16011-0_1
https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1007/3-540-45657-0_17

PyDSMC: Statistical Model Checking for Neural Agents 23

A Training Hyperparameters

All agents were trained using the algorithms provided by Stable Baselines 3.
In Table 2, we list the training hyperparameters for each environment, where
unspecified hyperparameters are set to their default values.

Parameter Value
MINIGRID

Algorithm DQN

Learning Rate 0.0001

Total Time Steps 50,000

Initial Time Steps 1,000

Update Frequency 10

rappers FlatObsWrapper
MoUNTAINCAR

Algorithm SAC

Learning Rate 0.0003

Total Time Steps 100,000

Update Frequency 32

Entropy Coefficient 0.1

Gamma 0.9999

Tau 0.01

Gradient Steps 32

Hidden Sizes 64, 64

PGTG

Algorithm DQN

Wrappers TimeLimit (100 steps), FlattenObservation
BREAKOUT

Algorithm PPO

Learning Rate 0.00025

Total Time Steps 10,000,000

Update Frequency 128

Entropﬁ/ Coefficient 0.01

Value Function Coefficient 0.5

Wrappers AtariWrapper

ANT

Algorithm PPO

Total Time Steps 1,000,000

Wrappers NormalizeOfsservation,

TimeFeatureWrapper
Link to the Evaluated Agent huggingface.co/sb3/ppo-ant-v3
HavLr CHEETAH

Algorithm SAC

Total Time Steps 1,000,000

Initial Time Steps 10,000

Wrappers NormalizeObservation
HumaNoID

Algorithm SAC

Total Time Steps 2,000,000

Initial Time Steps 10,000

Parallel Environments 16

HuMANOID STANDUP

Algorithm SAC

Total Time Steps 2,000,000

Initial Time Steps 0

Parallel Environments 16

Table 2: Training hyperparameters for

all environments.

https://huggingface.co/sb3/ppo-Ant-v3

	PyDSMC: Statistical Model Checking for Neural Agents Using the Gymnasium Interface

