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Abstract—Recently, deep reinforcement learning has become
very successful in making complex decisions, achieving super-
human performance in Go, chess, and challenging video games.
When applied to safety-critical applications, however, like the
control of cyber-physical systems with a learned action policy,
the need for certification arises. To empower domain experts
to decide whether to trust a learned action policy, we propose
visualization methods for a detailed assessment of action policies
implemented as neural networks trained with Q-learning. We pro-
pose a highly responsive visual analysis tool that fosters efficient
analysis of Q-learning based action policies over the complete
state space of the system, which is essential for verification and
gaining detailed insights on policy quality. For efficient visual
inspection of the per-action Q-value rating over the state space,
we designed three glyphs that provide different levels of detail.
In particular, we introduce the two-dimensional Q-Glyph that
visually encodes Q-values in a compact manner while preserving
directional information of the actions. Placing glyphs in ordered
stacks allows for simultaneous inspection of policy ensembles,
that for example result from Q-learning meta parameter studies.
Further analysis of the policy is supported by enabling inspection
of individual traces generated from a chosen start state. A user
study was conducted to evaluate the effectiveness of our tool
applied to the Racetrack case study, which is a commonly used
benchmark in the AI community abstracting driving control.

Index Terms—Glyph visualization, visual analysis, neural net-
works, action policy verification

I. INTRODUCTION

Machine learning has undergone an uplift in interest over
the past few years. The idea of using a neural network (NN) to
replace traditional approaches, that may require sophisticated
algorithms or are impracticable to solve otherwise, has been
successfully applied to many areas of computer science, such
as image classification [1], natural language processing [2],
and game playing [3]-[5]. In particular, NNs are the technical
core of ever more intelligent systems, created to assist or
replace humans in decision-making, in important applications
such as industry automation, trading, and autonomous driving.
In such intelligent systems, the NN is used as an action policy,
a function that maps system and environment states to actions,
thus controlling the system behavior. This development comes
with the urgent need for certification of NN action policies.
If neural networks are in control of decisions affecting eco-
nomic value or even human lives, then engineers need to
be able to assess their behavior and confirm that desirable
behavioral properties like safety are satisfied — or find that
this is not the case and identify specific weaknesses for re-
training in reinforcement learning. We argue that NN action

policy visualization can and should become a core tool for
such certification. We need to enable engineers to inspect
the behavior of the learned policy, and effectively understand
what has been learned and where potential weaknesses are.
Such visualization can go hand-in-hand with system analyses
such as formal verification, where applicable. Indeed, previous
work [6] has introduced the TraceVis Tool which visualizes
statistical model checking results [7] as an overview of NN
policy behavior across the state space.

Such NN policies can be trained in a multitude of ways. We
here consider deep Q-learning [8], where the NN controller
is iteratively trained by interacting with the environment
and updating the policy. In each step, the current policy is
executed, and its NN weights are updated using gradient
descent. The NNs are used to approximate per action the
expected discounted reward, the so-called Q-value, that is
accumulated when deciding for action a and following the
policy afterwards. An arg-max function on the Q-values is used
to determine the next action. The so called discount factor ~y
with values ranging between 0 and 1 weights the importance
of short-term to long-term rewards. Deep Q-learning has been
used successfully on several decision-making problems [3],
[4], [8]. Moreover, it has explicitly been shown to perform
better than other methods on the Racetrack benchmark [9],
which we use as a test case.

In this work, we extend the TraceVis approach by visual
analysis of the NN representing the action policy, and focus
our analysis on the output layer that provides the Q-values. We
present a highly interactive visualization tool that enables the
user to identify and gain insight over state space regions where
the Q-values exhibit unexpected, dangerous, or only-just-safe
behavior. Key to accomplish this is an overview visualization
of the system state space, and key to such an overview is a
compact visualization of Q-values in each state.

To this end, we designed three different glyph-based vi-
sualizations with different levels of detail, to enable efficient
visual inspection of the network decisions as shown on left
side of Figure 1. We do so in the context where the action
policy takes decisions pertaining to movement in 2D, i.e., in
a plane. Such movement decisions are a core aspect of any
cyber-physical system that moves autonomously on ground
(driving, factory halls, etc). In this setting, a key feature of
actions is direction in a plane. Our visualization targets and
leverages that feature. Our first glyph variant shows the chosen
action for each state and acts as an overview visualization. The
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Fig. 1. Example visualizations of a policy ensemble using our three glyph types Chosen Action, Directional Aggregation and Q-Glyphs (left), a single trace
reaching the goal under strong influence of noise (middle) and placement of glyphs for multiple velocities near a corner position on Barto-small (right).

second variant aggregates over all action directions providing a
visual impression of the Q-value distribution over the actions.
A deeper look is enabled by visualizing the individual Q-
values using our third glyph type, which we call the Q-Glyph.
Finally, full traces can be generated from a given start state
as illustrated in the middle of Figure 1.

We evaluate the prototype by means of a user study, where
participants are asked to inspect a given policy for its safety,
plausibility and possible weak spots. We furthermore conduct a
separate case study, using our tool to compare different policy
stages during reinforcement learning, as well analyzing the
impact of different hyper-parameter settings.

In summary, our main contributions are:

o Q-Glyphs, a visual encoding for Q-values which relate to
the direction of movement-related actions in a plane.

o A visual analysis approach to efficiently inspect action
policies using overview and detail visualizations.

o A study of the proposed approaches for Q-learning based
action policies in the Racetrack benchmark, including a
user study, and an evaluation of policy ensembles on
several scenarios in a case study.

II. RELATED WORK

We next discuss related work on certification of NN-based
action policies, visualization of such action policies, glyph-
based and ensemble visualizations.

Formal Action Policy Verification: The NNs we consider
represent action policies taking decisions in (exponentially)
large probabilistic transition systems (aka state spaces), specif-
ically Markov decision processes (MDP) [10]. Given a fixed
action policy, the induced behavior in the MDP is a Markov
chain. Full formal verification of NN action policy behavior
on all states is exceedingly hard, due to state space size (‘“state
space explosion problem”) in combination with the complexity
of NN analysis. Most current work is limited to single NN
decisions [11]-[15], as opposed to sequences of NN decisions
in a large state space. Recent work proposed to analyze such
decision sequences, through statistical model checking over
the underlying Markov chain [7], [16], [17]. This approach is
limited however to the analysis of individual start states from
which the policy can be run. Racetrack, a benchmark from Al
autonomous decision making, has recently been taken up in
the verification community [18] as a manageable abstraction
of autonomous driving, providing a simple yet meaningful and
highly extensible research environment. We adopt Racetrack

and detail it in Section III. Tools related to Racetrack can be
found on https://racetrack.perspicuous-computing.science/.

Visualizing NN Action Policies: Hohman et al. [19]
present a broad survey of general methods that have been used
for visualization of NN learning and behavior analysis. One of
the more prominent examples of visualization in NN analysis
is its application to policies playing Atari 2600 games. In this
context, Wang et al. [20] developed DQNViz, a visual analysis
tool for inspection of deep NNs. They use a comprehensive
collection of views showing training and epoch statistics,
like average reward, loss and action distributions, and use a
trajectory view to examine movement and reward patterns.
An image-based approach is presented by Greydanus et al.
[21], who use saliency maps to analyze the agents strategy
to maximize its reward and judge the quality of its actions.
In a similar fashion, Joo et al. [22] make use of Grad-CAM
[23] to foster the understanding of the hidden layers of a CNN
action policy. The Grad-CAM approach was also applied to
the Go policy network [3] in a work by Pang and Ito [24].
A visual representation of the game board visualizes model
features using color and opacity, with the goal to provide
explanations for the next movements of the agent. Gros et
al. [6] developed the TraceVis tool to visualize the outcome
of statistical model checking of action policies. The approach
aims at providing an overview of model checking results
obtained in individual start states, such as the probability of
reaching the goal, allowing to interactively delve into policy
behavior, down to individual policy runs. Himildinen et al.
[25] propose a three-dimensional height field visualization,
based on a previous work by Li et al. [26], to help with the
optimization of movement control in the context of humanoid
locomotion. While their focus is not on action policies, it
shows how such visualizations can be used to optimize NNs.

Glyph-based Visualization: The usage of glyphs in visu-
alization has proven to be a valuable tool, yet glyph design
is a challenging task, with many aspects to be considered.
Borgo et al. [27] discuss guidelines, techniques and possible
applications that cover the foundations of glyph design. They
provide information for the data mapping process, as well as
categorizations of different glyph types. A similar work has
been presented by Lie et al. [28], giving a concise overview of
important design aspects. They introduce a two-dimensional
glyph to visualize three-dimensional data and propose solu-
tions to occlusion problems.Our Q-Glyphs are a special variant
of the well-known star glyphs, which are especially suited to



represent multivariate data. However, they lack the ability to
map a central value when the axes are interpreted as directions,
which is the case in our setting. Some of the more recent works
include the one by Fuchs et al. [29], who focus on the contour
influencing glyph similarity perception, and Miller et al. [30],
who evaluate different ordering strategies for the data axes.

Ensemble Visualization: A recent survey of the concepts
and approaches to ensemble visualization is given by Wang et
al. [31]. Aggregation is named as a key, but optional, step in
the pipeline. We did not deem aggregation over the ensembles
necessary, since pre-filtering and restirction to certain scenar-
ios already reduced the data to an acceptable amount. Similar
to our approach of stacking glyphs, Tominski et al. [32] present
stacked color-coded bands to visualize multivariate trajectory
data sets. Ferstl et al. [33] similarly use the height dimension
to draw stacked contour variability plots of weather data. They
incorporate time information and create hierarchical grouping
schemes including so-called space-time surfaces.

III. VISUAL POLICY ANALYSIS

The aim of our work is to facilitate neural network (NN)
action policy certification. We want to enable engineers to get
an overview and effectively identify potentially problematic
regions (where policy behavior is unsafe) for closer inspection.
The latter can go hand in hand with other tools like verification
of local behavior [7]. Identification of problematic regions
provides input for re-training. If intensive analysis does not
exhibit weaknesses, in particular in regions engineers know
to be potentially critical (like tight situations for collision
avoidance), then confidence has been built for certification.
We believe that visualization should be the core of a tool
framework supporting engineers in such a certification process.

Previous work on action policy visualization focused on
understanding the learning process itself, or explaining the
decisions of a NN in a complex game like Go. A key difference
to these is the global nature of certification: the user should,
ultimately, inspect policy behavior across the entire state space.
This is of course impossible for extremely complex games like
Go (107! states). But many actual applications are not that
complex in terms of combinatorics, and even if their overall
combinatorics is prohibitively high, they may still contain
important dimensions along which they can be organized, and
explored by visual overviews serving to identify local state-
space regions for deeper (visual or otherwise) analysis. A
prime example is physical location and velocity in cyber-
physical systems. This dimension is key to safety, and is
amenable to human inspection. Consequently, the present work
focuses on obstacle avoidance in discrete 2D navigation.

While previous work focused on the visualization of indi-
vidual traces, our visual analysis concept is state space driven.
The visual entry point is an overview of the state space. To
reduce the vast amount of information we exploit selection and
summarization approaches. The engineer can select state space
regions known to be challenging, e.g. due to narrow passages
or sharp corners. To show different levels of information detail
embedded in the selected region, we designed three glyphs (cf.
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Fig. 2. Three established Racetrack maps: Barto-small (top-left), River
(bottom-left) and Maze (right). Black regions are walls/boundaries; white cells
are free positions. Start and goal cells are colored blue and green, respectively.

left of Figure 1). The simplest glyphs just show the chosen ac-
tion which is the common approach in previous works but does
not give further insights into the predicted Q-values. Therefore,
we designed an aggregation glyph summarizing the Q-values
over all actions as well as a glyph variant showing all action
Q-values in a compact visual representation — we call them Q-
Glyphs. For states (position/velocity pairs) where the predicted
Q-values are unintuitive, the user can use the tool to generate
a trace (execute the policy) starting at the state of interest as
shown in the middle of Figure 1. A detailed visualization then
provides information about this trace, including the chosen
actions and Q-values of the underlying NN.

Due to the large amount of parameters controlling the
Q-learning training process, a multitude of policies can be
generated for a single use case. Focusing on only one such
policy will leave potential insight undiscovered, so we have
to provide an efficient way of comparing multiple policies.
We achieve this by simultaneously showing multiple glyphs
per state, each representing a different policy. While policies
can be compared by arbitrary means, we propose some well-
defined scenarios an engineer might find useful: Train, Cross
and Hyper. The Train scenario is an often pursued goal of
visualizing NNs, by showing the policy at different training
stages and, as such, reflecting the learning progress. In Cross,
we compare policies with varying initial parameters like the
seed, as it has been shown that reinforcement-learned action
policies are subject to brittle behavior [34], [35]. For a specific
use case, one can also find settings for the agent or world that
affect the final learning state, like noise probability. In the
same sense we can also vary the training hyper parameters to
produce Hyper scenarios. For Q-learning, the discount factor
~ comes to mind, as it has a large impact on the quality of
the resulting policy and is not trivial to choose correctly.

We situate our work in the Racetrack benchmark as a
concrete case study. Racetrack is a common benchmark for
MDP algorithms in the Al community [36]-[40]. It consists
of a two-dimensional grid, where each grid cell is either a start
or goal position, a free road position, or a wall. The car starts
with a given velocity, usually 0. The objective is to reach the
goal without crashing into a wall. The agent’s actions are to
accelerate by one unit in any of eight discrete directions, or to
maintain the same velocity which we will refer to as the zero-



Fig. 3. The three different types of glyphs used in our visualization showing
the same state: (a) Chosen Action, (b) Directional Aggregation and (c) Q-
Glyph. More examples for Directional Aggregation are shown in (d), with
associated Q-values given by Q-Glyphs.

action. The road is slippery, meaning that the action may fail
to achieve its effect, so that the car keeps going at unchanged
speed (compounding the risk to crash into a wall).

As Racetrack is defined over 2D space, we could restrict
our visualizations to a 2D view for simplicity. Yet, we opt to
use of the additional dimension as space for enabling policy
comparison. Glyphs are stacked on top of each other, where
each individual slice corresponds to a separate policy.

In our studies we use the track shape introduced by Barto
et al. [36] as shown in Figure 2 (top-left), as well as the River
(bottom-left) and Maze (right) maps introduced by [41]. Each
state is defined by the 2D position of a cell and a 2D velocity
vector over integer numbers'.

IV. GLYPH DESIGN

To facilitate fast and comprehensive policy inspection, we
designed three glyphs with increasing level of visualized
information: Chosen Action, Directional Aggregation and Q-
Glyphs (cf. Figure 3). To quickly gain an overview, viewing
the Chosen Action might be better suited than directly showing
all the individual Q-values. It can be used to identify regions
of bad decisions, i.e. actions that directly result in a crash.
Still, not all actions are chosen as clearly as may seem at first
glance, as the Q-values of the other actions could be equally
high or low. The Directional Aggregation serves the purpose
to incorporate this information into an otherwise still simple
glyph shape, to serve as an extended overview visualization.
Finally, for a full detail view, the Q-Glyph maps all Q-values
to a concise and compact representation. Our glyph designs
are based on the following goals:

o compactness: Use space efficiently, while providing suf-
ficient area to convey color information,

o situatedness: portray directional features in the glyph
shape to facilitate implicit perception of direction, and

o stackability: keep design flat to allow stacking of glyphs.

I'The state space is infinite in principle as velocities can get arbitrarily high,
but we apply a velocity limit which obviously makes sense (speed limit).

A. Data Mapping

Our rewards for reinforcement are defined in the range
[—100, 100]. Even though Q-values necessarily have the same
maximal range, the Q-values predicted by a neural network
can differ significantly. In the policies we analyzed, positive
Q-values went only slightly above 100, but negative Q-values
went down to values below —1500. Together with the domain
experts we decided to clamp the Q-values to the reward range
[—100, 100] before mapping to glyph parameters, yet we leave
the option to use the actual range of Q-values predicted by the
policy for mapping.

To simplify color scale and glyph design we follow the
typical windowing approach described by Lie et al. [28], by
mapping Q-values to the range [—1, 1]. For this we introduce
windowed Q-values w for each mapping mode computed from
the per action Q-values g;—1.¢ as follows:

-1, 1) clamped range
full range ’

4
w; = { cl;zimp (100? (1)

dmax

where ¢4, 1S the absolute value maximum of all Q-values in
the inspected policy or policy ensemble.

B. Chosen Action

For a fast inspection of policy behavior over a large part
or the complete state space, visualization of the action chosen
from the largest Q-value is sufficient. Arrows are the canonical
choice for this purpose, as actions in the Racetrack context
directly correspond to acceleration directions Color coding is
natural to make directions distinguishable. However, while this
would suffice to convey the directional information, choosing
the right ratio between length and thickness poses problems, as
space inside a single grid cell is limited. Thin arrows provide
a better directional impression but deliver less area for color
to be visible and vice versa. This is especially important as the
individual glyphs become very small for zoomed out views so
the visualization has to rely heavily on color. Furthermore, the
zero-action cannot be visualized as an arrow.

Considering this, we opted for a raindrop-shaped glyph —
represented by a flattened cone with round caps — with a large
base and small tip (cf. Figure 3 (a)), where the tip position
indicates the acceleration direction. For the zero-action the
glyph tip is moved orthogonal to the track plane yielding a
circularly symmetric shape.

Color is used as an additional visual cue to encode direction.
We map 2D direction via angle to a perceptually uniform
cyclic color map from [42] as shown in Figure 4 (b) and
the zero action to black. This specific color map was chosen
because it provides a large number of individually discernible
colors and does not suffer from the problems induced by, e.g. a
rainbow color scale. Mapping to color helps to identify regions
with similar action decisions and visually separates different
actions, which is especially useful in zoomed out views, where
a large amount of glyphs is visualized (cf. Figure 8 and 10).
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Fig. 4. The two color scales used for our visualizations: (a) romaO as used
in the Chosen Action and Directional Aggregation, (b) all nine Chosen Action
glyph variants arranged according to actions and (c) the diverging color scale
vik used for Q-Glyphs. Color scales from [42].
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C. Directional Aggregation

Showing the chosen action alone essentially ignores all
other Q-values for a given state, hiding information about
the tendency of the policy in that state. To provide a visual
impression of the Q-value distribution over the actions, we
devise an aggregation scheme to condense the information of
all actions into a single directional representation, allowing
to see at a glance how ‘“certain” the decision of a policy
is. Interpreting the Q-values of the NN output layer as the
confidence to execute a specific action, we use them to weight
the associated accelerations aggregate them.

Let @; be the accelerations assigned to each action with
a; € {—1,0,1}2. Using the windowed Q-values as calculated
in Equation 1, the final aggregated direction is determined as

9
- 1 .
d= § i:E - w;a;. (2)

Following this, the actions with negative Q-values will be ag-
gregated with an inverse direction, emphasizing the tendency
of the policy to not accelerate in this direction.

Visualizing the aggregation result is done by using the same
primitives as in Subsection IV-B. The aggregated direction is
mapped to its main axis with its length Hcﬂ| being mapped to
the distance between the base and the tip. We need to ensure
a minimal distance to prevent the drop shape collapsing to a
circle for small distances (this is only allowed for ||d]| = 0).
Therefore, with 7y and r; being the drop’s radii, we define the
final length as ||d|| + |ro — r1|. Direction angle is mapped to
color using the same color map as the chosen action. If the
aggregated action has a length of 0, the glyph is again pointed
orthogonal to the track plane and colored black. Examples of
the glyph are shown in Figure 3 (b) and (d).

D. Q-Glyphs

So far, information about the Q-values has been reduced or
accumulated before mapping it to simple glyph shapes. We
can go one step further and show all the Q-values attached to
a certain state, allowing for a more in-depth analysis of the
confidence of a policy in its decisions and therefore enabling
to better judge its safety. A more intricate glyph design is
required to convey all of this information. For this, we take
inspiration from star glyphs [29], [30], which are well-suited to
encode higher-dimensional data in a compact representation,
and use multiple data axes oriented around a central point, to
portray each action Q-value. In the Racetrack context, a total of

nine actions have to be considered, each of which stands for an
acceleration in a certain direction. Hence we use the placement
of the data axes as a visual metaphor for the directions. When
placed on the grid, these axes will then correspond to the
acceleration directions. However, only eight of the actions have
an acceleration # 0, so the zero-action cannot be incorporated
in the same manner and, following the metaphor, has to be
mapped to the center instead. This visually separates it from
the rest of the actions, although its importance as a decision
is no less than the other actions. To address this shortcoming,
we propose the Q-Glyph (see Figure 3 (c)) as a 2D visual
representation for Q-values. Since the traditional variant of
Racetrack lives in a 2D world, representing the accelerations
with a 2D glyph feels natural. Additionally, since the glyphs
have no inherent relation to 3D space, representing them in
2D allows for easier perception [28].

Since all actions describe equally distributed directions
around a central grid position the overall shape of the glyph
is circular. To create space for the zero- and non-zero actions
in a way that conveys directional information, we separate the
glyph into a central and rim part. The Q-value attached to
the zero-action is portrayed in the center, using a ring as its
visual representation. The directions of the non-zero-actions
are drawn as triangles, from here on referred to as spikes,
arranged radially in the rim part. They are spaced uniformly,
their order being governed by the direction they portray.
Depending on the sign of the corresponding Q-value, the tip
of a spike either points towards the center for negative values
or outwards for positive values. While the spikes belonging to
negative Q-values, strictly speaking, not point in the direction
of their acceleration, this serves to illustrate the policies strong
suggestion to not execute this action and instead choose one
of the opposing accelerations. Still, their position alone allows
for a direct assignment to the direction.

The Q-Glyph is composed from these building blocks by
mapping the windowed Q-values (see Subsection IV-A) to
attributes of the geometric primitives. To account for the Q-
values being both negative and positive, we need to adjust the
mapping to the axes lengths of the final glyph geometry. We
define two sets of radii: R = {rC,;,,, "eror Morar t fOr the cen-
ter and R™ = {77 ;1. " ero» Thae t fOr the rim. As there is no
space between the center and rim, it holds that r¢, .. =7, . .
Further, they need to satisfy 0 < 7pin < Tzero < Tmaz and
Tzero — Tmin = Tmax — Tzero-

When generating the geometry, the windowed Q-values of
the non-zero actions wy . ¢ are mapped to R". For the zero-
action we map to a ring originating from 7¢_,., that grows
outwards for positive and towards the center for negative
values. This is achieved by creating a ring from r<,,., to r(wy)
if w; >= 0, and likewise from r(w;) to r¢,,, for w < 0,
with r(wy) being a function to linearly interpolate wy to R°.
The center radii are used to scale the central circle, while the
rim radii are used to control the spike tips. The base sides
of the triangular spikes are always located at r7 For our

zero*

visualizations we chose r¢ . to be equal to zero. Mapping

min

parameters for the Q-Glyph are shown in Figure 5 (a).
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Fig. 5. Geometric parameters used for mapping data values to the Q-Glyph
shape for (a) radii and (b) polar coordinate grid.

To avoid self-intersection of the circle r7,,., with the tri-
angular spikes, we define the spikes in polar coordinates.We
ensure visibility of spikes with a Q-value of zero by giving
the zero circle a finite thickness as can be seen in Figure 3
(d) in the right most example.

In addition to the shape, the Q-values are mapped to a di-
verging color scale as seen in Figure 4 (c), again accounting for
negative and positive values, which helps to provide redundant
information in the glyph and improves value perception [28].
We added a transparent grid pattern to the feature showing
the highest Q-value, and therefore chosen action (see Figure 6
right), to aid identification for glyphs portraying similar values.
We found this to be a good choice while keeping correct
color impression. Readability of the Q-Glyph is increased by
optional black guidelines that show the limits of R and R".
Figure 3 (c) shows an example of a Q-Glyph.

E. Stacking

Stacking glyphs is straight forward. For each policy in the
inspected ensemble, the glyphs are placed in their respective
grid cell as before with the addition of being offset in the
height dimension. Each slice of glyphs then corresponds to one
policy in the ensemble. The policies are stacked from bottom
to top based on a scenario specific parameter: for Train the
number of performed training episodes, for Hyper the value of
~, and for Cross the seed value. In neither of these scenarios it
is guaranteed that the top most slice shows the best (defined as
having the highest goal probability over all states) policy in an
ensemble. This even holds for Train scenarios, where policy
quality can temporarily degrade with additional training runs.
For this reason, we additionally support user defined or pre-
computed scores to control stacking order.

Some perception issues may arise concerning the distinguisha-
bility of individual glyphs in a stack, especially for Q-Glyphs
since they are only flat 2D shapes. Q-values often only differ
by a small amount resulting in similar colors, which leads
to two or more glyphs visually merging together (see Fig-
ure 6 right). To mitigate this, screen space ambient occlusion
(SSAO) [43] is applied only to the glyphs. This darkens the
spaces in between them and breaks up the uniform color look.

V. VISUAL ANALYSIS ToOL

This section discusses our prototype concept, giving details
about the user interface and the two main analysis modes.
The application itself is a plugin for the CGV framework [44]
written in C++, which uses the OpenGL graphics API and

Fig. 6. Left shows an example of stacking Chosen Action glyphs. Middle
and right show Q-Glyph stacks without and with ambient occlusion.

provides means of ray casting based rendering of visualization
primitives like boxes, spheres or tubes.

A. Data Acquisition

Reinforcement learning of our NN policies was done using
PyTorch [45], with their C++ interface LibTorch being used
to load exported action policies into our tool. The simulation
environment and game logic was re-implemented to collect per
state (position and velocity) the additionally necessary inputs
of 8 directional distance values to the track boundary and three
distance measurements to the nearest goal position. Feeding
the input vector through the network yields the Q-values for
all nine possible actions. Even though LibTorch is not thread-
save in general, we could execute policy evaluation in parallel
resulting in highly responsive evaluation of even large state
space regions (cf. Subsection VI-A).

B. O-Glyph Rendering

Q-Glyphs are generated directly on the GPU, with only
12 floating point numbers being transmitted per glyph (3D
position and Q-values).The draw call is invoked using point
primitives. A geometry shader generates a two-triangle quad
covering the glyph, with uv-coordinates in the range [—1, 1]
attached to the corners (see Figure 5 (b)).

Glyph geometry is generated in a pixel-perfect fashion in the
fragment stage. The interpolated uv-coordinates are converted
to polar coordinates (r, §), with distance = and angle 6. Radius
r is used to test if the fragment lies inside the center part,
and subsequently the ring for the zero-action, or rim part of
the glyph. For the spikes, a local interpolation parameter 7 is
calculated from 6 to interpolate the radius as determined from
the windowed Q-value w; according to a hat function — due
to the polar coordinates this results in the curved appearance.
In a last step, we test if r lies on one of the guideline rings
and modify the color accordingly.

C. Track Visualization

As stated in Section III, a Racetrack map is defined as a two-
dimensional grid with cells being defined as either start, goal,
wall or free. The visual appearance of our track is inspired
by Gros et al. [6]. Cells are rendered as boxes to visually
separate them from one another and allow individual color
mapping. They are color coded by type, with start/goal cells
being blue/green, walls in dark grey and free cells in white.
A black rectangular border displays the track boundary.



To enable the selection of velocities, a separate grid of boxes
is drawn as an overlay in the top right corner (see Figure 1
left). The position of each box is used to encode its represented
velocity, with (0,0) being located in the center. Rotating the
overlay based on the current view angle with respect to the
track helps to visually relate the selected velocities to their
directions on the track and allows for easy interaction.

D. State Space Visualization

As discussed in Section I, the visualization of the state space
of the system is an important factor to gain insight to the
policy behavior. For this, we consider the state space as a
set of distinct combinations of start positions and velocities.
Displaying that set of configurations is accomplished by using
the three glyph-based visualizations from Section IV, resulting
in renderings like the ones shown in Figure 1 — called
Overview Mode in our tool. The placement of each glyph is
governed by the components of its attached state. If only one
velocity is selected, the glyphs are positioned directly over the
grid cell corresponding to the state position. If more than one
velocity is chosen, the glyphs are positioned inside of the track
cells to represent the layout as given in the velocity selector,
their scaling being adjusted to fit all glyphs. In other words,
their position inside a single grid cell relative to the cell center
encodes the velocity they represent (cf. Figure 1 (right)).

E. Viewing Individual Traces

The different state space visualizations help to get an
impression of the policy behavior for a large amount of start
configurations. Once a region of special interest is identified, it
can be helpful to get an even deeper look using the Interactive
Mode. We support this by enabling the simulation of a full
trace for a given start configuration, which is run until it
reaches an end configuration. Traces are rendered using a
combination of primitives — an example is shown in Figure 1
(middle). Spheres mark the position of individual states and are
connected via tubes, showing the movement path of the agent.
Additional information is shown for the currently selected
state (marked with a yellow arrow), namely the velocity (blue)
and acceleration vector (orange) that resulted from the applied
action. Q-values are depicted above the states using Q-Glyphs.

F. User Interaction

Upon start, the user is presented a view of the map along
with the velocity selector and a color legend. From here,
interaction follows a top-down approach, starting with the state
space visualization. To create a set of start configurations,
positions and velocities have to be selected. For positions, the
user can choose to select all valid (start and free) grid cells
or only a subset through pointer interaction with the track.
Velocities are chosen using the velocity selector following the
same principles. The policy is then evaluated for the selected
configurations directly within the tool following the procedure
explained in Subsection V-A. As a result, we now have data for
all nine Q-values for each selected configuration that can be
displayed using one of the three presented visualizations from

TABLE I
TIME IN MILLISECONDS FOR PARALLEL EVALUATION OF AN ENSEMBLE
OF 10 NN ACTION POLICIES ON FREE TRACK CELLS FOR INCREASING
AMOUNT OF VELOCITIES DENOTED BY n2 WITHn = 1,3,5,7,9,11.

data set free cells 1 32 52 72 92 112
Barto-small 233 13 93 257 509 841 1254
River 486 24 192 531 1024 1701 2557
Maze 606 29 238 663 1287 2133 3228

Section IV. When viewing ensembles, the user can select to
only show a subset of the available policies.

At any time, the user can evoke the evaluation of a full
trace for a single policy via direct interaction with a glyph,
choosing the glyphs state as the start configuration of the
trace. The visualization then changes to the mode described
in Subsection V-E, allowing the user to follow the trace by
iterating through the states and inspect the Q-values.

VI. EVALUATION

This section provides the evaluation of our tool on the
Racetrack example in form of performance measurement, a
user study and a case study.

A. Performance Analysis

The application needs to achieve a certain level of efficiency
to deliver a highly responsive and interactive user experience.
This concerns both the time needed for evaluating the action
policy as well as the render time. Tests were performed on
a system with an Intel Core 19-9900K (8 x 3.6 GHz), 64
GB RAM and an Nvidia GeForce RTX 2080 Ti (11 GB of
VRAM), with a Full HD view port fitting the whole data set.
Evaluation was done on three tracks, Barto-small, River and
Maze (cf. Figure 2), and ensembles consisting of 10 policies.

Table I shows consumed milliseconds for parallel evaluation
of the policy on the three tracks used for evaluation. We
utilized 16 threads running on 8 CPU cores. The evaluated
state space regions were defined over all free grid cells with
the number of velocities varying from 1 up to 112, where the
latter includes 121 velocities in {—5, —4, ...,4,5}2. Using the
ensemble of 10 policies, this corresponds to 733k states on
the Maze data set that can be evaluated in only 3.2 seconds.
We consider this a worst case scenario, since it is unlikely
for a user to request such large velocity distributions for all
track positions. Given a more typical Racetrack benchmark
like Barto-small, a state space of size 233 X 52 took around
256 ms to fully evaluate the ensemble. Typical scenarios will
focus either on a reduced set of velocities and/or only a
limited number of selected track positions. Execution time
approximately grows linear in the number of evaluated states
and parallelization achieves a speedup of a factor of 9 to 10.

Rendering performance proved not to be a limiting factor,
with the largest test performed again on the 733k states of
the Maze data set. Here we achieved average frame times
of 5 ms for Chosen Action and Directional Aggregation, as
well as 4 ms for the Q-Glyphs. Overall the results show high
efficiency of the rendering process, delivering fully interactive
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Fig. 7. User study results of the glyph and usability evaluation, red: median,
gray: min/max, blue boxes: 0.25 and 0.75 quantile.

frame rates for all configurations. As even the frame rates in
our largest test scenario are above 60 Hz, the tool can easily
be used on moderately equipped systems.

B. User Study

We ran a user study to evaluate glyph functionality, how
well users can achieve analysis tasks using our tool and general
tool usability. The study was based on several different policies
for the three test maps. We recruited 20 test persons, all
with the necessary knowledge about MDPs, action policies,
and NN training. They were briefed with a user manual
containing tool and study instructions. Each user addressed
four distinct tasks: (i) analyze individual policies based on
our glyph visualization, determining regions where the policy
is weak or dangerous (and hence needs to be re-trained);
(ii) compare several policies based on our visualizations, thus
gaining insights in the Train, Cross and Hyper scenarios; (iii)
rate our glyph types with respect to their functionality, (iv) and
rate the general usability of the tool. The full user instructions
and questions asked are detailed in the supplementary material.

In part (i), each question was multiple-choice, i.e., users
had to select the correct answers from a given set of options.
Overall, correct answers were chosen with a rate of 84%. Users
were mostly able to identify relevant phenomena like judging
policy quality or finding regions where the policy is undecided.

In part (ii), the users were confronted with policy ensembles
from the Train, Hyper, and Cross scenarios. In Train, users
had to use Q-Glyphs to identify regions where policy quality
drops after additional training. They were first given candidate
regions, of which 80% were identified correctly; then they
were asked to identify such regions themselves, which yielded
95% correct answers. In Hyper, the study participants were
asked to find the best v-value using the Chosen Action and
Q-Glyph visualizations. Out of 9 possible values to choose
from, 43% of the users chose v = 0.95 and 38% chose v =
0.99 respectively. Both are good options, and the justifications
provided by the users made sense throughout, with 0.95 being
best for finding shortest paths while 0.99 leads to policies that
get stuck less. In Cross, users had to compare policies learned
by separate training runs with different seeds. Their task was
to analyze where the different runs lead to quality differences.
All users accomplished this task well and where able to draw
conclusions about the brittleness of policy training with respect
to re-runs with different seeds.

Overall, the results from parts (i) and (ii) are thus quite
positive, showing that the test persons manage to accomplish
policy-quality analysis tasks well using our visualizations. In
part (iii) and (iv), users were asked to provide direct feedback
on our tool. Specifically, 7 questions in part (iii) asked users
to rate our glyphs, and in (iv) 5 questions asked users to
rate general usability. The answers were on a scale from
1 to 5 where higher numbers are better. Figure 7 shows
the results. The underlying questions refer to: 1. Ease of
understanding glyph placement within cells; 2. Helpfulness of
Directional Aggregation; 3. Ease of understanding Q-Glyphs;
4. Appropriateness of Q-Glyphs to display Q-values; 5. Ease
of seeing glyph directions in a stack; 6. Ease of perceiving Q-
Glyph chosen actions in a stack; 7. Ease of inspecting Chosen
Action glyphs in a stack; 8. Adequacy of tool complexity; 9.
Ease of use; 10. Need for technical support; 11. Integration
of functions; 12. Consistency of tool. Overall the answers are
quite positive, exhibiting difficulties mostly in the inspection
of glyph stacks, which constitute the most advanced part of
the visualization and thus are a natural pain-point for users
that spent only 1-2 hours with the tool. Most users (55%)
preferred the Chosen Action glyphs, with 30% (primarily the
more experienced) choosing Q-Glyphs as their preferred glyph.

C. Case Study

We next illustrate three examples in a case study, of how
an expert — certification engineer — can use our tool.
Selecting the Best Policy: We first aim to select the
best policy extracted during the training run. As discussed
extensively by Gros et al. [7], [9], the training curve may
not always indicate correctly which point during the training
procedure produced the best policy. Hence, we extract the
policy frequently and check the behavior using our tool.
Figure 8 displays the stacking of two policies: one at the

Fig. 8. Showing training progress on Maze using Chosen Action glyhs for
two selected training stages. Q-Glyphs are used for detail views in selected
regions for closer inspection.

end of training (upper slice) and a policy extracted after
70% of the training episodes (lower slice). Chosen actions
are displayed for zero velocity. As one can easily find, there
are several positions, especially towards the bottom of the
map, where the agent already decided to steer the car into the
goal direction, but decides to stand still after some additional
training. Using Q-Glyphs to view full detail of the ensemble
in largely undecided regions shows only little change in the



Q-values, yet learning tends towards the wrong action. Thus,
using the tool, we conclude that the policy after the training
is finished is not the best one, and the policy displayed in the
lower slice should be used.

Selecting the Discount Factor: It is well known that deep
reinforcement learning is brittle to its hyperparameters and that
these must be tuned task-specifically. We make use of our tool
to set the best value for the discount factor + on the Maze
map. For this, we view an ensemble of policies in accordance
to the Hyper scenario. Additional filtering can be performed
by stepping through the different discount factors. We find that
for v = 0.65, the agent firstly starts to learn at all, navigating
to the goal line for all positions with z € {1,2}. For the
rest of the map, all values of v < 0.95 and v > 0.99 seem
to result in bad behavior in most regions. On first glance,
v = 0.95 and v = 0.99 seem to be equally good options,
such as already found by the participants of the user study.
When e.g. considering the positions (9,15) and (10,15) for
zero velocity, the chosen action (Figure 9 left) leads out of the
dead end, which is a good decision. Still, considering the Q-
Glyphs (Figure 9 right), we inspect that the agent might have
learned avoiding the crash, but there is just barely a difference
between the Q-values of the other accelerations. With these
insights, we choose v = 0.99 as the discount factor.

&= @Y () K

Fig. 9. Analyzing the discount factor v on the Maze map.

Random Seed Influence: Deep reinforcement learning is
not only brittle to its hyperparameters, but also to the used
random seed. As the random seed is responsible for how
the environment is explored in the beginning of training,
the performance of the same training procedure can show
big differences for different random seeds [46]. While this
phenomenon can usually be measured by either considering
the training curve or the agents quality only, our tool gives the
chance to display the different behaviors with the help of Cross
scenarios. Consider Figure 10, which shows the river map for
zero velocity. The seed on the left first found the goal on the
upper left. Thus, the agent is trained to navigate to said goal
line, even though other goals are closer. This can be observed
by considering the middle and right region, where the agent
first navigates backwards to finally navigate to the goal in the
upper left. The agent displayed on the right was trained with
a different random seed. While in general this agent seems to
navigate to the closest goal line, it has the drawback that there
are some positions (black) where it decides to stand still.

VII. CONCLUSION AND FUTURE WORK

Certification of neural network action policies is a quickly
growing concern, bound to only become more important in
the future. Visualization arguably has a key role in (almost)
any technical solution, given the complexity of autonomous

Fig. 10. Analyzing the seed influence on River. A trace started from the same
state with zero velocity shows different behavior between the two seeds. The
orange arrow shows the start position.

systems and their environments, and given the fact that full ver-
ification will hardly deliver safety guarantees for all possible
situations. Therefore, to gain trust in an action policy, human
engineers will have to understand its behavior and inspect
its reactions against a large space of possible environment
behaviors. Interactive visualization fits that purpose perfectly.
As concrete dimensions for organizing such a certification
process, we believe that physical position and velocity are
viable, even in systems that contain additional complexity
(like internal state). Along with Gros et al’s [6] work, our
contribution forms a first step towards the exploration of
visualization techniques in this context. Going beyond Gros et
al., we introduced visualization concepts facilitating a deeper
analysis of what has been learned. Our glyphs leverage a fast
inspection of action policies on a state space level and enable
detailed visualizations of the NN output layer, delivering a
good value perception of output Q-values. As shown in the
user and case study, Q-Glyphs help to better judge the Q-
learning based action policies leading either to trust or the
need to improve the training process. Finally, stacking allows
to show whole policy ensembles, either illustrating the training
process or comparing changes in hyperparameters. This greatly
extends the amount of information that can be conveyed simul-
taneously, thus improving effectiveness of policy inspection.
It of course remains to carry these concepts to the much
more complex systems and environments to which Al is and
will be applied. To name just two examples, internal system
state comes with a combinatorial complexity that needs to
be visualized alongside physical position and speed; multi-
agent behavior may be addressed with dimension reduction
techniques and/or environment-behavior patterns, morphing
back to 3D space in order to focus on individual agents.
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