
Safe Reinforcement Learning Through
Regret and State Restorations

in Evaluation Stages

Timo P. Gros1,2,3(B) , Nicola J. Müller1,3 , Daniel Höller1 ,
and Verena Wolf1,2

1 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
{timopgros,nmueller,hoeller,wolf}@cs.uni-saarland.de

2 German Research Center for Artificial Intelligence (DFKI),
Saarbrücken, Germany

{timo_philipp.gros,verena.wolf}@dfki.de
3 Center for European Research in Trusted Artificial Intelligence (CERTAIN),

Saarbrücken, Germany

Abstract. Deep reinforcement learning (DRL) has succeeded tremen-
dously in many complex decision-making tasks. However, for many real-
world applications standard DRL training results in agents with brittle
performance because, in particular for safety-critical problems, the dis-
covery of both, safe and successful strategies is very challenging. Various
exploration strategies have been proposed to address this problem. How-
ever, they do not take information about the current safety performance
into account; thus, they fail to systematically focus on the parts of the
state space most relevant for training. Here, we propose regret and state
restoration in evaluation-based deep reinforcement learning (RARE), a
framework that introduces two innovations: (i) it combines safety evalu-
ation stages with state restorations, i.e., restarting episodes in formerly
visited states, and (ii) it exploits estimations of the regret, i.e., the gap
between the policies’ current and optimal performance. We show that
both innovations are beneficial and that RARE outperforms baselines
such as deep Q-learning and Go-Explore in an empirical evaluation.

Keywords: Safe Reinforcement Learning · Evaluation Stages ·
Regret · State Restorations

1 Introduction

Over the past decade, deep reinforcement learning (DRL) has made remarkable
advancements in various complex decision-making tasks. Notably, it has demon-
strated exceptional success in domains such as board games, including chess and
go [39–41]. Additionally, its practical applications have extended to domains such
as vehicle routing [32], robotics [22], and autonomous driving [36].
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Despite these successes, DRL still suffers from significant weaknesses, espe-
cially in safety-critical applications. Safety objectives typically yield reward
structures giving a positive signal for goal states and (highly) negative signal
for unsafe states. However, DRL is known to perform poorly with such sparse
reward structures since goal states are typically hard to reach [2,23,29,35,38].

There are sophisticated exploration strategies to handle sparse reward prob-
lems [4,9,12,13]. While these strategies effectively explore the state space, their
training process is executed without consideration of safety properties. The inte-
gration of safety considerations into the algorithmic framework is referred to as
safe reinforcement learning [15].

In this work we introduce a safe deep reinforcement learning framework
capable of both considering safety-properties and handling sparse rewards. We
intertwine two ideas: (i) we systematically restore the agent’s starting state to
promising states and (ii) we regularly evaluate the performance of the agent
during training to inform the state restorations. Our state restoration procedure
(innovation (i)) draws inspiration from Go-Explore [12] and ensures a system-
atic exploration of the state space. During training, we store states deemed rel-
evant for learning in an archive and sample initial states for subsequent training
episodes from this state archive.

In regular intervals during training, we evaluate their performance using deep
statistical model-checking (DSMC) [18], which is a scalable verification tech-
nique [19] for the underlying Markov decision process and its current policy.
This allows us to accurately estimate the corresponding regret (innovation (ii)).
We propose two different techniques to focus the training on archived states

Fig. 1. Heatmaps visualizing how often states from each grid cell have been used to
update the policy during training: map with start and goal (top left), state counts for
DQN (top right), Go-Explore (bottom left), and RARE (bottom right).
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where the regret is high, i.e., where the policy is far from optimal: starting more
training episodes in such states or giving them a higher priority within the replay
buffer that we use for batch updates of the agent’s neural network.

We consider an illustrative example in Fig. 1. The top left illustration depicts
a map of the Racetrack, one of our benchmarks. The agent starts in one of the
two purple cells in the lower right corner and must navigate through the grid up
to the goal cells (marked in green).

The heatmaps show how often states from each grid cell have been used to
update the policy. The top right illustration shows that standard DRL algorithms
such as Deep Q-learning [30] (DQN), only start training from the initial states
and fail to explore the state space sufficiently. Hence, the trained agent reaches
the goal line only with a probability of 0.5. Algorithms with sophisticated explo-
ration strategies, such as Go-Explore [12] (bottom left), reach the goal because
they use state restorations, resulting in an increased goal-reaching probability of
0.65. However, they reconsider states for updates in a less systematic way com-
pared to RARE (bottom right). RARE monitors the evaluated performance for a
selected subset of states and computes the corresponding regrets. It is thus able
to focus the learning on the most relevant parts. This safety-focused exploration
allows RARE to achieve a goal-reaching probability of 0.74, which is significantly
higher than those of DQN and Go-Explore.

To summarize, we propose the RARE framework, which is based on two
innovations: (i) we combine deep statistical model-checking (DSMC) evaluation
stages [16,20] with state restorations, where we start new training episodes in
carefully selected states based on the previously evaluated performance, and (ii)
we exploit estimations of the regret [27], i.e., the gap between the current and
optimal performance, to focus the training on high-regret states. We present
our framework in Sect. 3 and provide an empirical evaluation comparing RARE
to the baselines deep Q-learning, deep Q-learning with prioritized replay, and
Go-Explore on two benchmarks in Sect. 4.

2 Background

Prior to presenting our contributions, this section covers the necessary back-
ground.

2.1 Markov Decision Processes and Deep Q-Learning

We consider discrete Markov decision processes (MDPs) with finite sets of states
S, actions A, and an initial distribution μ over the set of initial states I ⊆ S.
For states st, st+1 ∈ S, a transition from state st to st+1 when choosing action
at ∈ A corresponds to an experience (st, at, rt+1, st+1), where rt+1 ∈ R is the
obtained reward. Our goal is to compute a deterministic policy π : S → A
that maximizes the sum of the discounted accumulated rewards, also called the
return, Gt =

∑T
k=t+1 γk−t−1Rk, where Rk is the random variable of the k-th

reward, T is the final time step, and γ ∈ (0, 1] denotes the discount factor, which
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balances the importance of immediate and future rewards. For a fixed policy π
and a given state st, we define the Q-value of state st and action at

qπ(st, at) = Eπ [Gt |St = st, At = at]

= Eπ

[∑∞
k=0

γkRt+k+1 |St = st, At = at]

as the expected return Gt when taking action at in state st and following the
policy π afterward.

Value-based algorithms, such as DQN, approximate an optimal policy π∗ by
learning the Q-values. Deep Q-learning uses a neural network (NN) to learn
q∗(st, at) of the optimal policy π∗. Let θi denote the NN’s parameters in the i-th
training iteration and let Qθi

(st, at) be the corresponding estimated Q-values.
The network is updated according to the loss function

L(θi) = E

[(
rt+1 + γ · max

a′
Qθ′(st+1, a

′) − Qθi
(st, at)

)2
]

where the expectations are taken over experiences (st, at, rt+1, st+1) uniformly
sampled from an experience replay buffer B [30]. To prevent unstable perfor-
mance, it is common to optimize this network by using a network from a former
iteration, the so-called target network with parameters θ′ [30]. The soft update
rule is θ = (1 − τ) · θi + τ · θ′ with τ ∈ (0, 1) [14,42].

The experiences are generated from an ε-greedy policy that chooses a ran-
dom action with probability ε and an action yielding the highest Q-value with
probability 1 − ε. Starting from a high initial value, ε is exponentially reduced
during training until it meets a specified threshold.

A popular extension of the DQN algorithm, called deep Q-learning with pri-
oritized experience replay (DQNPR) [37], is based on the assumption that experi-
ences with low individual losses do not contribute as much to the learning process
as experiences with high losses since they carry less relevant information. Hence,
for each experience (st, at, st+1, rt+1), DQNPR computes a sampling priority δ
proportional to its loss. During network updates, each experience gets sampled
with a probability proportional to δ, such that experiences with high losses are
used more frequently to update the policy than experiences with small losses.

2.2 DSMC Evaluation Stages

DSMC evaluation stages [16,20] leverage deep statistical model checking [18,19]
to analyze the performance of DRL agents. In deep statistical model checking,
a policy πθ represented by a neural network with weights θ resolves the non-
determinism in the underlying MDP and, thus, Monte-Carlo simulations of the
resulting Markov chain can be used to obtain an estimation of the expected value
of any property of interest. Given εerr > 0 and some κ ∈ (0, 1), DSMC achieves
an error bound of P (error > εerr) < κ, where error is the difference between
the true and the estimated value.
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The evaluation stages (ES) are conducted at regular intervals during training
to evaluate any evaluation function E using DSMC. Such an evaluation func-
tion can be any function of interest, making the incorporation of safety-critical
approaches into the learning progress possible. The corresponding value for a
state s is called the evaluation value Eπθ

(s).
Gros et al. [16,20] proposed two different methods for exploiting the infor-

mation gained by DSMC evaluation during training:

1. Evaluation-based initial distribution (EID) evaluates the MDP’s initial states
I and shifts the initial distribution μ to start with a higher probability in
areas with a lower evaluation value and vice versa.

2. In many DRL algorithms, a replay buffer is used. Following the idea of
DQNPR, this replay buffer can be prioritized. However, instead of using the
TD-error as the sampling priority, evaluation-based prioritized replay (EPR)
bases a sample’s priority δ on the evaluation value of the initial state of the
episode in which the sample was gathered.

Note that these approaches assume a large set of initial states I, which
sufficiently covers the state space.

2.3 Benchmarks

Racetrack is a commonly used reinforcement learning benchmark [7,17,21,43].
The task is to steer a car on a two-dimensional map from the starting line
to reach a goal line without crashing into a wall or leaving the map. When
the goal is reached or the car crashes, the episode terminates. The agent can
change the velocity of the car by (limited) accelerating and decelerating, making

Fig. 2. Racetrack maps used in this paper: River (left), Maze (middle), and Hansen-
bigger (right). The starting line is purple, the goal line is green, and the walls are
gray.
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foresighted decisions necessary. In addition, with some non-zero probability the
selected acceleration will fail and, as a result, the velocity will remain unchanged.

The goal is to maximize the probability of reaching a goal state, which is
one of the states at the goal line. A reward structure that assigns a reward
of 1 to the goal states and 0 for all other states requires discounting to avoid
solutions where the agent delays or even avoids goal-reaching. Moreover, for
large maps such sparse reward structures are difficult to solve using standard
DRL algorithms. Therefore, it is common to use a reward that is positive when
reaching the goal, negative when crashing into a wall, and a zero elsewhere. Here,
we use a reward of 100 for goal states and −20 for walls. Figure 2 shows three
different maps.

MiniGrid is a benchmark widely used in the DRL community [10,11,13,27,34].
A MiniGrid environment corresponds to a discrete grid world where the agent
needs to navigate through the grid and possibly interact with objects to solve the
task. Figure 3 shows our custom DynObsDoor environment, where, starting at
the top left corner, the agent needs to walk past walls and avoid collisions with
randomly moving obstacles to reach the green goal cell. Furthermore, it must
open the yellow door in the middle of the grid. Here, the goal is to maximize the
probability of solving the task. To ensure early reward signals during training,
we use a discounted reward of 1 when winning, −1 when losing, and zero else.

Fig. 3. The DynObsDoor environment. The starting cells are yellow, the goal cell is
green, and the walls are gray. The blue dots are randomly moving obstacles. (Color
figure online)

Addtional statistics about the benchmarks can be found in the Appendix A.

3 Regret and State Restoration

This sections presents our framework regret and state restoration in evaluation-
based deep reinforcement learning (RARE). We distinguish two variants:
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(i) regret and state restoration in evaluation-based initial distribution
(RAREID), and (ii) regret and state restoration in evaluation-based prioritized
replay (RAREPR). As illustrated in Fig. 4, both share the idea of conducting
evaluation stages and exploiting this information for effective training in two
different ways. An additional description of our algorithm as pseuco-code can be
found in Appendix B.

3.1 Overview

Throughout DRL training, we alternate between learning and evaluation stages
at C-step intervals. During an evaluation stage, we evaluate all initial states I
and archived states Aj , the latter were collected during the previous learning
stage. In the subsequent learning stage, we sample the episodes’ starting states
from the previously evaluated set of states, i.e., to all states s ∈ I ∪ Aj . The
key difference between RAREID and RAREPR lies in the utilization of the eval-
uation stages’ results during the learning stages: RAREID biases the sampling
of episodes’ starting states D(Aj ∪ I) towards states with low evaluation values
while RAREPR biases the policy updates by increasing the sampling priorities
δ of the replay buffer B for episodes with low evaluation values.

Initially, the archive is empty, i.e., A0 = {}, D(A0 ∪ I) equals the MDP’s
initial distribution μ(I) (RAREID), and the buffer’s sampling priorities δ are
constant. In the following iterations, D is determined in the last step of the
previous evaluation stage, as explained below.

3.2 Learning Stage

During training we carry out the following steps:

(L1) Probabilistically Select State from Archive: In the case of RAREID, we
sample a state s according to D(Aj ∪I), as defined in step (E4). It assigns prob-
abilities to states s ∈ Aj ∪ I according to the outcome of the evaluation stage.
For RAREPR we also restart episodes at archived states, but we simply start
episodes by first choosing between the original initial states (I) and archived
states (Aj) with equal probability of 0.5 and subsequently select an initial state
according to μ in case of I and uniformly in case of Aj .

(L2) Restore State: We restore the just sampled state s by either using the
environment’s restore option, if available, or running a goal-conditioned policy
from an initial state until s is reached [12].1

(L3) Generate Experiences: We generate new experiences by applying the respec-
tive DRL algorithm starting from s.

1 The goal-conditioned policy is tasked with reaching the sampled state s, after which
the training continues with the regular policy πθ. We follow the concept introduced
by the Go-Explore algorithm [12].
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(L4) Determine Relevant States and Expand Archive: For all states visited dur-
ing the last episode, we check whether they are relevant, i.e., whether they con-
tain information valuable for learning, and add those states to the new archive
Aj+1.2 We apply two benchmark-independent heuristics to determine the rele-
vance of a state:

1. Value Heuristic: We check for all states visited during the episode the smooth-
ness of the corresponding state values, i.e., when transitioning from a state
st to its successor st+1, we expect

|Vπθ
(st) − (Vπθ

(st+1) + rt)| (1)

to be small, where πθ is the current policy and the state values are estimated
by the NN. A significant difference indicates a high relevance because the
network needs further updates related to the value of this state as the network
has a poor estimation of the current state’s value.

2. Novelty Heuristic: We leverage recent work of random network distillation
(RND) [9]. At the beginning of training, we randomly initialize a neural net-
work that returns a real-valued output for each state input. We use our agent’s
training observations to fit a second neural network to predict the output of
the first one. As a result, for sufficiently explored states, the disparity between
these networks is minimal. However, the difference is significant for infre-
quently or never encountered states. Consequently, this provides a reliable
estimate of the relevance of a given state.

(L5) Learn from Experiences: We update the agent’s network using observations
in the replay buffer B. In the case of RAREID, we sample uniformly from B,
and for RAREPR, we sample based on the priorities δ determined by the most
recent evaluation stage and defined in step (E4).

3.3 Evaluation Stage

After the learning stage, we add all states from the old archive Aj to the new
one Aj+1, which is thus consisting of all relevant states. For further processing,
this resulting expanded archive Aj+1 is then provided to the evaluation stage,
which consists of four steps:

(E1) Reduce Archive: The number of interesting states may vary throughout the
learning stages. Thus, we reduce the archive to a fixed size before performing
the evaluation. We employ two different strategies to reduce the archive size, but
keeping the states most relevant for learning.
2 Note that the learning stage uses the states from the current archive Aj for restarting

episodes. However, archive Aj+1 contains the states currently stored for the next
evaluation stage.
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Fig. 4. Graphical overview of RARE: the left part (L1–L5) shows the learning stage,
the right (E1–E4) the evaluation stage.

1. Cluster Strategy : This strategy uses the numerical state representation of the
states to separate them into different clusters. As we want the archive to
contain as much different states as possible, we only keep the most relevant
state from each cluster w.r.t. to its heuristic value (see L4).

2. Maximal Distance Strategy : This strategy aims at reducing the archive to
the states that cover the largest part of the state space possible. First, this
strategy selects the most interesting state s∗ ∈ Aj+1 to be kept, meaning
we initialize the reduced archive as A ′

j+1 = {s∗}. Next, the strategy enforces
that every further state s that is added to the reduced archive must fulfill

s = argmax
s∈Aj+1

min
s′∈A ′

j+1

‖s, s′‖2 , (2)

i.e., s has the largest minimum Euclidean distance on the numerical state
representation to all of the already selected states s′ ∈ A ′

j+1. At the end of
the strategy, we set Aj+1 = A ′

j+1.3

(E2) Conduct Evaluation: We evaluate each state contained in the archive or
the set of initial states, i.e., s ∈ Aj+1 ∪ I, w.r.t. the evaluation function using
DSMC.

3 The application of the Euclidean distance assumes that the state representation is
based on physical attributes, such as coordinates or velocities, which is often used in
RL benchmarks. This method would also be affective for imaged-based state repre-
sentation. Alternative distance metrics might need to be considered if this assump-
tion is not fulfilled.
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(E3) Approximate Regret: For each state s ∈ S, the regret is defined as the
difference between the state values of the optimal and the current policy [6,33],
i.e.,

Regret(s) = v∗(s) − vπθ
(s), (3)

where vπθ
is the current policy with network weights θ.

As we are able to evaluate an arbitrary evaluation function and not just the
value function, we here introduce the evaluation regret

R(s) = E∗(s) − Eπθ
(s), (4)

where E∗(s) is the evaluation value of the optimal policy given that we start in
state s. Similarly, Eπθ

(s) is the evaluation value of the current policy πθ with s
as the initial state. Naturally, the true value of E∗ is unknown. Thus, we follow
the idea of Jiang et al.’s MaxMC method [27] and approximate the evaluation
regret of states s ∈ Aj+1 ∪ I as

R̂(s) = Ebest(s) − Eπθ
(s), (5)

where Ebest denotes the best evaluation value encountered for all states in
close Euclidean proximity to the given states’ description in previous evaluation
stages. If no such state has formerly been evaluated, Ebest is set to 1, ensuring
the agent’s emphasis on this state during the next learning stage. Note that we
linearly interpolate the evaluation values to [0, 1] [20]. Further, we also linearly
interpolate R̂ to the same interval.

(E4) Update Priorities: We calculate a distribution for sampling episodes’ start-
ing states D(Aj+1∪I) (RAREID) or the priorities to be used for the replay buffer
δ (RAREPR) based on the estimated evaluation regret, respectively. While we
want the agent to focus on states with a high regret, the initial states I, as the
task’s original objective, are of special interest. We define

ψ = clip

(
1

|I|
∑

s∈I
Eπθ

(s), 1 − ψmax , ψmin

)

(6)

as the clipped average evaluation value of the initial states I, where ψmax and
ψmin are hyperparameters.

Considering RAREID, we set the distribution D(Aj+1 ∪ I) such that the
probability p(s) to start in a certain state s ∈ Aj+1 ∪ I is given by

p(s) =

⎧
⎪⎨

⎪⎩

(1 − ψ) · ̂R(s)+εp
∑

s′∈A ∪I(1− ̂R(s′)+εp)
s ∈ I

ψ · ̂R(s)+εp
∑

s′∈A ∪I(1− ̂R(s′)+εp)
else

, (7)

where εp is a hyperparameter to ensure all samples have a non-zero proba-
bility. Moreover, p(s) increases for states with a high evaluation regret and vice
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versa. The additional weighting with ψ ensures that the initial states are con-
sidered often enough to prevent catastrophic forgetting [28], depending on their
current evaluation.

Considering RAREPR, the replay priority of each state is

δ(st) =

{
(1 − ψ) · (R̂(s0) + εp)α if s0 ∈ I
ψ · (R̂(s0) + εp)α else

, (8)

where εp is the minimal priority, and s0 is the initial state of the corresponding
episode of experience (st, at, rt+1, st+1). The priority is higher if the evaluation
regret is higher and vice versa. Again, the weighting with ψ considers the initial
states particularly.

3.4 Regret and State Restoration in Evaluation-Based Deep
Q-Learning

We use Mnih et al.’s deep Q-learning [30] as a base algorithm to implement
RARE. Note that RARE can easily be adapted to any kind of (deep) reinforce-
ment learning; particularly RAREID to any such algorithm and RAREPR to
any algorithm using a replay buffer.

4 Empirical Evaluation

Next we provide a empirical evaluation of RARE, comparing it with three base-
lines: DQN and DQNPR, since our approach is based on them, and Go-Explore,
which also uses the idea of state restoration.

We conduct experiments on Racetrack and MiniGrid as introduced in
Sect. 2.3, using two different evaluation functions: (i) the average cumulative
reward, and (ii) the goal-reaching probability as a typical safety objective.

The following results were all obtained by using DSMC with κ = 0.05 and
εerr = 0.01 (goal-reaching probabilities), ε = 1 (return for Racetrack), and
εerr = 0.01 (return for MiniGrid). We perform multiple trainings and report the
average result over all agents that were able to solve the task, i.e., to reach the
goal at all.4 All agents were trained by using an Intel Xeon E5-2698 v4 processor
with 100 GB RAM. For further experiment details, we refer to Appendix C.

4.1 Racetrack

Figure 5 provides results for three different maps of the Racetrack. We report the
performance from the initial states, i.e., the benchmark’s original task. In Fig. 5
(left) the return was used as evaluation function and we provide the average
obtained return. While on the River-deadend map, RARE performs roughly
equal to the baselines (with an outlier by Go-Explore), both RAREID and

4 Otherwise we report the training as failed.
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Fig. 5. Average return (left) and goal-reaching probability (right) achieved by DQN,
DQNPR, Go-Explore, RAREID, and RAREPR on Racetrack. ‘Training failed’ refers
to the case that the agent was not able to find the goal during training.

RAREPR outperform the baselines on the more sophisticated maps Maze and
Hansen-bigger. In Fig. 5 (right) we give the goal-reaching probability, which was
also used as the evaluation function. Again RAREID and RAREPR outperform
the baselines on the maps Maze and Hansen-bigger.

4.2 MiniGrid

Figure 6 shows the agents’ performance for the MiniGrid benchmark. We com-
pare the returns (left) and goal-reaching probabilities (right). Accordingly, these
were also the evaluation functions used for RARE.

In contrast to Racetrack, here, the primary advantage of RARE over DQN
and DQNPR is that RARE is capable of solving the benchmark, while both
DQN and DQNPR fail to find the goal. Go-Explore is able to find the goal, but
still, both RARE algorithms clearly show superior performance.

Fig. 6. Average return (left) and goal-reaching probability (right) achieved by DQN,
DQNPR, Go-Explore, RAREID, and RAREPR on MiniGrid. Training failed means
that the agent was not able to find the goal during training.
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5 Ablation Study

This section is dedicated to examining the impact of the two parts of the RARE
algorithm, namely (i) using state restorations, and (ii) using the regret estima-
tion. To do so, we specifically designed the Maze-extended map, shown in Fig. 7
(top left), where, due to the environment’s uncertainty, the narrow connections
between the bottom cells and the rest of the map lead to a reduced maximum
achievable goal-reaching probability from these bottom cells. Note that this map
is intended to show the influence of the two novelties included, while the maps
used in the paper are more general and have been used previously in the litera-
ture.

We remove the regret estimation from RARE by replacing R̂(s) with
(1−E(s)) in Eqs. (7) and (8), i.e., we compute the priorities and distribution only
based on the evaluation values instead of computing them based on the regret.
For the sake of clarity, we write REID (state restoration in evaluation-based
initial distribution) or REPR (state restoration in evaluation-based experience
replay), respectively, when we refer to the algorithms without the regret estima-
tion.

Fig. 7. Racetrack’s Maze-extended map (top left), followed by heatmaps visualizing
how often states from each grid cell have been used for policy updates during training
using Go-Explore (top right), REPR (bottom left), and RAREPR (bottom right).

We compare Go-Explore, REID, REPR, RAREID, and, RAREPR agents
that were trained on the Maze-extended map and evaluated using DSMC with
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κ = 0.05 and ε = 0.01 for the goal-reaching probability, or ε = 1 for the return,
respectively. For each evaluation-based algorithm, we trained agents using the
return and the goal-reaching probability as the evaluation function. We trained
for multiple random seeds and report the averaged results.

State Restorations with Evaluation Stages. Consider Fig. 7, which depicts
how often each grid cell was considered during training. In the first heatmap
(top right), we see that Go-Explore explores the map almost uniformly, with the
exception of the tight alley at the bottom of the map, where it does not find a
solution at all.

In contrast, the next heatmap (bottom left) shows that REPR focuses more
on important regions of the state space. Further, it repeatedly considers the alley
at the bottom, which is the region of the state space that is most difficult to
solve.

Regret Approximation. From Fig. 7 now additionally take into account the
last heatmap (bottom right), depicting RAREPR’s consideration of grid cells.
While REPR, in contrast to Go-Explore, was able to solve the more difficult
bottom part, these grid cells were considered too often during training, as there
the maximal goal-reaching probability and, thus, also the evaluation value, is
lower than it is for the rest of the map. By additionally using the regret approx-
imation, RAREPR considers these states often enough, but does not overtrain
where performance cannot be improved further.

Fig. 8. Average return (left) and goal-reaching probability (right) achieved by REID,
and RAREID on the Maze-extended map.

To strengthen that finding, we additionally compare the performance with
and without using the regret approximation. Figure 8 shows that RAREID
achieves a significantly increased performance for both average return and goal-
reaching probability compared to REID.
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6 Related Work

DSMC evaluation stages have already been proposed by Gros et al. [20]. However,
that work was based on the assumption of having a broad set of initial states
which sufficiently cover the state space. In contrast, RARE operates indepen-
dently of the number or the distribution of initial states by evaluating promising
visited states (including states s /∈ I) and restoring subsequent training episodes’
starting states to them. Moreover, instead of only considering their performance,
we here propose to consider the estimated regret as an indicator for relevance.

Our work directly relates to Go-Explore, as our approach of state restorations
combined with evaluation stages was inspired by the work of Ecoffet et al. [12].
Similarly to RARE, Go-Explore stores all visited states in its archive, yet instead
of subsequently drawing states where safety performance is poor, as RARE does,
Go-Explore draws the least frequently seen states. Thus, Go-Explore seeks to
explore as much of the state space as possible, whereas our RARE method focuses
the training on parts of the state space most relevant to safety objectives. Also,
Go-Explore does not take the regret into account.

The RARE approach constitutes a framework within safe reinforcement
learning. According to García and Fernández’s taxonomy of safe reinforcement
learning [15], it falls into the category risk-directed exploration. In contrast to
other safe RL approaches that influence the exploration, RARE operates without
any external knowledge and is further able to influence the exploration process
according to any safety property. Moreover, former risk-directed exploration
algorithms ensure safety by already avoiding unsafe parts of the state space
during the training, i.e., they use risk-averted exploration. However, this is con-
tingent upon the presence of an entity capable of identifying unsafe states. If
this entity is derived from a learning process [3,8], it could potentially lead to
the erroneous avoidance of certain parts of the state space that are incorrectly
classified as unsafe. In contrast, our algorithm especially trains where the safety
properties are (currently) harmed without any prior knowledge needed. Thus,
the framework learns how to behave in these parts of the state space by explicitly
confronting the unsafe states, which can best be described as risk-confronting
exploration. To the best of our knowledge, we are the first ones to pursue this
sub-approach of risk-directed exploration.

Recent work of Hasanbeig, Abate and Kroening [24] on safe reinforcement
learning introduces a technique to include a property expressed as an LTL for-
mula and synthesizes policies to optimize the probability of fulfilling that LTL
property. However, this method, while allowing for the specification of complex
tasks, does not address the problems tied to safety-critical reward structures,
such as very sparse rewards not suited for learning without additional explo-
ration. Similarly, Hasanbeig, Abate and Kroening use LTL properties to derive
meaningful reward functions for unknown environments. Applying their method
to the property used in this paper (optimizing goal-reaching probability without
getting stuck in an unsafe state) yields the exact reward function we employ:
positive when reaching the goal, negative when harming safety, and zero oth-
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erwise. Consequently, this otherwise effective approach proves unhelpful in our
case.

Further, state restorations are related to the well-established idea of impor-
tance splitting, where a restart is conducted from rare but relevant paths [26,31].
A comparison of both methods cannot be made straightforwardly, as importance
splitting is based on the assumption of knowing the state space, while RARE is
not.

7 Conclusion and Future Work

In this paper we introduced the RARE framework and proposed two variants
of it, namely RAREID and RAREPR. RARE uses a combination of two ideas
intended to improve policy quality when using deep reinforcement learning in
safety-critical applications. First, state restorations combined with DSMC evalu-
ation stages, and second, utilizing the regret estimation. Our empirical evaluation
shows that RARE outperforms the standard baseline of deep Q-learning and the
related approach of Go-Explore.

In the future, we plan to incorporate a latent space representation into our
framework. This will enable automatic clustering of the observed states. We think
this is promising because it might help with (i) getting a better selection of inter-
esting states in the archives, and (ii) enabling an even better estimation of the
maximal evaluation value and, thus, also improving our regret approximation.

In view of Anderson’s recent work [3], we aim to investigate whether combin-
ing RARE with model-based deep reinforcement learning might allow learning a
shield [1,5,25] to further improve the policies’ safety performance at test time.
Concretely, RARE could be used to gather experiences for learning an envi-
ronment model that accurately captures the state space regions most relevant
to safety. At test time, the model would then be used to compute safe actions
whenever the policy returns an action likely leading to an unsafe state.

Also, even though this framework was specially designed to operate on sparse
reward tasks, a comparison on dense reward benchmarks is of interest, as we
expect our technique also to be beneficial in such settings.
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A Benchmark Statistics

Racetrack. In Racetrack, the number of states is given through all the possible posi-
tions in the map and the maximal achievable velocity. As the most of the states cannot
be reached with the maximal velocity, this is an upper bound and not an exact number.

Map River Maze Hansen-bigger
States 99764 155136 299008

MiniGrid. In MiniGrid, the number of states is given through all possible combinations
of the agent’s position, it’s direction, whether the door is open, and the positions of
the moving obstacles. The latter is the responsible for the huge state space even for
relatively small maps. For DynObsDoor, we have ∼ 3.04 · 1010 states.

B Pseudo-code

The components of the RARE algorithm are highlighted in blue.

Algorithm 1. Regret and State Restoration in Evaluation-based
Deep Reinforcement Learning
1: initialize archive A0 = {}
2: initialize ψ = 0.0
3: for episodes e = 0 to E − 1 do

4: sample s0 according to

{
p(s0) // [RAREID]
μ(s0) // [RAREPR]

5: for steps t = 0 to T − 1 do
6: apply heuristic h to st & add (st, h(st)) to Aj+1

7: with probability ε select random action at ∈ A(st)
8: otherwise with probability 1−ε select at = argmax

a∈A(st)

Qθi
(st, a)

9: execute at; observe st+1 and rt+1

10: compute δ =

{
constant // [RAREID]
Equation 8 // [RAREPR]

11: store (st, at, rt+1, st+1, δ) in replay buffer B
12: every K steps do
13: sample mini-batch of experiences (sj , aj , rj+1, sj+1, δ)

from B w.r.t. δ

14: set target yj =

{
rj+1 sj+1 terminal
rj+1 + γ · max

a′ Qθ′(sj+1, a
′) else

15: perform gradient descent step on loss (yj − Qθ(sj , aj))
2

16: soft-update the network weights θ′ = (1 − τ) · θi + τ · θ′

17: end every
18: end for
19: if e > W then
20: every L episodes do
21: Aj+1 = reduceArchive(Aj+1)

22: compute R̂(s) = Ebest(s) − Eπθ (s) for all s ∈ Aj+1 ∪ I
23: update ψ
24: end every
25: end if
26: end for
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C Hyperparameters

Hyperparameters that are used in multiple algorithms but only have one table entry
have the same value in all instances.

Parameter Description Value

DQN:

E Number of episodes (Racetrack) 100.000

E Number of episodes (MiniGrid) 40.000

T Maximum episode length (Racetrack) 100

T Maximum episode length (MiniGrid) 200

γ Discount factor 0.99

K Q-network update frequency 4

Batch size 512

τ Soft update coefficient 0.001

εstart Initial exploration coefficient of ε-greedy policy 1

εdecay Decay factor of ε in each episode 0.999

εend Value of ε at the end of the training 0.05

|B| Size of replay buffer 108

αAdam Learning rate of Adam optimizer (Racetrack) 8 · 10−4

αAdam Learning rate of Adam optimizer (MiniGrid) 0.0001

Probability of acceleration failing
(Racetrack, River / Maze / Hansen)

0.5/
0.25/
0.25

DQNPR:

α Prioritization coefficient for sampling priorities 1

εp Minimum priority 10−6

RAREID and RAREPR:
W Number of pre-training episodes 10.000

L Evaluation frequency 10.000

ψmin 0.2

ψmax 0.2

Archive size after reduction
(Racetrack, River / Maze / Hansen)

127/
151/
292

Archive size after reduction (MiniGrid) 17

εp Minimum priority 0.2

εerr
Error in DSMC’s evaluation during training

(Racetrack, GRP / Return)
0.05/
4

εerr
Error in DSMC’s evaluation during evaluation

(Racetrack, GRP / Return)
0.01/
1

εerr
Error in DSMC’s evaluation during training

(MiniGrid, GRP / Return)
0.05/
0.1

εerr
Error in DSMC’s evaluation during evaluation

(MiniGrid, GRP / Return)
0.01/
0.01

κ Probability that DSMC’s error is at most εerr 0.05

Go-Explore

Number of demonstrations in robustification 10

Number of episodes during each exploration phase 100

Maximum number of archived states
(Racetrack, River / Maze / Hansen)

509/
606/
1168

Maximum number of archived states (MiniGrid) 69
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