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Motion Primitives as the Action Space of Deep
Q-Learning for Planning in Autonomous Driving

Tristan Schneider , Matheus V. A. Pedrosa , Timo P. Gros , Verena Wolf , and Kathrin Flaßkamp

Abstract— Motion planning for autonomous vehicles is com-
monly implemented via graph-search methods, which pose
limitations to the model accuracy and environmental complexity
that can be handled under real-time constraints. In contrast,
reinforcement learning, specifically the deep Q-learning (DQL)
algorithm, provides an interesting alternative for real-time solu-
tions. Some approaches, such as the deep Q-network (DQN),
model the RL-action space by quantizing the continuous control
inputs. Here, we propose to use motion primitives, which encode
continuous-time nonlinear system behavior as the action space.
The novel methodology of motion primitives-DQL planning is
evaluated in a numerical example using a single-track vehicle
model and different planning scenarios. We show that our
approach outperforms a state-of-the-art graph-search method in
computation time and probability of reaching the goal.

Index Terms— Motion primitives, reinforcement learning,
autonomous driving, Markov decision process, optimal control.

I. INTRODUCTION

ALGORITHMIC motion planning is a crucial ability for
autonomous navigation. However, considering constraint

environments, internal nonlinear system dynamics, and opti-
mization criteria makes solving motion planning problems
computationally challenging. Thus, it is a common approach
to transform the continuous-time, continuous-state planning
problem into a graph search problem to allow the appli-
cation of fast graph-based search techniques. Within this
area of research, [1] introduces motion planning by motion
primitives. These primitives are trajectory segments admis-
sible to the original nonlinear dynamical system model of,
e.g., an autonomous vehicle. Quantizing the search space via
motion primitives gives rise to finite representation via an
automaton, in which the concatenation rules of the trajectory
segments are encoded. The size of the automaton has to be
chosen as a trade-off between accuracy and computational
costs. On the one hand, a larger automaton provides more
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primitive candidates, so better chances to find admissible solu-
tions if obstacle avoidance is crucial and closer approximations
of drivable paths from initial points to desired final regions.
On the other hand, the computation time of the graph search
is a limiting factor of this approach (see, e.g., [2]).

Thus, replacing graph search with reinforcement learning
(RL) is a promising approach for the motion planning with
primitives technique. Speeding up the computation time, RL
has a built-in collision avoidance from (multi-)sensor informa-
tion, such as the light detection and ranging (LiDAR), while
graph search methods need an additional verification step, for
example. In this paper, we demonstrate that RL can provide
sequences of motion primitives as approximately optimal
motion plans in real-time independent of the automaton size.

This paper is built upon three main fields:

A. Motion Primitives

Many technological systems, e.g., mobile robots, cars,
or helicopters behave basically invariant w.r.t. translations
or rotations in space. This property leads to symmetries
in dynamical system models. Motion planning with primi-
tives exploits this property [1]. The symmetry property was
exploited in that paper to build the (motion) primitives, origi-
nally developed in [1]. In mathematical terms, we consider Lie
group structures operating on the dynamical systems’ states
and we represent trajectories via equivalence classes w.r.t. the
corresponding Lie group actions [1], [3], [4].

B. Graph Search With Primitives

A* search is the most known best-first search, where the
expansion of the graph’s nodes is based on an evaluation
function [5]. This function is a sum of two costs: 1) the
cost from the initial node to the one being evaluated, plus
2) the estimated cost, given by a heuristic function, from the
evaluated node to the goal. A famous extension of A* graph
search is the Hybrid A* [6], [7], which associates a continuous
state with a discrete grid cell. A*-based searches have also
been extended to motion panning with primitives [8], [9], [10],
[11], [12]. The A* and the Hybrid A* search rely on grid cells
of the search space. Contrarily, the Optimized Primitives (Π*)
search admits any continuous point in the state space [11].
Also, an optimization problem of reduced complexity makes
an adjustment in the duration of some primitives. This allows
the trajectory to end exactly at an arbitrary point (in the
continuous state space), rather than in a region around it.
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Fig. 1. Thematic outline of our proposed methodology.

C. Reinforcement Learning for Motion Planning

Prior work extensively addresses the application of RL in
the context of a simple motion planning problem [13], [14],
[15], [16]. Although there have been efforts to integrate RL
with verification techniques [17], [18], [19], none of these
approaches are capable of handling motion primitives, as they
assume a discrete action space instead.

The main contribution of this work is the novel imple-
mentation of a RL algorithm for motion planning considering
motion primitives as the action space. We show the benefits
of this methodology in comparison with the state-of-the-art
graph search algorithm for motion primitives, in terms of the
success rate, the number of steps necessary for reaching the
goal, and the execution time.

The remainder of this paper is organized as follows: In
Section II, we summarize the theoretical framework that
serves as the basis for our methodology; Section III describes
the application of primitives as the action space on an RL;
Section IV presents a simulation example for the RL and a
comparison with the graph search approaches, together with
the discussion; lastly, Section V shows the concluding remarks
and future works. After the appendix, one can find the list of
acronyms and symbols used in this paper.

II. THEORETICAL BACKGROUND

In the following, we summarize the theoretical founda-
tions, composed of the topics that ground the description and
analysis of our proposed algorithm: we start introducing the
dynamical system notation, and then we present the mathemat-
ical foundation to construct motion primitives. After defining
a Markov decision process (MDP), we finish this section with
the description of the deep Q-learning (DQL), which is a
commonly used RL method. Figure 1 gives an outlook on
the combined methodology we propose and evaluate within
this paper.

A. Dynamical System

We assume the dynamical system is modeled by a nonlinear
time-invariant ordinary differential equation

ẋ(t) = f (x(t), u(t)), (1)

where t ∈ R+ is the time, x ∈ M denotes the state as an
element of the state manifold M, u ∈ U denotes the control u
from a given set U and f :M×U → T M is the vector field
in Equation (1).

For any appropriate control signal u|[0,T] on a given time
interval [0,T], T > 0, u(t) ∈ U for all t ∈ [0,T], we further
assume existence and uniqueness of solutions, i.e., trajectories,
which can be described via the dynamical system’s flow ϕu :

M× R+→M. That is,

x(t) = ϕu(x0, t) (2)

on [0, T ], T ≥ 0, for a fixed control signal u|[0,T] and initial
state x0. One could easily generalize to time intervals [ti , t f ],
0 ≤ ti ≤ t f since we do not consider explicitly time-dependent
(i.e. non-autonomous) vector fields.

B. Motion Primitives

The existence of motion primitives, as they had been
introduced by Frazzoli et al. [1], is tied to the symmetry
properties of the system. Let G be a Lie group with an identity
element e. Let a left action of the group G on the state manifold
M of (1) be represented by the left-invariant smooth map
9 : G ×M→M, such that 9(g2, 9(g1, x)) = 9(g2g1, x),
for g1, g2 ∈ G. As an abbreviation, we define 9g(x) :=
9(g, x) with g ∈ G.

Definition 1 (Symmetry Group): The triple (G,M, 9) is a
symmetry group for the dynamical system (1), if the property

ϕu(9(g, x0), t) = 9(g, ϕu(x0, t)) (3)

holds for all (g, x0, t) ∈ G ×M× [0,T], u ∈ Rm .
For example, many mechanical systems possess subgroups

of SE(n) as symmetry groups. It is homeomorphic to
Rn
× SO(n), so, in other words, the symmetry consists of

rotations and translations [4].
By exploiting the symmetry property, we can design motion

primitives.
Definition 2 (Motion Primitive): Given a tuple p : t ∈
[0,T] → (x(t), u(t)), consisting of a trajectory and its corre-
sponding input signal both on time interval [0, T ], a motion
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primitive is the class of tuples equivalent to p. Here, two tuples

p1 : t ∈ [t1,i , t1, f ] → (x1(t), u1(t)) and

p2 : t ∈ [t2,i , t2, f ] → (x2(t), u2(t)),

are said to be equivalent, if
1) t1, f − t1,i = t2, f − t2,i and
2) there exists g ∈ G, ϱ ∈ R such that (x1(t), u1(t)) =

(9g(x2(t − ϱ)), u2(t − ϱ)) ∀t ∈ [t1,i , t1, f ].
Further, we can concatenate two primitives

pa : t ∈ [0,Ta] → (xa(t), ua(t)) and
pb : t ∈ [0,Tb] → (xb(t), ub(t)),

if there exists g ∈ G such that

xa(Ta) = 9g
(
xb(0)

)
, (4)

into a resulting primitive p := papb such that

p : t ∈ [0,Ta + Tb]

→

{ (
xa(t), ua(t)

)
if t ∈ [0,Ta](

9g
(
xb(t − Ta)

)
, ub(t−Ta)

)
if t ∈ (Ta,Ta+Tb].

(5)

In [1], two types of primitives are introduced: trim primi-
tives and maneuvers. While the first ones are defined as relative
equilibria of the system, when control inputs are kept constant
(or trimmed), the maneuvers are modeled as an arbitrarily
controlled trajectory that connects pairs of trim primitives.
In the following, we formalize these concepts.

Definition 3 (Trim Primitive): Let (G,M, 9) be a symme-
try group in the sense of Definition 1, g be the Lie algebra of
G with exponential map exp : g→ G, and consider a constant
control input ū ∈ U . A trajectory x : t ∈ [0, τ ] → ϕū(x0, t)
on some time interval with τ ≥ 0, together with ū, constitutes
a trim primitive if there exists a Lie algebra element ξ ∈ g,
such that, ∀t ∈ [0, τ ]:

x(t) = 9exp(ξ t)(x0),

u(t) = ū.
(6)

Thus, trim primitives can be generated via the symmetry
action 9 via the time-parameterized group orbit t ∈ [0, τ ] →
exp(ξ t) ∈ G. Therefore, it becomes unnecessary to evaluate
the system’s flow ϕū , which might be unknown for nonlinear
dynamical systems (1).

Note that, assuming unbounded existence properties of the
dynamical system, the final time can be chosen arbitrarily with
τ < ∞. In fact, trims have originally been introduced with
flexible duration [1].

We write x ∈ q for the state x being part of the trim
primitive q, if q̃ : t ∈ [0, τ ] → (9exp(ξ t)(x), u) is equivalent
to q, meaning they belong to the same primitive.

Definition 4 (Maneuver): A maneuver is a primitive,
as defined in Definition 2, that constitutes a link between two
trim primitives. It is characterized by

1) a fixed time duration T,
2) the control signal u : [0,T] → U ,
3) x(0) and x(T) both correspond to trim primitives.

Fig. 2. A maneuver automaton with six trim primitives and 12 maneuvers.

Maneuvers can be computed with optimal control methods,
e.g., minimizing the applied energy in the system or a distance
to a target [2], [20], [21].

Typically, in systems with Lie group symmetries, an infinite
amount of motion primitives can be found (unlike in systems
with discrete, e.g. reflection or fixed-angle rotation, symme-
tries). Thus, for quantized representation, a finite amount of
primitives has to be chosen. The choice of the trims can be
done manually (e.g., [1], [4], [11]) or data-based [2]. As can
be deduced from Definition 4, maneuvers are meant to be
concatenated with trim primitives as defined in (5). This way,
the concatenation structure between the finite set of motion
primitives can be represented by a directed graph, which
we call a motion primitive automaton (MPA). In this graph,
as illustrated in Figure 2, the trims are the vertices, and the
maneuvers are the edges. They are represented in this paper,
respectively, by q ∈ Q and m ∈ M.

Definition 5 (Motion Primitive Automaton): A motion primi-
tive automaton (MPA) is a 5-tuple (Q,M,h,q0,Q f )

composed by:

• Q is a finite set of trim primitives;
• M is a finite set of maneuvers;
• h : Q × M → Q is the transition function defining the

succeeding trim for a current trim and a concatenated
maneuver1;

• q0 ∈ Q is the initial trim primitive;
• Q f ⊆ Q is the set of final trim primitives.
The motion planning via primitives is done by a motion

plan, which is a valid path within the graph representation
of an MPA, starting in q0 and ending in Q f . This can
be translated into a finite sequence of alternating trim and
maneuver primitives.

Choosing any state x0 ∈ M such that x0 ∈ q0 on the
initial trim, the sequence can be rewritten as concatenated
trajectory-control tuples in the sense of (5). Note that because

1More formally, h(·, ·) is a partial function defined for every pair (q,m) ∈
Q×M iff ∃qm, i.e., the maneuver m is concatenated with the trim q.
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of the property (4), the path in the graph, i.e. the sequence of
primitives, translates into a continuous trajectory.

A planning problem from initial state x0 ∈M to some final
state x f ∈M can be formulated as finding an admissible path
in the graph with x0 ∈ q0 to x f ∈ q f , such that q f ∈ Q f ,
and suitable durations of the visited trim states.2 Potentially,
the resulting solution shall minimize some given optimization
criterion.

While many approaches in the literature solve the plan-
ning by graph-search methods (see discussion in Section I),
we propose to use deep reinforcement learning (DRL), as it
is later explained in detail in Section III. As a prerequisite,
terminology of Markov decision processes is needed.

C. Markov Decision Processes

The underlying model of DRL is that of a (state-discrete)
Markov decision process in discrete time. Let D(S) denote
the set of probability distributions over S for any non-empty
set S.

Definition 6 (Markov Decision Process): A Markov deci-
sion process is a tuple M = ⟨S,A, T , µ⟩ consisting of a
finite set of states S, a finite set of actions A, a partial
transition probability function T : S × A ⇀ D(S), and an
initial distribution µ ∈ D(S). We say that an action a ∈ A is
applicable in state s ∈ S, if T (s, a) is defined. We denote by
A(s) ⊆ A the set of actions applicable in s.

In the context of RL, MDPs are associated with a reward
function R, which specifies a reward for each transition,
i.e., R : S × A × S → R.

An action policy gives the probability distribution for the
non-deterministic choice of an action given a state. When the
policy does not depend on the history of formerly visited
states, only on the current one, we say it is memoryless.
An action policy is deterministic if, in each state s, π selects
an action with probability one. Then, we simply write π(s)
for the corresponding action.

Definition 7 (Action Policy): An action policy is a function
π : S × A → [0, 1] such that π(s, ·) is a probability distri-
bution on A and, for all s ∈ S, π(s, a) > 0 implies that
a ∈ A(s).

In the sequel, for a given MDP M and action policy π ,
we will write S0, S1, S2, . . . for the states visited at times
t = 0, 1, 2, . . .. Let At be the action selected by policy π

in state St and Rt+1 = R(St , At , St+1) the reward obtained
when transitioning from St to St+1 with action At . For finite-
state MDPs, we consider the probability measure associated
with these random variables being well defined and {St }t∈N0

as a Markov chain with state space S induced by policy π .
For further details, we refer to [22].

D. Deep Q-Learning

In the following, let

G t =

T∑
k=t+1

γ k−t−1 Rk (7)

2Note that the final state x f is a fixed position in M while, at the same
time, must have the configuration defined by q f ∈ Q f .

denote the discounted, accumulated reward, also called return,
from time t on, where γ ∈ [0, 1] is a discount factor, and
T is the final time step [23]. The discount factor determines
the importance of short or long-term rewards. If γ = 0, the
discounted return will be equal to the reward accumulated in
one step only; if γ = 1 all future rewards will be worth the
same; and if γ ∈ (0, 1) the long term rewards will be less
important than the short term ones.

Q-learning is a well-known algorithm to approximate action
policies that maximize said accumulated reward [24]. For a
fixed policy π , the so-called action-value or q-value qπ (s, a)
at time t is defined as the expected return G t that is achieved
by taking an action a ∈ A(s) in state s and following the
policy π afterwards, i.e.,

qπ (s, a) = Eπ [G t | St = s, At = a]

= Eπ

[
∞∑

k=0

γ k Rt+k+1

∣∣∣∣∣ St = s, At = a

]
.

A policy π is optimal if it maximizes the expected return.
We write q∗(s, a) for the corresponding optimal action-value.
Intuitively, the optimal action-value q∗(s, a) is equal to the
expected sum of the reward that we receive when taking
action a from state s, and the (discounted) highest optimal
action-value that we receive afterward. For optimal π , the
Bellman optimality equation [23] gives

q∗(s, a)

= Eπ
[

Rt+1 + γ ·max
a′

q∗
(
St+1, a′

) ∣∣∣∣ St = s, At = a
]
.

Vice versa, one can evidently obtain the optimal policy if
the optimal action values are known by selecting

π(s) = argmaxa∈A(s) q∗(s, a).

By estimating the optimal q-values, one can obtain an
approximation of an optimal policy. During tabular Q-
learning, the action values are approximated separately for
each state-action pair [24]. In the case of large state spaces,
DQL can be used to replace the Q-table by a neural network
as a function approximator [25]. Neural networks can learn
low-dimensional feature representations and express complex
non-linear relationships, such that DRL is based on training
deep neural network to approximate optimal policies. Here,
we consider an neural network with weights θ estimating the
Q-value function as a DQN [26]. We denote this Q-value
approximation by Qθ (s, a) and optimize the network w.r.t.
the target

yθ (s, a)

= Eθ
[

Rt+1 + γ ·max
a′

Qθ (St+1, a′) | St = s, At = a
]
, (8)

where the expectation is taken over trajectories induced by the
policy represented by the parameters θ . The corresponding loss
function in iteration i of the learning process is

L(θi ) = Eθi

[(
yθ ′(St , At )− Qθi (St , At )

)2]
. (9)

Here, the so-called fixed target means that, in Equation (9),
θ ′ does not depend on the current iteration’s weights of
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Algorithm 1 Deep Q-Learning Algorithm With Expe-
rience Replay [25]

1 Initialize replay memory D;
2 Initialize action-value function Q with random weights
θ ;

3 Initialize target action-value function Q̂ with weights
θ− = θ ;

4 foreach episode do
5 Initialize sequence s1 = {x1} and preprocessed

sequence φ1 = φ(s1);
6 foreach step t of episode do
7 With probability ϵ, select a random action at ,

otherwise select at = argmaxa Qθ (φ(st ), a);
8 Execute action at and observe reward rt and

the observed data xt+1;
9 Set st+1 = st , at ,xt+1 and preprocess

φt+1 = φ(st+1);
10 Store transition (φt , at , rt ,xt+1) in D;
11 Sample random minibatch of transitions

(φ j , a j , r j ,x j+1) from D;
12 if episode terminates at step j + 1 then
13 Set the target value y j = r j ;
14 else
15 Set y j = r j + γ ·max

a′
Q̂θ−(φ j+1, a′);

16 end
17 Perform a gradient descent step on(

y j − Qθ (φ j , a j )
)2 with respect to the

network parameters θ ;
18 Every C steps, reset Q̂ = Q;
19 end
20 end

the (local) neural network θi , but on weights that were stored
in earlier iterations (so-called target network), to avoid an
unstable training procedure [25]. We approximate ∇L(θi ) and
optimize the loss function by stochastic gradient descent. The
pseudocode for the DQL, extracted from [25], is presented in
Algorithm 1.

Stochastic gradient descent assumes independent and identi-
cally distributed samples. Therefore, we can store the samples
in an experience replay buffer [25], such that, whenever a
learning step is performed, we uniformly sample from this
replay buffer to consider (approximately) uncorrelated tuples.
Thus, the loss is given by

L(θi ) = E

[(
r + γ ·max

a′
Qθ ′(s′, a′)− Qθi (s, a)

)2
]
, (10)

where the expectation is taken over experiences
(s, a, r, s′) ∼ U (D). We generate our experience tuples
by exploring the state space epsilon-greedily, i.e., during the
Monte Carlo simulation we follow the policy that is implied
by the current network weights with a chance of (1 − ϵ)
and otherwise choose a random action. We start with a high
exploration coefficient ϵ = ϵstart and linearly decrease it,
i.e., during some fraction of the total training iterations, ϵ is

lowered until ϵend is reached. For the rest of the training,
the exploration coefficient is constant. Common termination
criteria for the learning process are fixing the number of
episodes or using a threshold on the expected return achieved
by the current policy.

III. REINFORCEMENT LEARNING FOR PLANNING
WITH PRIMITIVES

In order to solve the planning problem with RL, the MPA
must be modeled as an MDP. Then, the planning can be solved
by the DQN, in which primitives become the agent’s actions.
In this section, we describe how to model the integration of
motion primitives into a DQN algorithm.

A. Modeling the Planning With MPA as an MDP

Recall the introduction of an MPA from Definition 5, which
encodes the system’s dynamical behavior, and of a motion
plan, corresponding to alternating trims and maneuvers. Note
that, within the MPA, there might exist multiple maneuvers
outgoing from a common trim. However, there is a unique
compatible successor trim following the choice of a maneu-
ver (see Definition 4). Moreover, while the duration of a
maneuver is fixed by definition, the trims can have arbitrary
durations [1], [11]. It may be possible to let an RL algorithm
choose the trims’ duration, but this is not attempted in this
work. Thus, from now on, we assume that all trims q ∈ Q
have fixed durations τq.

Corollary 1: Consider a finite set of trims Q with fixed
durations, together with a set of maneuvers M forming an
MPA. Then, the planning problem becomes fully discrete.
Moreover, we observe that the planning problem boils down to
finding a sequence of maneuvers since a maneuver sequence
implicitly defines the intermediate trims.
This observation is key to formulating the Markov decision
process, which will now be described step-by-step.

1) The MDP’s States: Once we fix the duration of the trims
within an MPA, for a given initial state x0 ∈ q0, the set of
reachable points, denoted by Rx0 , is discrete.

This defines the states S of the MDP as

S = Rx0 ⊂M. (11)

2) The Action Space: Consider an MPA, with M being the
set of maneuvers as presented in Definition 5. Then, we define
the action space as

A = M.

However, given a current state x ∈ q for some trim q, there is
typically only a subset of all maneuvers that could be selected
for concatenation. So, we also define the trim-dependent valid
action space.

Definition 8 (Valid Action Space): Let q be a current trim
primitive at the current step of the RL algorithm. We define
the valid action space as

Avalid
q = {m ∈ M | ∃ q̃ ∈ Q, s.t. h(q,m) = q̃} ⊆ A, (12)

with h being the MPA transition function as in Defini-
tion 5. Consequently, the number of valid actions might vary
along a path of an MPA. This poses a challenge for the
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application of DQL, since the Q-network requires a fixed
output dimension. However, within DQL, there exists the
concept of invalid action masking in order to overcome this
issue [27], [28]. As we are using a value-based approach,
for all invalid action a ̸∈ A(s), we set qπ (s, a) = −∞ and
thus make sure that only valid actions are selected. Masking
invalid actions has been shown to be crucial for the agent’s
performance [28], [29], [30].

3) The Transition Probability Function: The transition
probability function T is defined as the probability distribution
of switching to the next state, given an action a ∈ Avalid

q−

applied to a current state s ∈ q− with q− denoting the current
trim, and it is written as:

T (s, a) := P(s′|s, a), ∀ s′ ∈ S. (13)

As idealized by [1] and followed by the relative literature,
we use the distribution for a deterministic model. By choosing
a valid maneuver as the action, we let the environment simulate
not only this maneuver but also its unique successor trim in
the same step. Thus,

P(s′|s, a=m)=

{
1, if s′=9exp(ξq+ τ)gm

(
xm(T )

)
,

0, otherwise,
(14)

with gm defined by

s = 9gm

(
xm(0)

)
, (15)

where xm is the (pre-computed/stored) trajectory of the maneu-
ver m ∈ M,

m : t ∈ [0,T] → (xm(t), um(t)) (16)

that corresponds to action a ∈ Avalid
q− and with the Lie algebra

element ξq+ of the successor trim q+.
Proposition 1: For T as defined above, the state s′ corre-

sponds to the endpoint of the simulation of maneuver m and
its unique succeeding trim q+.

Proof: Since m is valid for current state s ∈ S,
q− is its preceding trim, with s ∈ q−. Therefore, um can
be applied starting in s at t = 0, which would correspond
to the controlled evolution ϕum(t)(s, t), t ∈ [0, T ]. However,
since xm(0) and s belong to the same trim, there also exists a
gm ∈ G such that, alternatively, we can write s = 9gm

(
xm(0)

)
as required in (15), meaning gm defines the symmetry shift
for concatenating the precomputed maneuver trajectory. Let
x̃ denote the endpoint of the applied (shifted) maneuver,
so x̃ = 9gm

(
xm(T )

)
= ϕum(T )(s, T ). Next, the succeeding

trim q+ with Lie algebra element ξq+ is applied for its defined
duration τ to eventually end up in

x ′ = 9exp(ξq+ τ)(x̃)

= 9exp(ξq+ τ)(9gm

(
xm(T )

)
)

= 9exp(ξq+ τ)gm

(
xm(T )

)
= s′,

as required for the transition function in (14). □
This means that the probability is one, if and only if s′

equals the state after the maneuver p and its successor trim
have been applied to s.

Remark 1: In a probabilistic motion planning setting,
the transition probability function could consider stochas-
tic disturbances or perturbations in the system, such that
P(s′|x,p) > 0 for s′ in the vicinity of x ′.

4) The Initial Distribution: The initial distribution µ can be
selected as random, as it is usual when solving RL problems.

5) The Reward Function: The reward function R(s, a, s′) is
shaped to meet the planning problem’s outcome: the solution
time, the feasibility - i.e., arriving at a goal state while
avoiding obstacles - or some other performance criterion to be
optimized [8]. For instance, positive rewards could be given
for s′ reaching the goal, while the episode ends if there is a
collision with an obstacle. A collision can be detected, at each
episode, by verifying if the maneuver trajectory selected as the
action a and its succeeding trim trajectory hit any obstacle.

B. A Unified RL Framework

Typically, RL methods rely either on a discrete action space
or (exclusively) on a continuous one, with both having their
advantages and disadvantages. By assuming the maneuver
primitives as the discrete action space, we can reinterpret
the actions as controlled continuous-time trajectories anytime,
so that we take the best of both worlds.

The DQN algorithm only solves problems with discrete
action spaces. Thus, usually, the actions may be defined by
discretizing the control space and applying constant controls
for the duration of a time step [31], [32]. As a drawback for
this discretization, there is a trade-off between smoothness
for the sequence of control inputs, by having enough discrete
steps with the cost of a large discrete action space, and action
selections becoming prohibitively expensive to evaluate [32].
As an alternative, other DRL algorithms can deal with con-
tinuous action space, such as the Deep Deterministic Policy
Gradient (DDPG) [33], and the soft actor-critic [34]. However,
controlling efficiently a continuous control space with DRL
needs a sufficiently high amount of training time or depends
on the quality of the demonstration’s samples, if an imitation
learning approach is chosen instead [35].

Alternatively, our method is based on discretization via
motion primitives, which consist of a continuous sequence
of control inputs and – via the dynamical system model
and the symmetry exploitation – allow a reconstruction of
continuous state trajectories at any time. Then, through the use
of maneuvers, the RL action space is discrete but non-constant
control laws can be applied, which allows the algorithm to
produce a broader set of trajectories. Thus, our approach
combines the flexibility of continuous actions with the problem
abstraction given by (a sufficiently small amount of) discrete
actions, making it possible to have solutions through DQN.

IV. EXAMPLE: THE SINGLE-TRACK VEHICLE MODEL

As an example to evaluate the proposed method, we chose
to work with vehicle dynamics in an autonomous driving
application. In the next subsections, we will, first, detail the
DQL parameters. Then, we compare the goal reachability
probability of the DQN to an A*-based graph search, showing
that Q-learning for planning with MPA is a good alternative
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Fig. 3. The four motion primitive automata consisting of three, five, ten, and
19 trims, respectively, and connecting maneuvers according to the depicted
network topology. Each blue edge corresponds to two maneuvers, one in each
direction.

to the commonly used graph search method. Additionally,
we will consider a particularly hard setting for the planning
by changing the goal position. Lastly, different MPA sizes are
compared, i.e., with different numbers of primitives.

A. Experimental Setup

The chosen vehicle dynamics is the single-track model [36].
This model describes the vehicle considering tire slip, i.e.,
understeer or oversteer effects when performing maneuvers
on the edge of the physical limits. It is a more detailed model
when compared with, for instance, the Reeds-Shepp’s car [37]
or the kinematic single-track model [36]. The single-track
model is described in Appendix A.

The experiments were simulated in a version of the
Cyber-Physical Mobility Lab, presented in [38], scaled up by
a factor of 18 to obtain realistic dimensions for a real-world
road network. The map can be seen in figures 5 and 6.
We design two different validation scenarios that vary in the
goal positions to be reached.

Our approach requires a constant duration of the trims to
be chosen, which was set to 0.5 s. To obtain the maneuver
trajectories, a cubic polynomial transition was applied for both
velocity and steering angle, as it has previously been proposed
in [11].

In order to study the influence of the number of avail-
able primitives, four different MPA were used. In Figure 3,
their graphical representation is given. As it is derived in
Appendix A, trims for the single-track vehicle model are
simply characterized by the constant values (v, δ) for the
steering angle and the velocity. Thus, we depict the MPA
vertices on a two-dimensional grid and indicate the existence
of (bidirectional) maneuvers by connecting edges.

Fig. 4. The three-trim automaton as an extreme example of invalid actions:
Among the fifteen potential actions a ∈ A, only three are valid in the trim q
defined by v2 = 20 km h−1 and δ2 = 0◦, namely (−1,−1), (−1, 1) which
have a corresponding maneuver, and (0, 0), which corresponds to remaining
in the same trim.

Formally, each trim can be associated with two indices
(i, j), corresponding to its constant velocity vi , i ∈

{1, . . . , nv} and its constant steering angle δ j , j ∈ {1, . . . , nδ}.
Further, a maneuver from trim (i, j) to trim (i ′, j ′) is

represented by the tuple (i ′ − i, j ′ − j). Assuming that the
velocities are indexed in ascending order of their values,
i.e. v1 < v2 < . . . < vnv , and the same ordering applied to
the steering angles, it ensures that the maneuver indices have
a physical meaning. For example, all maneuvers represented
by (1, 0) correspond to an acceleration to the next velocity
without a change in steering angle.

It is important to note that an arbitrary tuple (1i,1 j) with
1i ∈ {1− nv, . . . nv − 1}, 1 j ∈ {1− nδ, . . . nδ − 1} does not
necessarily correspond to an existing maneuver. For instance,
there cannot be an acceleration if the vehicle is currently in the
fastest trim, as exemplified in Figure 4. Such invalid actions
need to be masked out in the DQN algorithm, specifically in
the rollout policy and in the calculation of the action value
targets.

The reward function is given by R(s, a, s′) = 100, if s′ is a
goal state, and R(s, a, s′) = 0 otherwise. A state is considered
to be in the goal if it lies within the circular region defined by
∥
(
sx sy

)T
−
(
xgoal ygoal

)T
∥2 ≤ rgoal = 5 m. Note that there are

no negative rewards for collisions. They are unnecessary since
an obtained optimal policy is guaranteed to also avoid crashes
because they would end the episode before the goal could be
reached. If the trajectory of the transition is colliding, i.e.,
at least part of the car leaves the road, the episode ends. The
same happens if the maximum number of steps in an episode
is exceeded or if the goal area is reached.

A DQN agent was trained for each combination of automa-
ton and different scenarios, resulting in eight agents. The
implementation of the DQN algorithm is taken from the
python library Stable Baselines 3 [39]. The hyperparameters
are based on the values given by [40] for the LunarLander-v2
environment, but some parameters were modified. They are
given in Table I. For the Q-network, a multi-layer perceptron
was used, containing two hidden layers of size 256. The
achieved returns we report in the following were computed
by using deep statistical model checking [41], [42] with the
state-of-the-art statistical model checker MODES [43], [44],
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TABLE I
DQN HYPERPARAMETERS

which is part of the MODEST TOOLSET [45], with a confi-
dence of 95% that the error is at most 2 for the return, and at
most 0.02 for the goal reachability probability.

We compared the performance of the DQN agents with an
A*-based graph search algorithm described in Appendix B,
which can be considered a simplified Π* algorithm presented
in [11]. The heuristic was inflated by a factor such that
we could compute (not necessarily optimal) solutions in the
timeout of 10 s, avoiding searches that take an undetermined
time to reach a solution. In the graph search algorithm, as in
the DQN algorithm, the planning problem consists of finding
a collision-free motion plan from a random starting pose to
the goal area. Similarly to the proposed RL algorithm, the
graph search is also set up to minimize the number of steps
to the goal, where each step consists of one maneuver and its
successor trim.3

We designed two test scenarios:
1) Scenario 1: a goal in the center of the map, as depicted

in Figure 5;
2) Scenario 2: a goal that is placed in the upper center of

the map, as shown in Figure 6.
Recall that we randomly choose initial positions for each

episode. In the first scenario, the centered goal position can
be reached from even the most distant initial positions by a
path with one single turn only. The second one makes the
agents’ training more challenging, as for initial points that lie
further apart from the goal, more complicated routes, with
longer sequences of primitives, must be learned.

B. Results

In this subsection, we compare the performance of the
DRL-trained policy with the one obtained by A*-planning.
Depending on the vehicle’s initial position, not every instance
of the planning problem can be solved (due to, e.g., the MPA
architecture and the features of the solvers). We evaluated the
results by running simulations for 98% confidence interval of
the return (7) and the goal reachability probability, i.e., how
often the simulations were able to find the goal (in the total
amount of experiments). The number of simulations run is
presented in Table II.

Therefore, we measure the performance w.r.t. goal reach-
ability probability. First, consider Figure 7, where we report

3With the reward function being only a positive reward for reaching the
goal and a discount factor below one, the RL algorithm optimizes for the
minimal number of steps to the goal.

Fig. 5. Example solutions of the planning problem for Scenario 1 obtained
by reinforcement learning (upper) and the search algorithm (lower).

Fig. 6. Example solutions of the planning problem for Scenario 2 obtained
by reinforcement learning (upper) and the search algorithm (lower).

the achieved goal reachability probability depending on the
used number of trims. In Scenario 1, for the MPA with three
trims, both approaches performed almost equally. In contrast,
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TABLE II
NUMBER OF SIMULATIONS RUN FOR EACH SCENARIO AND MPA

WITH 98% CONFIDENCE INTERVAL

Fig. 7. Comparison of the goal reachability probabilities of DQN and the
A*-search algorithm, for both scenarios.

for the MPA with five, ten, or 19 trims, A* regularly times
out, i.e., it fails to find the goal in the maximum allowed time,
while DQN’s performance stays close to 100%. Similarly, for
Scenario 2, DQN outperforms the search approach for the
four motion primitive automata. The best result for DQN can
be seen when using ten trims. The DQN for the MPA with
19 trims performs worse when compared to the smaller MPA.
Presumably, DQN’s performance suffers from the enlarged
action space which is caused by the increased number of
trims. In total, DQN is more likely to provide policies that
reach the goal state than the A*-search does within the limited
computation time.

Now, turning to Figure 8, we display the average num-
ber of steps of the trajectories from DQN and A* search,
respectively, restricting to rollouts for which both approaches
succeed in finding a solution. We observe that small automata,
that provide few different trims only, lead to long sequences
of alternating trim maneuver steps until reaching the goal.
Switching from three to five, and subsequently to ten prim-
itives, significantly reduces the needed steps to the goal,
whereas solutions for ten and 19 trims behave similarly. This
holds in both scenarios. This can be explained by the fact that
larger automata provide a larger variety of trims and thus, are
more likely to provide suitable short sequences for individual
initial positions. As expected from the design of Scenario 1
versus Scenario 2, the centered goal position leads to shorter
sequences. In all tests, the average steps of the DQN rollout
is slightly below the average of the A* search solution steps.

Lastly, take into account Figure 9, which compares the
average time to perform the search for the A* and the trained
agent. To have a fair comparison, as in Figure 8, we consider
just graph search simulations that were successful, i.e., reached
the goal. The execution time of A* graph is, in general,

Fig. 8. Comparison between the average number of steps taken until reaching
the goal by DQN and the search algorithm, for the two scenarios. Here,
only rollouts that succeeded in reaching the goal in both DQN and search
algorithms were considered to avoid the bias created by the fact that the
search mostly solved the rollouts with the start close to the goal.

Fig. 9. Comparison of the average execution times of both algorithms, where
only rollouts that reached the goal were considered.

sensitive to the test scenario and to the planning algorithm with
its parameters, as previously observed and discussed in [2].
Thus, it was a priori expected to see differences compared
to DQN, since this approach shifts the computationally heavy
training phase to before the operation. Then, the agent could
perform the planning on average, considering both scenarios,
in 17.7 ms (st. dev. 4.7 ms, max. 25.0 ms, min. 11.9 ms).
In comparison, the average time for the graph search was
0.98 s (st. dev. 0.45 s, max. 1.84 s, min. 0.28 s).

C. Discussion

To handle the non-constant action space, which occurs due
to the varying number of valid maneuvers for the current
trim, validity of maneuvers depending on the current trim,
invalid action masking needs to be implemented in the DQN
algorithm. This is not supported by many publicly available
implementations such as the one provided by [39]. Therefore,
the algorithm needed to be extended to take into account
invalid actions, in particular in the target calculation of the
Q-network (8), as well as in the rollout policy, both random
and Q-network policy (lines 7 and 15 of Algorithm 1).

During the numerical experiments, it became apparent that
the algorithm is very sensitive to changes in the hyperparame-
ters. Interestingly, the discount factor also played an important
role. A high value for this parameter, e.g. γ = 0.99, caused
an unexpected phenomenon: the agent avoided reaching the
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goal in order to keep the episode going for a longer time.
This was likely caused by an approximation error of the
action value, i.e., the return for reaching the goal directly was
erroneously estimated to be lower than for reaching it later.
We leave a methodological analysis of parameter sensitivity
for further investigation, as it is not in the scope of this paper.
Furthermore, it is noteworthy that getting the DQN algorithm
to succeed in the Senario 2 was only possible once good
hyperparameters in Scenario 1 had been found and transferred
to Scenario 2.

The primitives-DQL can reach the goal more often than the
state-of-the-art graph search method due to the computation
time. As it is generally known, graph search methods may
suffer from the curse of dimensionality. In our study, this
was most likely the reason why the A* search has run into
a computation timeout (of 10 s), therefore failing in reaching
the goal. For both scenarios, independently from the MPA,
Figure 8 indicates that DQN is acting close to the graph search.
While a plain A* search would find optimal solutions, in our
implementation containing the inflation factor we included for
computational speed-up, this cannot be guaranteed.4 However,
the results show that not only is DQN able to reach the goal
more often, but also indicates that it possibly does with almost
as few steps as possible.

Lastly, we would like to emphasize that we had carefully
chosen the road layout for the training and tests of the two
approaches. The layout (cf. figures 5 and 6) represents typical
urban types of urban street networks: cross intersections (four
legs), T-intersections (three legs), and roundabouts [46]. Thus,
the map is suitable for a generalization at a certain range. How-
ever, [46] describes a large variety of those street networks,
as different angles of street intersections, for example, exist.
Therefore, retraining our RL agents for different street layouts
and routes will be necessary to apply our proposed method to
a real-world scenario.

In summary, while the DQN approach is not guaranteed
to provide optimal solutions, in our validation scenarios it
produced robust results that outperforms the A* search in both
computation time and reliability.

V. CONCLUSION AND FUTURE WORKS

In contrast to typical RL methods with discrete actions,
where the control inputs are discretized, our method is
based on discretization via motion primitives. These “building
blocks” may consist of continuous sequences of control inputs.
Thus, while we choose a finite representation of motion prim-
itives to obtain a discrete action space, each action represents
a segment of a trajectory with continuous control inputs. This
allows the algorithm to produce a set of continuous trajectories
with a discrete action space. We solved the planning problem
via the DQN algorithm and compared it with the state-of-the-
art Π* algorithm, an A*-based graph search.

We investigated four motion primitive automata with dif-
ferent sizes in two case scenarios. The presented results

4Without the inflation factor, the computation times would increase, and
very likely more simulations would be limited by the timeout parameter, being
discarded.

showed that, despite not having any optimal guarantees, the
DQL provided solutions that outperformed the graph search
in the probability of reaching the goal. Moreover, the graph
search was performed with an inflation factor for the heuristic
function for faster computation times, but the algorithm was
not real-time capable, in contrast to those obtained from the
DQL. As a further advantage of the RL algorithm, we observed
that the solution times are practically invariant w.r.t. the size
of the automaton.

Future works could perform a profound sensitivity analysis
to better understand the parameter tuning. Also, scenarios
with multiple vehicles, in which collision avoidance is crucial,
should be studied. Finally, to validate the application of this
methodology, a study can be conducted on real-world traffic
scenarios, by incorporating real-world data and validating
the approach in field tests with obstacles or unpredictable
behaviors.

APPENDIX

A. The Single-Track Vehicle Model

In this work, the vehicle dynamics are modeled by the
single-track model, specifically, the version and parameters
provided by the CommonRoad project [36], [47]. The state
for this model is:

x =
(
sx sy ψ ψ̇ v δ β

)T
, (17)

where
(
sx sy

)T
∈ R2 are the positions of the center of gravity

in the Cartesian plane, ψ ∈ S1 is the vehicle orientation (where
S1 refers to the unit circle), v ∈ R is the longitudinal velocity,
δ ∈ S1 is the steering angle and β ∈ S1 is the slip angle. The
control input is u =

(
uv̇ u δ̇

)T
∈ R2, with uv̇ as the longitudinal

acceleration and u δ̇ as the velocity of the steering angle.
The equations that describe the single-track model are

given by:

ṡx (t) = v(t) · cos(ψ(t)+ β(t)),
ṡy(t) = v(t) · sin(ψ(t)+ β(t)),
ψ̇(t) = ω(t),

ω̇(t) =
µM
Iz L

(
lf · α1 · δ(t)+ (lr · α2 − lf · α1)β(t)

− (l2
f · α1 + l2

r · α2)
ψ̇(t)
v(t)

)
,

v̇(t) = uv̇(t),
δ̇(t) = u δ̇(t),

β̇(t) =
µ

L · v(t)

(
α1 · δ(t)− (α2 + α1)β(t)

+ (lr · α2 − lf · α1)
ψ̇(t)
v(t)

)
− ψ̇(t),

(18)

where

α1 := α1
(
u δ̇(t)

)
= Cf

(
g · lr−h · u δ̇(t)

)
,

α2 := α2
(
u δ̇(t)

)
= Cr

(
g · lf−h · u δ̇(t)

)
,

L = lf + lr, (19)

for the parameters given in Table III.
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TABLE III
SINGLE-TRACK MODEL’S PARAMETERS, TAKEN FROM [47]

Consider a rotation of an angle 1ψ and a translation of
1sx and 1sy . The symmetry group for (18) can be given by

G :=
{

g ∈ SE(7) : g =
(

R 1x
0 1

)}
, (20)

where

R =
(

RSO(3) 0
0 I

)
∈ SO(7),

RSO(3) =

cos(1ψ) − sin(1ψ) 0
sin(1ψ) cos(1ψ) 0

0 0 1

 ∈ SO(3),

1x =
(
1sx 1sy 1ψ 0

)T
∈ R2

× S1
× {0}4,

where I and 0 are, respectively, the identity and a vector of
zeros with appropriate dimensions. The proof can be found
in [2].

The model’s trim primitives are characterized by zero con-
trol inputs, a constant velocity v and constant steering angle δ.
In these trajectories the curve described by the vehicle’s center
of mass (sx , sy) is a circular arc (or a straight line in the case of
δ = 0), while the yaw angle ψ changes at a constant rate and
the other state variables, i.e., ψ̇, v, δ and β, are constant [2].

B. A*-Based Search Algorithm

Various methods exist to solve motion planning problems.
In previous work [11], we have presented a primitives-based
search algorithm Π*, which is also capable of varying the
coasting times of the trim primitives to reach exact goal
positions. In this work, the achievable motion plans should
be equal for both algorithms, for the sake of comparison.
Therefore, here, we fix the coasting times for the search
algorithm such that no continuous optimization is carried out.

This search algorithm finds the optimal solution to every
feasible problem if an admissible heuristic function is pro-
vided. The heuristic function estimates the cost from the
current node to the goal and it is called admissible if it
never underestimates the actual cost, i.e., it provides a lower
bound. To accelerate the exploration of nodes an inflated
heuristic can be used, which is obtained by multiplying an
admissible heuristic with an inflation factor η > 1. While the
Π* algorithm would allow dynamic adjustments of η, we use
a constant factor of η = 3.5 here.

Algorithm 2 Search Algorithm
Data: maneuver automaton, coasting time τ , initial

trim, initial pose, goal region, heuristic function
Result: goal node with motion plan

1 start_node.state ← initial state;
2 start_node.motion_plan ← (·, (0));
3 start_node.g ← 0;
4 start_node.h ← h(start_node);
5 open_list ← {start_node};
6 while open_list not empty do
7 node ← element with lowest f (= g+ h) value in

open_list;
8 open_list ← open_list \ {node};
9 if node in goal then

10 return node;
11 end
12 open_list ← open_list ∪ expand_node(node);
13 end

14 Function expand_node(node)
15 new_nodes ← ∅;
16 foreach maneuver ∈

node.final_trim.successor_maneuvers do
17 state ← maneuver.calc_end_state(initial_state =

node.state);
18 new_node.state ←

maneuver.successor_trim.calc_flow(state, τ );
19 new_node.motion_plan.maneuver_sequence ←

new_node.motion_plan.maneuver_sequence ∪
(maneuver);

20 new_node.motion_plan.coasting_times ←
new_node.motion_plan.coasting_times ∪ (τ );

21 if new_node is colliding then
22 continue;
23 end
24 new_node.g ← node.g + cost(maneuver) +

cost(maneuver.successor_trim);
25 new_node.h ← h(new_node);
26 new_nodes ← new_nodes ∪ {new_node};
27 end
28 return new_nodes;
29 end

The heuristic used here is given by h = ηh0 with the
uninflated heuristic being

h0 = max

(
0,
∥
(
sx sy

)T
−
(
xgoal ygoal

)T
∥2 − rgoal

dmax

)
, (21)

where dmax is the maximum distance that can be covered in a
single step (by the fastest maneuver with its successor trim).
The pseudocode of the graph search, as used in this work,
is given in Algorithm 2.

ACRONYMS

Π* Optimized Primitives
DQL deep Q-learning
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DQN deep Q-network
DRL deep reinforcement learning
MDP Markov decision process
MPA motion primitive automaton
NN neural network
RL reinforcement learning

SYMBOLS

:= Equality relationship, which is true by definition
x Dynamical system’s state
u Dynamical system’s input
f Dynamical system’s vector field
ϕ Dynamical system’s flow
t Time
M Manifold of state’s domain: x ∈M
U Set of input’s domain: u ∈ U
T Time interval
G Lie group
9 Left action of the Lie group on a state manifold
p Motion primitive
g Lie algebra of the Lie group G
Q MPA’s trim alphabet
M MPA’s maneuver alphabet
h MPA’s transition function
q0 MPA’s initial trim
Q f MPA’s set of final trims
D(S) The set of probability distributions over a non-empty

set S
M Markov decision process (MDP)
S A finite set of MDP states
A A finite set of MDP actions
T A partial transition probability function T : S×A⇀

D(S)
µ An initial distribution µ ∈ D(S)
R Reward function R : S × A × S → R
π Action policy
x DQN’s observation data
y DQN’s target value
φ DQN’s preprocessed sequence
P(A|B) Probability of A given B

REFERENCES

[1] E. Frazz, M. A. Dahleh, and E. Feron, “Maneuver-based motion planning
for nonlinear systems with symmetries,” IEEE Trans. Robot., vol. 21,
no. 6, pp. 1077–1091, Dec. 2005.

[2] M. V. A. Pedrosa, T. Schneider, and K. Flaßkamp, “Learning motion
primitives automata for autonomous driving applications,” Math. Com-
put. Appl., vol. 27, no. 4, p. 54, Jun. 2022.

[3] E. Frazzoli, M. A. Dahleh, and E. Feron, “Robust hybrid control for
autonomous vecontrol hicle motion planning,” in Proc. 39th IEEE Conf.
Decis. Control, vol. 1, Jul. 2000, pp. 821–826.

[4] K. Flaßkamp, S. Ober-Blöbaum, and K. Worthmann, “Symmetry and
motion primitives in model predictive control,” Math. Control, Signals,
Syst., vol. 31, no. 4, pp. 455–485, Dec. 2019.

[5] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed., Upper Saddle River, NJ, USA: Prentice-Hall, 2010.

[6] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Practical search
techniques in path planning for autonomous driving,” Ann Arbor,
vol. 1001, no. 48105, pp. 18–80, 2008.

[7] J. Petereit, T. Emter, C. W. Frey, T. Kopfstedt, and A. Beutel, “Appli-
cation of hybrid A∗ to an autonomous mobile robot for path planning
in unstructured outdoor environments,” in Proc. ROBOTIK, 7th German
Conf. Robot., May 2012, pp. 1–6.

[8] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge Univ.
Press, 2006.

[9] N. Richards, M. Sharma, and D. Ward, “A hybrid A∗/automaton
approach to on-line path planning with obstacle avoidance,” in Proc.
AIAA 1st Intell. Syst. Tech. Conf., Sep. 2004, p. 6229.

[10] L. Lüttgens, B. Jurgelucks, H. Wernsing, S. Roy, C. Büskens, and
K. Flaßkamp, “Autonomous navigation of ships by combining optimal
trajectory planning with informed graph search,” Math. Comput. Model.
Dyn. Syst., vol. 28, no. 1, pp. 1–27, 2022.

[11] M. V. A. Pedrosa, T. Schneider, and K. Flaßkamp, “Graph-based motion
planning with primitives in a continuous state space search,” in Proc.
6th Int. Conf. Mech. Eng. Robot. Res. (ICMERR), Dec. 2021, pp. 30–39.

[12] P. Scheffe, M. V. A. Pedrosa, K. Flaßkamp, and B. Alrifaee, “Receding
horizon control using graph search for multi-agent trajectory planning,”
IEEE Trans. Control Syst. Technol., vol. 31, no. 3, pp. 1092–1105,
May 2023.

[13] C. Baier et al., “Lab conditions for research on explainable automated
decisions,” in Proc. 1st Int. Workshop, 2020, p. 83.

[14] T. P. Gros, D. Höller, J. Hoffmann, and V. Wolf, “Tracking the race
between deep reinforcement learning and imitation learning,” in Proc.
17th Int. Conf., 2020, pp. 11–17.

[15] T. P. Gros, D. Höller, J. Hoffmann, and V. Wolf, “Tracking the race
between deep reinforcement learning and imitation learning—Extended
version,” 2020, arXiv:2008.00766.

[16] T. P. Gros, “Tracking the race: Analyzing racetrack agents trained with
imitation learning and deep reinforcement learning,” M.S. thesis, Dept.
Comput. Sci., Saarland Univ., Saarbrucken, Germany, 2021.

[17] T. P. Gros, D. Höller, J. Hoffmann, M. Klauck, H. Meerkamp, and
V. Wolf, “Dsmc evaluation stages: Fostering robust and safe behav-
ior in deep reinforcement learning,” in Proc. 18th Int. Conf., 2021,
pp. 197–216.

[18] T. P. Gros, H. Hermanns, J. Hoffmann, M. Klauck, M. A. Köhl, and
V. Wolf, “Mogym: Using formal models for training and verifying
decision-making agents,” in Proc. 34th Int. Conf, 2022, pp. 430–443.

[19] T. P. Gros et al., “DSMC evaluation stages: Fostering robust and
safe behavior in deep reinforcement learning—Extended version,” ACM
Trans. Model. Comput. Simul., vol. 33, no. 4, pp. 1–28, Oct. 2023.

[20] K. Flaßkamp, S. Ober-Blöbaum, and M. Kobilarov, “Solving optimal
control problems by exploiting inherent dynamical systems structures,”
J. Nonlinear Sci., vol. 22, no. 4, pp. 599–629, Aug. 2012.

[21] K. Flaßkamp, S. Ober-Blöbaum, and S. Peitz, “Symmetry in optimal
control: A multiobjective model predictive control approach,” in Studies
in Systems, Decision and Control. Cham, Switzerland: Springer, 2020,
pp. 209–237.

[22] M. L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Hoboken, NJ, USA: Wiley, 1994.

[23] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[24] A. G. Barto, S. J. Bradtke, and S. P. Singh, “Learning to act using real-
time dynamic programming,” Artif. Intell., vol. 72, nos. 1–2, pp. 81–138,
Jan. 1995.

[25] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, pp. 529–533, Jul. 2015.

[26] V. Mnih et al., “Playing Atari with deep reinforcement learning,”
arXiv:1312.5602, 2013.

[27] O. Vinyals et al., “StarCraft II: A new challenge for reinforcement
learning,” 2017, arXiv:1708.04782.

[28] A. M. Ali and L. Tirel, “Action masked deep reinforcement learning
for controlling industrial assembly lines,” in Proc. IEEE World AI IoT
Congr. (AIIoT), Jun. 2023, pp. 0797–0803.

[29] S. Huang and S. Ontañón, “A closer look at invalid action masking in
policy gradient algorithms,” 2020, arXiv:2006.14171.

[30] A. Kanervisto, C. Scheller, and V. Hautamäki, “Action space shaping
in deep reinforcement learning,” in Proc. IEEE Conf. Games (CoG),
Sep. 2020, pp. 479–486.

[31] P. Wolf et al., “Learning how to drive in a real world simulation with
deep Q-networks,” in Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2017,
pp. 244–250.

[32] B. R. Kiran et al., “Deep reinforcement learning for autonomous
driving: A survey,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 6,
pp. 4909–4926, Jun. 2022.

[33] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” 2015, arXiv:1509.02971.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Saarl Universitaets. Downloaded on October 01,2024 at 11:57:56 UTC from IEEE Xplore.  Restrictions apply. 



SCHNEIDER et al.: MOTION PRIMITIVES AS THE ACTION SPACE OF DQL 13

[34] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in Proc. Int. Conf. Mach. Learn., 2018, pp. 1861–1870.

[35] G. Grandesso, E. Alboni, G. P. R. Papini, P. M. Wensing,
and A. D. Prete, “CACTO: Continuous actor-critic with trajectory
optimization—Towards global optimality,” IEEE Robot. Autom. Lett.,
vol. 8, no. 6, pp. 3318–3325, Jun. 2023.

[36] M. Althoff, M. Koschi, and S. Manzinger, “CommonRoad: Composable
benchmarks for motion planning on roads,” in Proc. IEEE Intell. Vehicles
Symp. (IV), Jun. 2017, pp. 719–726.

[37] J. Reeds and L. Shepp, “Optimal paths for a car that goes both
forwards and backwards,” Pacific J. Math., vol. 145, no. 2, pp. 367–393,
Oct. 1990, doi: 10.2140/pjm.1990.145.367.

[38] M. Kloock et al., “Cyber-physical mobility lab: An open-source platform
for networked and autonomous vehicles,” in Proc. Eur. Control Conf.
(ECC), 2021, pp. 1937–1944.

[39] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning imple-
mentations,” J. Mach. Learn. Res., vol. 22, no. 268, pp. 1–8, 2021.

[40] A. Raffin. (2020). RL Baselines3 Zoo. [Online]. Available:
https://github.com/DLR-RM/rl-baselines3-zoo

[41] T. P. Gros, H. Hermanns, J. Hoffmann, M. Klauck, and M. Steinmetz,
“Deep statistical model checking,” in Proc. 15th Int. Federated Conf.
Distrib. Comput. Tech., 2020, pp. 96–114.

[42] T. P. Gros, H. Hermanns, J. Hoffmann, M. Klauck, and M. Stein-
metz, “Analyzing neural network behavior through deep statistical
model checking,” Int. J. Softw. Tools Technol. Transf., vol. 25, no. 3,
pp. 407–426, Jun. 2023.

[43] J. Bogdoll, L. M. Ferrer Fioriti, A. Hartmanns, and H. Hermanns,
“Partial order methods for statistical model checking and simulation,” in
Formal Techniques for Distributed Systems. Berlin, Heidelberg: Springer,
2011, pp. 59–74.

[44] C. E. Budde, P. R. D’Argenio, A. Hartmanns, and S. Sedwards, “A
statistical model checker for nondeterminism and rare events,” in Tools
and Algorithms for the Construction and Analysis of Systems. Cham,
Switzerland: Springer, 2018, pp. 340–358.

[45] A. Hartmanns and H. Hermanns, “The modest toolset: An integrated
environment for quantitative modelling and verification,” in Tools and
Algorithms for the Construction and Analysis of Systems. Berlin,
Heidelberg: Springer, 2014, pp. 593–598.

[46] K. Fitzpatrick, M. D. Wooldridge, and J. D. Blaschke, “Urban intersec-
tion design guide: Volume 1—Guidelines,” Texas A&M Transp. Inst.,
TX, USA, Tech. Rep. FHWA/TX-05/0-4365-P2, 2005, vol. 1.

[47] M. Althoff. (2020). Commonroad: Vehicle Models. Accessed: May 29,
2023. [Online]. Available: https://commonroad.in.tum.de/tools/model-
cost-functions

Tristan Schneider received the bachelor’s degree in
systems engineering in 2022. He is currently pursu-
ing the master’s degree in mechatronics and informa-
tion technology, specializing in control engineering
with Karlsruhe Institute of Technology (KIT).
As a Student Research Assistant (2020–2023)
with the Chair of Systems Modeling and Simu-
lation, Saarland University, his work focused on
autonomous vehicle modeling and motion plan-
ning. His bachelor’s thesis compared graph search
and reinforcement learning for motion planning
using motion primitives.

Matheus V. A. Pedrosa received the bachelor’s
degree in computer engineering from the Federal
University of Rio Grande do Norte, Natal, Brazil,
in 2016, and the master’s degree in automation and
systems engineering from the Federal University of
Santa Catarina, Florianópolis, Brazil, in 2018. He is
currently pursuing the Ph.D. degree with the Chair
of Systems Modeling and Simulation, Saarland Uni-
versity. His research interests include optimal control
for nonlinear systems with motion primitives.

Timo P. Gros is currently pursuing the Ph.D. degree
in computer science with the Chair of Modeling
and Simulation and the Foundations of Artificial
Intelligence Group, Saarland University. He is cur-
rently with German Research Center for Artificial
Intelligence (DFKI) and is involved with the Centre
for European Research in Trusted AI (CERTAIN).
His research interests are in reinforcement learn-
ing, in particular its connections to other fields of
research, such as planning, verification, and opti-
mization.

Verena Wolf received the Ph.D. degree in computer
science in 2008. She is currently the Scientific
Director of German Research Center for Artificial
Intelligence (DFKI). She has been a Full Professor
with the Computer Science Department, Saarland
University, since 2012. Her research interests include
hybrid AI approaches that combine traditional mech-
anistic modeling and deep learning methods.

Kathrin Flaßkamp received the Diploma degree
in technomathematik (applied mathematics with
engineering) and the Ph.D. (Dr.rer.nat.) degree in
mathematics from Paderborn University, Paderborn,
Germany, in 2008 and 2013, respectively. She is
currently a Full Professor in systems modeling and
simulation with Saarland University, Saarbrücken,
Germany. Her research interests include the field
of modeling, simulation, optimization, and control,
focusing on the development of numerical methods
and on applications.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Saarl Universitaets. Downloaded on October 01,2024 at 11:57:56 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.2140/pjm.1990.145.367

