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Abstract

In reinforcement learning, discount factors weigh rewards, such that rewards received
in the future are valued less than rewards received immediately. However, discounted
methods fail when we aim to maximise the total reward received as well as consistently
reach a defined goal state.

We formally define undiscounted performance measures and investigate why Q-learning
and the undiscounted algorithms R-learning and H-learning fail at the task of learning
a policy which is optimal in regard to such a performance measure.

Based on Q-learning we propose an approach called tuple learning which we show to be
capable of learning a policy optimising an undiscounted performance measure.

We discover a problem we call Q-value explosion, which is closely related to undiscounted
learning. In order to account for this, we investigate how to deal with the problem.
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1 Introduction

In 1988, Sutton laid the foundation of a class of reinforcement learning algorithms,
called temporal difference learning [20]. Three years later, Watkins et al. proposed a
temporal difference method called Q-learning [24].

Reinforcement learning regained popularity by combining classical methods with neural
networks, resulting in algorithms such as deep Q-learning [12]. A variation of games
have been mastered using deep reinforcement learning methods [17, 16, 18, 2, 13], thus
showing its potential.

In reinforcement learning, we want to maximise the rewards we receive when interacting
with an environment [21]. The technique of discounting weighs rewards received in
the future exponentially less than rewards received immediately. Discounting prevents
infinite sums of rewards from diverging [21, 15] and encourages an agent to seek to reach
a goal state quickly [7]. The compromise is that maximising the discounted reward does
not necessarily coincide with the original reward structure, thus leading to a potential
loss of rewards [15].

We explore why undiscounted algorithms (algorithms not using discounting) fail in
solving environments with the objective of reaching a goal state. We propose an approach
called tuple learning which optimises both, the total reward and reaching the goal at
the same time. Throughout this thesis, we investigate Q-learning, the undiscounted
methods R-learning and H-learning [15, 22], and the tuple learning approach. First,
we evaluate these algorithms using regular reinforcement learning. Then, we transition
into the deep reinforcement learning setting.
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2 Reinforcement Learning

In reinforcement learning, we consider a learner called an agent which sequentially
interacts with an environment.

Figure 2.1: Agent-environment interactions [21]

Each interaction with the environment yields a numerical reward. The goal of an agent
is to maximise these rewards according to some performance measure [8]. We call the
information about the environment which might change while interacting with it the
state of the environment. When interacting with an environment by performing actions,
the agent can observe changes in the state of the environment [21].

2.1 Formalisation

We will now formalise the properties mentioned above so that we have a proper model
to work with.

Definition 1 (Finite Markov Decision Process). Let 〈S,A, T,R, F 〉 be a tuple consisting
of a finite set of states S, a finite set of actions A, a transition function T : S ×A→ S,
a reward function R : S ×A→ R and a set of final states F .
Then we call 〈S,A, T,R, F 〉 a finite deterministic markov decision process (MDP).

If we replace T by a function P : S × A × S → [0, 1] : (s, a, s′) 7→ p which yields
the probability of resulting in state s′ when performing an action a in state s, then
〈S,A, P,R, F 〉 is called a nondeterministic MDP. If not all actions are applicable in
each state, we also write A(s) to denote the actions applicable in the state s ∈ S.
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CHAPTER 2. REINFORCEMENT LEARNING

If not otherwise stated, when we use the component symbols from definition 1 without
explicitly referring to an MDP, we assume they correspond to the same arbitrary MDP.
Additionally, we denote the state, action and reward at time step t as random variables
St, At, and Rt [21].

The behaviour of an agent is defined by a policy.

Definition 2 (Policy). A policy is a function π : S×A→ [0, 1] which maps a given state
s and action a to the probability that a is taken in s. If for every s ∈ S there is an a ∈ A
such that π(s, a) = 1, we call π deterministic. Otherwise, we call π stochastic [21].

With
Eπ[·] (2.1)

we then denote the value of a random variable when the policy π is followed.

2.2 Discounting

The term discounting describes a method of assigning exponentially decaying value to
the rewards received later on in a given sequence of rewards.

Definition 3 (Return). Let Rt, Rt+1, Rt+2, ... be the series of rewards received after
the t-th interaction with the environment. If there are only i ∈ N interactions with the
environment, we set Rj = 0 for each j > i. The discounted sum of the rewards received
since the t-th interaction

Gt =
∞∑
i=0

γiRt+i

is called the return, where γ ∈ (0, 1] is called discount factor.
We also write Gγt to denote the return for a given discount γ ∈ (0, 1] [21].

We also say that a return is undiscounted if γ = 1. In this case, the return is equal to
the sum of received rewards. With value functions, we describe the expected reward
when following a given policy.

Definition 4 (Value Functions). Let s ∈ S be a state and π be a policy for the
corresponding finite MDP. [21].
Then we call

vγπ : S → R, s 7→ Eπ[Gγt | St = s]

4



2.2. DISCOUNTING

the state-value function and

qγπ : S ×A→ R, (s, a) 7→ Eπ[Gγt | St = s,At = a]

the action-value function for the policy π.

The state-value function evaluates to the expected return when following a policy π from
a given state s ∈ S. Meanwhile, the action-value function evaluates to the expected
return when taking action a ∈ A in a given state s ∈ S and then following a policy π
afterwards. Now we want to define what it means for a value function, and therefore its
corresponding policy, to be good.

Definition 5 (Optimal Value Functions and Policies). We call state-value functions
vγ∗ (s) and action-value functions qγ∗ (s, a) with the properties

vγ∗ (s)
·= max

π
vγπ(s)

qγ∗ (s, a) ·= max
π

qγπ(s)

the optimal state-value function and optimal action-value function, respectively. Policies
π with vγ∗ = vγπ are called optimal policies [21].

Additionally, we consider the expected path-length as follows.

Definition 6 (Expected-Path-Length). Let π be a policy for some finite MDP.
We call

#π : S → R, s 7→
{

1 +∑
a∈A π(s, a) ·∑s′∈S P (s, a, s′) ·#π(s′) , s /∈ F

0 , s ∈ F
(2.2)

the expected path length from state s when following the policy π.

However, instead of optimising state-value functions, we take a more general approach
by introducing performance measures [8] for policies, which allows us to define precise
optimisation goals.

Definition 7 (Performance Measure). A performance measure m : π × S → R is any
function which assigns a performance score to a policy π when starting from state s.
We also write mπ(s) := m(π, s).

Note that a state-value function is a performance measure. Training an agent optimising
a performance measure is equivalent to training an agent optimising a policy that is
optimal according to a given performance measure.

5



CHAPTER 2. REINFORCEMENT LEARNING

Definition 8 (Optimal Policy). Given a performance measure f , a policy π is optimal
in regard to f if and only if for every state s ∈ S,

fπ(s) := max
π

f(s).

This definition is a generalisation for optimal policies in regard to the state-value
function [21]. For our further work, we are interested in a special group of performance
measures called undiscounted performance measures.

Definition 9 (Undiscounted Performance Measure). Let m be a performance measure.
We say that m is an undiscounted performance measure if for any policy which is optimal
in regard to m, it is also optimal regarding the state-value function v1.

This means that whenever we optimise an undiscounted performance measure f , we also
optimise the undiscounted value function v, i.e., the set of optimal policies according to
f is a subset of policies which are optimal according to v1.

6



3 Racetrack Benchmark

For the evaluation of reinforcement learning algorithms, we will use the racetrack bench-
mark [7] which we introduce here.

The task of an agent is to navigate a car from the purple to the green finishing line on
a given map (see Figure 3.1). If the car crashes into a wall (depicted in grey in the
Figure), the task fails. If an agent can reach the goal, we also say that the agent can
solve the racetrack.

Figure 3.1 shows the Barto-small and Barto-big map, both being solved by an agent.

The car is controlled by picking actions which accelerate the car in any of the directions
shown in Figure 3.2. Alternatively, the agent may decide not to accelerate, leaving the
velocity as is. When assigning a number to each of these actions we have an action
space of A = {0, ..., 8} with a total of nine actions.

Figure 3.2: Directions in which the car may accelerate

By using the location and current velocity of the car, we can define the state of the
environment as (x, y, vx, vy) ∈ N4 where x, y are the coordinates of the car and vx, vy
are the velocities in the respective directions. Note that the position of the car as well
as the velocities of the car are discrete. Therefore, the state space is finite. The location
is restricted by the map itself, whereas the velocities are restricted because overly high
velocities unavoidably lead to a crash, making it impossible to exceed a certain speed.

For deep learning, eleven additional features providing information about wall distances
and goal distances are given [7]. However, the additional features do not increase the
size of the state space.

The transition function T is given by the dynamics of the simulation of the environment,
as described in the work of Gros [7].

7



CHAPTER 3. RACETRACK BENCHMARK

Non zero-rewards are only received when reaching a final state f ∈ F = {⊥,>} such
that the rewards are defined by the following function

R(s, a, s′) =


100, s′ = >
−20, s′ = ⊥
0, otherwise

(3.1)

which yields the reward received when applying action a in state s and resulting in state
s′. The state > marks a task as successful, whereas ⊥ marks a task as failed. Then, the
state space is S ⊂ N4 ∪ {⊥,>}. Thus, the MDP is given by RT = 〈S,A, T,R, F 〉.

8



(a) barto-small

(b) barto-big

Figure 3.1: Racetrack benchmark: an agent (red line) solving the racetrack
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4 Motivation and Problem Statement

In this chapter, we discuss problems of discounted and undiscounted methods. We then
formally define desirable properties of a policy we want to learn and with that, we
formulate the goal of this thesis. Afterwards, we explain the algorithm on which we
base our approach.

4.1 The Problem of Discounted and Undiscounted Methods

The environment shown in the Figure (4.1) illustrates problems with both discounted
and undiscounted learning.

Earth

Heaven

Hell

A (+0)

B (+1000)

A, B (+1)

A, B (-1)

Figure 4.1: heaven-hell environment [15]

What we would want our agent to learn is to take action a resulting in the "heaven"
state which yields a positive reward, no matter which action is chosen afterwards.
Now consider the policies πHeaven(s) = a taking action a and πHell(s) = b taking action
b regardless of the current state. We can observe the following:

• v0.99
πHeaven

(Earth) = 99 < 901 = v0.99
πHell

(Earth)

• v1
πHeaven

(Earth) = +∞ > −∞ = v1
πHell

(Earth)

It is notable that using v0.99 as performance measure yields πHell as optimal performance
measure, which is not desirable. The policy πHeaven is optimal in regard to v1. However,
this performance measure is diverging on the given environment, which is also not a
desirable property.

11



CHAPTER 4. MOTIVATION AND PROBLEM STATEMENT

4.2 Problem Statement

In the following, we want to further investigate algorithms for environments with finite
rewards and a non-empty set of final states.

Definition 10 (Finite Reward Goal Environment). We say that an environment is a
finite reward environment if there is a c ∈ R such that for any policy π and t ∈ N, we
have Eπ[Gt] ≤ c ∈ R. We call an environment a finite reward goal environment if the
set of final states is not empty.

The racetrack environment satisfies the criteria of being a finite reward goal environ-
ment.

Even when restricting the environment to be a finite reward goal environment, we
expect undiscounted methods to not yield a desirable policy. This expectation is based
on the work of Gros we discuss in the next chapter. We want a policy maximising an
undiscounted performance as well as the probability of reaching a final state with a low
amount of steps. This intuition is defined by what we call undiscounted goal reaching
performance measures.

Definition 11 (Undiscounted Goal Reaching Performance Measure). Let f be an
undiscounted performance measure. We say that f is goal reaching exactly if it satisfies
the property

#π(s) > #π(s′) (4.1)

for each s, s′ ∈ S with
gπ(s) = gπ(s′) (4.2)

for some undiscounted performance measure g.

In case f is goal reaching, we call f an undiscounted goal reaching performance measure.

The Goal

The goal of this thesis is to construct an algorithms which optimises an undis-
counted goal reaching performance measure and to then shift the algorithm to the
deep reinforcement learning setting. That is, we want to (implicitly) approximate
the performance score of said algorithm using a neural network.

Our approach is based on the Q-learning algorithm introduced in the next section.

12



4.3. Q-LEARNING

4.3 Q-learning

The idea of Q-learning is to learn the optimal action-value function. The policy resulting
from training a Q-learning agent takes those actions in a state which maximise the value
of the approximated optimal action-value function for that state. The policy is given in
its procedural form in Figure 4.2 [24].

1 def act(Q, state):
2 return argmax (Q[state ])

Figure 4.2: QL act method: yields optimal action according to the current policy

Here (Figure 4.2), Q is a table containing the values of the current estimation of q∗,
also called Q-values. The function argmax returns a pseudo-random action for the given
state for which the Q-value is maximal.

The agent is trained by improving Q using the update rule seen in Figure 4.3 [24] with
observations obtained by exploring the environment.

1 def reinforce (Q, state , action , next_state , reward ):
2 q_val = reward
3 + max(self.Q[ next_state ])
4 * discount
5 Q[state ][ action ] = (1 - lr) * Q[state ][ action ] + lr * q_val

Figure 4.3: QL reinforce method: training the agent with observations

The update rule minimises the temporal difference error (TD-error)

Q(s, a)− γ ·max
a∗∈A

(Q(s′, a∗)) (4.3)

of the approximation Q : S ×A→ R with discount γ ∈ (0, 1]. The optimisation step is
further controlled by the learning rate (lr) parameter, also denoted as α.

13





5 Related Work

In chapter 4, we state that even when restricting ourselves to finite reward goal environ-
ments, using undiscounted methods does not guarantee yielding a policy that follows an
undiscounted goal reaching performance measure. We first discuss the work of Gros,
leading us to this statement. Then we state two methods worth considering alongside
with the approach we develop in the next chapter.

5.1 Deep Q-Learning on Racetrack

In Deep Q-Learning (DQL) we approximate Q-Values with a neural network instead of
learning these explicitly [12].

Figure 5.1: Win-lose-timeout evaluation of different discount factors on the Barto-small
map [7]

In the work of Gros [7], it was experimentally shown (see 5.1) that an undiscounted
DQL agent has a lower probability of reaching the goal of the racetrack environment
than a discounted DQL agent.

It was reported that the Q-values for each state became approximately equal, as shown in
the Figure (5.2) for velocities of zero. For other reasonable velocities, similar observations
were reported.
That the maximal Q-Values for each state become equal can be explained by the fact

15



CHAPTER 5. RELATED WORK

Figure 5.2: Heatmap for the estimated maximal Q-values with zero velocity [7]

that an agent may do anything as long as it does not lead to a crash. Due to not using
discounting, the agent can still obtain the full reward.

As to be seen in Figure 5.2, it was reported that the Q-values of states further away
from the goal were still higher than Q-values of states close to the goal. This suggests
that the agent does not navigate the car randomly across the map, but rather develops a
tendency to navigate the car to states with increased goal distance. Since this behaviour
seems counterintuitive, a reinvestigation of the DQL algorithm is required.

5.2 H-learning and R-learning

The H-learning and R-learning algorithms learn without discounting [15, 22]. Both have
been able to solve the environment presented in section 4.1 and similar environments.

Tadepalli and Ok describe R-learning as an undiscounted method that is model-free
and can be considered a mixture of R-learning and ARTDP [22].

This begs the question if these algorithms optimise an undiscounted goal reaching
performance measure. Therefore, we will include both algorithms in the evaluation of
tabular methods.

16



6 Tuple Learning

In the following, we compose a technique which we call tuple learning (TL). In the
next chapter, we will then use TL for constructing two algorithms which optimise an
undiscounted goal reaching performance measure. The core idea of TL is to learn two
action-value functions, whereas the importance of the value functions is implied by their
position in the tuple.

6.1 Formalism

The formalism introduced in 2.1 assumes that the return is a singular real number,
which is not suited for the idea of learning tuples. We therefore extend the definition of
the return, the state-value function and the action-value function.

We define the return in the t-th time step with discount rates γ1, γ2 ∈ R as

G
〈γ1,γ2〉
t

·=
∞∑
k=0

diag(γ1, γ2) · (Rt+k+1, Rt+k+1)T (6.1)

= (Rt+1, Rt+1) + diag(γ1, γ2) · (G〈γ1,γ2〉
t+1 )T (6.2)

with G〈γ1,γ2〉
t+1 = 0 in case of termination in the given time step t.

The state-value function and action-value function are defined analogous to before

v〈γ1,γ2〉
π : S → R2, v 7→ Eπ[G〈γ1,γ2〉

t | St = s] (6.3)
q〈γ1,γ2〉
π : S ×A→ R2, (s, a) 7→ Eπ[Gt | St = s,At = a] (6.4)

by replacing Gt with G〈γ1,γ2〉
t .

Note that the former definitions of these terms are the special case of γ2 = 0 in the
notation just introduced.

6.2 Ordering Tuples

Using the state-value function for tuples, we can denote the expected value when
following a policy. However, we are not able to compare those expectations with each

17



CHAPTER 6. TUPLE LEARNING

other since we have not defined a total ordering [5] for tuples.

6.2.1 Strict Tuple Order

Intuitively, one would strictly prioritise the primary component and only use the
secondary component as a tiebreaker. The strict total ordering is given by the relation

RL = {((a, b), (c, d)) ∈ R2 × R2 | a ≤ c ∧ d ≤ d ∨ a < c} (6.5)

which is the the lexicographical ordering on the components. We also denote (a, b) ∈ RL
as a ≤ b.

For a set S = R2 × R2, if there is an m ∈ S such that for all s ∈ S we have s ≤ m, we
denote max(S) ·= m.

6.2.2 Tolerant Tuple Order

In chapter 8, we will consider methods which do not learn state-action values explicitly,
but approximate them instead. Thus, a strict ordering is not suitable here. We want to
account for minor approximation errors by tolerating slight differences in the primary
components, i.e., we want to consider primary components as equal when their relative
difference is smaller than a tolerance δ ∈ [0,∞).

A tolerance range
TSδ = [(1− δ) ·m1,m1]× R ⊆ R2 (6.6)

with (m1,m2) = max(S) and a tolerance δ ∈ R defines an error range in the primary
component we are willing to accept.

We can construct a total order on a given set S by maintaining a strict ordering for
elements in each of the two partitions obtained as follows. The two partitions are
constructed by separating elements depending on whether they are within or not within
the tolerance range TSδ , i.e.,

PSδ = {(a, b) ∈ R2 × R2 | a /∈ TSδ ∧ b ∈ TSδ ∧ a ≤ b} (6.7)
QSδ = {a, b ∈ R2 × R2 | (a, b) /∈ PSδ ∧ (b, a) /∈ PSδ ∧ a ≤ b} (6.8)

where (m1,m2) = max(S).

PSδ is a partial order with (a, b) ∈ PSδ if and only if b is within the tolerance range of
max(S) but a is not. QSδ is a partial order with (a, b) ∈ QSδ if and only if both a and b
are either within or not within the tolerance range of max(S) and a ≤ b.

18



6.3. OPTIMAL STATE-VALUE FUNCTIONS AND ACTION-VALUE FUNCTIONS

The union RSδ = PSδ ∪ QSδ is a total ordering on S where (a, b) ∈ RSδ is denoted as
a ≤Sα b. For a set S ⊆ R2 × R2, if there is an m ∈ S such that for all s ∈ S we have
s ≤Sδ m, we denote maxδ(S) ·= m.

We also write
max
i∈I δ

f := maxδ{f(i) | i ∈ I} (6.9)

for a function f : I → R2.

Note that for δ = 0 both orderings are equivalent, i.e., R = RSδ for any set S ⊆ R2 and
therefore max(S) = maxδ(S).

6.3 Optimal State-value Functions and Action-value Functions

With the introduced notation, we can define the optimal TL state-value function and
TL action-value function

v
〈γ1,γ2〉
δ (s) ·= max

π δ
v〈γ1,γ2〉
π (s) (6.10)

q
〈γ1,γ2〉
δ (s, a) ·= max

π δ
q〈γ1,γ2〉
π (s, a) (6.11)

as the state-value function and action-value function of the policy maximising the return.
With πδ we denote an optimal policy, i.e., v〈γ1,γ2〉

δ = Eπδ [G
〈γ1,γ2〉
t | St = s].

Note that we can rewrite

q
〈γ1,γ2〉
δ (s, a) = E[Rt+1 + (γ1, γ2) · (v〈γ1,γ2〉

δ (s, a))T | St = s,At = a] (6.12)

by applying the definitions of the action-value function, the return and the state-value
function.

6.4 Deducing an Update Rule

In order to iteratively find the optimal action-value function, we need to find a function
which

1. has q〈γ1,γ2〉
δ as a fixpoint

2. is a contraction

such that we can use a fixpoint iteration to find q〈γ1,γ2〉
δ [25].
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Regular state-value functions and action-value functions can be rewritten in such a
way that they recursively depend on themselves without referring to any specific policy.
Those equations are called the Bellman optimality equations and directly imply the
Bellman operator which has q∗(s) as a fixpoint [21].

For TL state-value functions, we can also deduce a recursive definition for TL state-value
functions without referring to any policy

v
〈γ1,γ2〉
δ (s) = max

a∈A(s)
q〈γ1,γ2〉
πδ

(s, a)

= max
a∈A(s)

Eπδ [(G
γ1
t , G

γ2
t ) | St = s,At = a]

= max
a∈A(s)

Eπδ [(Rt+1 + γ1G
γ1
t+1, Rt+1 + γ2G

γ2
t+1) | St = s,At = a]

= max
a∈A(s)

Eπδ [(Rt+1 + γ1G
γ1
t+1, Rt+1 + γ2G

γ2
t+1) | St = s,At = a]

= max
a∈A(s)

Eπδ [(Rt+1, Rt+1) + diag(γ1, γ2) · (Gγ1
t+1, G

γ2
t+1)T | St = s,At = a]

= max
a∈A(s)

Eπδ [(Rt+1, Rt+1) + diag(γ1, γ2) · v〈γ1,γ2〉
πδ

(St+1)T | St = s,At = a]

(6.13)

= max
a∈A(s)

∑
s′,r

p(s′, r | s, a)[r + diag(γ1, γ2) · v〈γ1,γ2〉
δ (s′)T ] (6.14)

such that we obtain an optimality equation for TL state-value functions with two
alternate forms (6.13, 6.14).

By applying the identity 6.12, we find a recursive definition for TL action-value func-
tions

q
〈γ1,γ2〉
δ (s, a) = E[Rt+1 + diag(γ1, γ2) ·max

a′ δ
q
〈γ1,γ2〉
δ (St+1, a

′)T | St = s,At = a] (6.15)

=
∑
s′,r

p(s′, r | s, a)[r + diag(γ1, γ2) · max
a′∈A(s′)δ

q
〈γ1,γ2〉
δ (s′, a′)T ] (6.16)

which we call the TL action-value function optimality equations.

We define the right-hand side of the equation (6.16)

(Tqδ)(s, a) =
∑
s′,r

p(s′, r | s, a)[r + diag(γ1, γ2) · max
a′∈A(s′)δ

qδ(s′, a′)T ] (6.17)

as the TL operator T, mapping a action-value function to another action-value function.
Note that according to equation 6.16, the operator T has q〈γ1,γ2〉

∗ as a fixpoint.
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Thus, an iterative update rule for obtaining the TL action-value function is given by

q〈γ1,γ2〉
πk+1 (s, a)← Tq〈γ1,γ2〉

πk
(s, a), (6.18)

which we call the TL update rule.

6.4.1 Convergence

Establishing general convergence guarantees for TL is a task which is not easily done
when having to consider tolerance factors, if possible at all. We now focus on a property
which gives us a convergence guarantee if met. If the first component of the tuple
converges, the convergence of the second component follows.

The core idea of the following proof is to reduce the convergence of TL to the convergence
of Q-learning (theorem 1) that was shown by Watkins [24].

Theorem 1. Given bounded rewards |rn| ≤ R, learning rates 0 ≤ αn < 1, and
∞∑
i=1

αni(x,a) =∞,
∞∑
i=1

[αni(x,a)]2 <∞,∀x, a

then Qn(x, a)→ Q∗(x.a) as n→∞, ∀x, a, with probability 1.

Essentially, the theorem states that the convergence of the Q-learning algorithm is
guaranteed if the rewards are bounded and the learning rate converges towards zero
neither too fast nor too slowly.

We now deduce said convergence property of TL.

Lemma 1. Let

1. γ2 ∈ (0, 1).

2. (ak, bk) = q
〈γ1,γ2〉
πk the action-value function after the k-th iteration of the TL

algorithm.

3. the prerequisites of theorem 1 be satisfied.

If every (s, a) ∈ S×A in the TL algorithm is sampled infinitely often and limk→∞ ak = a∗,
then limk→∞ bk = b∗ with probability 1.
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Proof. Note that for each state s ∈ S, ak induces a set Ak(s) ⊆ A(s) of actions which
yield expected values within the tolerance range when taken. Since limk→∞ ak = a∗,
there must be n0 ∈ N such that there is an A′(s) ⊆ Ak(s) = A′(s) for all s ∈ S
and k ≥ n0. It follows that for k ≥ n0 the TL update rule in the second component
degenerates to

κ2(q〈γ1,γ2〉
πk+1 )(s, a)← κ2(Tq〈γ1,γ2〉

πk
)(s, a)

k≥n0=
∑
s′,r

p(s′, r | s, a)[r + γ2 max
a′∈A′(s′)

κ2(qπk)(s′, a′)])(s, a),

i.e., the second component is updated using the update rule of Q-learning, which accord-
ing to theorem 1 converges towards an optimal state-value function with probability 1.
Here κi is the function which maps to the i-th value of a tuple or the i-th component
function, respectively.

Since for k ≥ n0 we have A′ fixed, by definition of Rδ it follows that q∗ = κ2(q〈γ1,γ2〉
∗ ),

where q∗ is the optimal action-value function on the reduced MDP with action space A′.
Therefore, limk→∞ bk = b∗.

�

Lemma 1 also holds for γ2 = 1 if the underlying MDP has absorbing goal states. The
additional precondition of absorbing goal states is required to guarantee Q-learning
convergence when γ2 = 1 [24].

Note that we do not make a statement regarding the convergence when using an
approximator for the action-value function instead (see chapter 8).

We conclude that if we can guarantee convergence of the first component, TL is
guaranteed to converge with sufficiently many samples for each state-action pair.

6.5 Algorithms

When designing an algorithm utilising the TL update rule 6.18, we want to keep the
algorithm as close to the theoretical foundation as possible. The most notable practical
restriction is that we cannot sample indefinitely often. Instead, we have to train for a
finite number of episodes. Therefore, we also cannot use a series of learning rates. We
will fix the learning rate instead.

Due to these practical limitations, the probability of converging towards the optimal
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policy is not 1 in practice. However, with adjusting the learning rates and increasing
the number of training episodes, we can achieve a convergence probability which is
arbitrarily close to 1 (lemma 1).

6.5.1 Tuple Learning Core Algorithm

The key requisite we want to ensure for applying lemma 1 is to guarantee the convergence
of the first component. We ensure this by learning the value of each component with a
separate agent. Learning the first component with a primary agent using Q-learning
guarantees convergence in the first component. The second component is learned by a
secondary agent which has a reduced action space that is induced by the primary
agent. Convergence of the learning process is then guaranteed according to lemma 1.

The optimal action according to the current policy is then implied by tolerant tuple
order and given in its procedural form in 6.1.

1 def act( primary_agent , secondary_agent , state , tolerance ):
2 action = None
3 best_actions = primary_agent . best_actions ( tolerance )
4 if len( best_actions ) == 1:
5 action = primary_agent .act(state)
6 else:
7 action = secondary_agent .act(state , restriction : best_actions )
8 return action

Figure 6.1: TL act method: yields optimal action according to the current policy

Both subagents are trained with the same observations as shown in 6.2.

1 def reinforce (Q, discount , state , action , next_state , reward , tolerance )
:

2 target_action = act( primary_agent , secondary_agent , next_next ,
tolerance )

3 q_val = reward
4 + max(self.Q[ next_state ][ target_action ]
5 * discount
6 Q[state ][ action ] = (1 - lr) * Q[state ][ action ] + lr * q_val

Figure 6.2: TL reinforce method: training the primary agent / secondary agent with
observations

Here, the target value is induced by the action which is optimal in regard to the currently
learned policy.
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6.5.2 Goal Reaching Tuple Learning Algorithms

In the following chapters of the thesis, we investigate two variants which are special
cases of the core TL algorithm. Since we are interested in algorithms which optimise an
undiscounted goal reaching performance measure, both variants will have a Q-learning
agent with γ = 1 as primary agent. Even though TL is a broader term, when referring
to TL, from now on we refer to the two methods introduced here.

QQ-Learning describes the approach where the secondary agent is a discounted Q-
learning agent with a discount factor of γ ∈ (0, 1).

QG-Learning describes the approach where the secondary agent learns the expected
goal step distance. To stick with maximising a performance measure, we optimise the
sign-reversed #-function, which is an equivalent task.

Learning the goal step distance is equivalent to learning a transformed reward function
such that v∗(s) = −#π∗(s), in an undiscounted setting.

This transformation is given by

R′(s, a, s′) =
{
−∞, s′ ∈ F ∧Goal(s)
−1, otherwise

(6.19)

which introduces a step cost of 1. We consider a final state as goal state if a goal
condition Goal : S → {>,⊥} is satisfied. For a final state which is not a goal state,
there is no way that a goal state can be reached. Thus the goal distance being infinite.
In practice, we will use a sufficiently high punishment instead of −∞.

Since the optimal state-value of the transformed reward function equals the sign-reversed
goal distance, minimising the goal distance is equivalent to choosing the action a with
q∗(s, a) = v∗(s).

6.6 Alignment of the Algorithms with the Goal

Now, we shortly argue that both methods described in section 6.5.2 align with the
goal of the thesis to optimise an undiscounted goal reaching performance measure. In
the following, let mQ(s) be a performance measure for QQL and mG(s) a performance
measure for QGL. Here we consider tolerance factors δ which are sufficiently close to 0,
since we cannot make any guarantees otherwise.

By construction of both variants, we learn the undiscounted state-value function with
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the primary agent. Thus, for δ sufficiently close to 0, we only take actions which are
optimal with respect to v1, thus by definition we optimise an undiscounted performance
measure.

It remains to be shown that QGL and QQL are both goal reaching. Since the secondary
agent of QGL maximises −#π(s), it follows directly that for every s, s′ ∈ S with
v1(s) = v1(s′), we have

mG(s) < mG(s′)⇔ −#π(s) < −#π(s′)⇔ #π(s) > #π(s′),

i.e., mG(s) is goal reaching.

The secondary agent of QQL maximises v1(s) · γ2
#(s). Therefore, if there are s, s′

such that v1(s) = v1(s′) and #(s) > #(s′), it follows that γ2
#(s) < γ2

#(s′) and thus
mQ(s) < mQ(s′), i.e., mQ is goal reaching.
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7 Learning in the Tabular Setting

As seen in chapter 5.1, the problem of learning from undiscounted rewards was observed
in the deep reinforcement learning setting, namely using deep Q-Learning.

Here, we investigate the performance of Q-learning and undiscounted learning methods
in the tabular setting. That means we explicitly learn performance measures by saving
them into a table [21] instead of using a neural network as approximator.
For that, we consider the H-learning, R-learning and Q-learning algorithm as well as
one of our composed approaches, namely QQL.

7.1 Results

The algorithms were trained and evaluated using the racetrack benchmark on the
Barto-small map. Note that training and evaluation were completely separated, i.e.,
after each training episode an evaluation was performed based on the currently learned
policy. Exploration was done ε-greedy [21] with exponential decay. We used the same
hyperparameter configuration for ε-greedy exploration and the learning rate parameter
as described in the upcoming chapter 9.

7.1.1 H-learning and R-learning

Both the learning curves of R-learning and H-learning show that 4 out of 5 agents were
able to learn a policy which was able to reach the goal, whereas the 5th agent was able
to learn crash avoiding behaviour.
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(a) seed 1 (b) seed 2 (c) seed 3

(d) seed 4 (e) seed 5

Figure 7.1: Learning curves of R-learning for the Barto-small map
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(a) seed 1 (b) seed 2 (c) seed 3

(d) seed 4 (e) seed 5

Figure 7.2: Learning curves of H-learning for the Barto-small map

The observation is verified by taking a look at the final paths (7.3) taken by agents of
each algorithm.
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(a) R-learning

(b) H-learning

Figure 7.3: Paths after the final learning step on the Barto-small map

This begs the question on why both methods are successful despite being undiscounted
methods. Here the answer lies in the details. Even though Schwartz calls R-learning
an undiscounted method and H-learning builds on that idea, the optimisation goal
does not coincide with what we call undiscounted performance measures. R-learning
and H-learning both optimise the average undiscounted return per step [15, 22], thus
taking longer paths is punished. However, the value of rewards received immediately
does not differ from rewards received in the future. But since optimising the average
discounted reward does not result in an undiscounted goal reaching policy, we will no
longer consider both of these methods for the goal of this thesis.

7.1.2 Q-learning and Tuple Learning

For Q-learning, we observed that the agent was able to learn to solve the racetrack.
In contrast to R-learning and H-learning, the agent learned to reach the goal much
earlier.
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(a) seed 1 (b) seed 2 (c) seed 3

(d) seed 4 (e) seed 5

Figure 7.4: Learning curves of Q-learning for the Barto-small

Figure 7.5: Heatmap of Q-values after the final learning step, weighted by visits for all
velocities

Looking at the Q-values learned, it seems like they verify the expectation that the
Q-values become equal (7.5).
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(a) seed 1 (b) seed 2 (c) seed 3

(d) seed 4 (e) seed 5

Figure 7.6: Learning curves of QQL for Barto-small map

However, when looking at the exact Q-values learned, it becomes obvious why the
agents were successful despite our expectation that they would fail. Due to the way
the update rule works 4.3, it is true that the Q-values become equal in the limit, as
proven by Watkins [24]. But we are not sampling indefinitely often. We observe that the
difference between the Q-values and the true expected return is smaller when moving
closer to the goal. Therefore, the agent does not become uninformed since with finite
samples, Q-values might only become equal due to limited accuracy of floating-point
operations [11].

Consequentially, it is not surprising that TL is successful in the tabular case, since the
secondary agent is not needed to achieve an undiscounted goal reaching policy. We can
verify this by looking at the learning curves of QQL (7.7) and therefore refrain from
evaluating QGL in the tabular setting.
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(a) evaluation return

(b) final path

Figure 7.7: Learning curves of QQL and the path taken after the final learning step

7.2 Summarising Tabular Methods

In this chapter, we determined that there are discrepancies between what is considered
an undiscounted method by Schwartz and what we consider undiscounted performance
measures. We therefore concluded that R-learning and H-learning do not fulfil our
criteria of being an undiscounted performance measure and are therefore not considered
from now on.

We found that Q-learning was able to solve the racetrack and consequentially the
TL method QQL also succeeded. However, since this success is strictly bound to the
way tabular learning works, we cannot draw direct conclusions on the performance
of corresponding methods in the deep reinforcement learning setting, which we will
consider next.
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8 Deep Tuple Learning

Now we transfer the tuple learning algorithms we composed to the deep reinforcement
learning setting. We call the induced deep tuple learning (DTL) variants deep QQ-
learning (DQQL) and deep QG-learning (DQGL), respectively. Instead of learning
the optimal action-values explicitly, as in the tabular setting, we approximate the
optimal action-values by training a neural network. By doing so, we utilise the ability
of neural networks to generalise [19]. That is, even for unseen states, an approximation
of the Q-value can be given and therefore can be used to determine the actions to perform.

Since TL requires two agents, we train two neural networks, each approximating the
value function of one agent. Given the weights Θ of a neural network, we call

NΘ : S ×A, (s, a)→ R (8.1)

the corresponding approximated action-value function.

Since we want to minimise the TD-error in each state, we will define a loss function [4] as
the metric to be optimised. We use stochastic optimisation using the Adam algorithm [9]
as proposed by Andrychowicz [3], paired with experience replay as proposed by Mnih
et al. [12], for training the neural networks. As in the deep Q-learning (DQL) paper,
we use a target network for estimating the TD-error. Originally, the weights of the
target network in the i-th iteration Θ−i were fixed to the weights Θi−1 of the previous
iteration [12]. However, instead of using the weights from a former iteration, we perform
a soft update [10] on the target weights, i.e.,

Θ−i =
{

(1− α)Θ−i−1 + αΘi , i > 0
Θ−I , i = 0,

(8.2)

where Θ−I are the initialisation weights of the target network.

For the implementation of these concepts, we mainly use the libraries Pytorch [14] and
RLMate [6].

8.1 Network Architecture

For the primary agent, we use a standard DQL network architecture with identical
structure for the network and target network as seen in Figure 8.1.
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Figure 8.1: Network structure of the network approximating the action-value function [1]

Here we use an input layer of the same size as our actions space, two hidden layers as
well as an output layer [26] representing the Q-value of each action.

For the secondary agent, we use the same network structure. Note that one could
investigate the option of using shared weights for the primary agent and secondary
agent to improve training time. However, for this proof of concept, we decided against
investigating different possible network structures.

8.2 Formalising the Loss

Using the argmaxδ function we define as

argmaxδ
a∈A

: {f | dom(f) = A ∧ im(f) ⊆ R} → A, f 7→ {a ∈ A | f(a) ∈ T Im(f)
δ }, (8.3)

we can describe the actions from which the secondary agent can choose. δ ∈ R is the
tolerance from which a value may deviate and still be considered as optimal. This
prevents the exclusion of actions due to an approximation error of the neural network.

Given the weights Θ, we denote

A∗δ(s,Θ) ·= argmaxδ
a

E[NΘ(St+1, At) | At = a ∧ St = s] (8.4)

for the set of actions which maximise the expected future reward in state s with tolerance
δ.

According to our network architecture, we define two loss functions: one for the DQN
used for the primary agent, one for the secondary agent.
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By construction of the TL core algorithm (6.5.1), the mean squared error (MSE) loss [4]
of the primary agent’s network is equivalent to the MSE loss of a DQN and is given as

L(Θ) = E[(NΘ(St, At)− y(St, At; Θ−))2] (8.5)

with the target y given as

y(s, a; Θ) = E[Rt+1 + max
a∗∈A

NΘ(St+1, a
∗) | St = s,At = a] (8.6)

for a given set Θ of weights.

For calculating the target values with discount γ ∈ (0, 1] of the secondary agent

yS(s, a; Θ1) = E[Rt + γ · max
a∗∈A∗

δ
(s,Θ1)

NΘ−2
(St+1, a

∗) | At = a ∧ St = s], (8.7)

we must only consider actions a ∈ A∗δ(s,Θ1), i.e., the corresponding undiscounted
expected return is contained in the tolerance range induced by the state and the primary
agent (see 6.5.1).

Therefore, for a set of weights Θ,

L(Θ) = E[(NΘ(St, At)− yS(St, at,Θ−))2] (8.8)

is the MSE loss of the secondary agent.
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9 Deep Methods Evaluation

In this chapter, we reevaluate DQL as well as the TL methods DQQL and DQGL
on the racetrack benchmark. For each algorithm, we consider the agents with the
hyperparameter configuration which had the most amount of successful seeds, i.e., the
agents are able to reach the goal from the starting line. For those agents, we will also
evaluate the performance when starting at a random location of the map, a total of 100
locations per seed. The average win, lose and timeout percentages (goal reachability
evaluation) are then reported. DQQL and DQGL are additionally evaluated on a
racetrack variant called magic button racetrack which is designed to empirically show
that an undiscounted goal reaching performance measure is learned.

The evaluation of the algorithms is done on the Barto-small map (20k episodes) and
Barto-big map (30k episodes) if successful on the former one. Exploration is done
ε-greedy [21] with exponential decay. Reported learning curves are generated by testing
the agents’ performance in a separate evaluation step after each learning step.

Table 9.1: Shared hyperparameters
Parameter Value
discount (γ1) 1.0
learning rate (α) 0.0003
target smoothening coefficient (τ) 0.0001
seeds {1,2,3,4,5}
step limitation 150
replay buffer size 2 · 104

minibatch size 256
epsilon-start 1.0
epsilon-end 0.01

Table 9.2: TL-specific hyperparameters
Parameter Value
tolerance (δ) {0.01, 0.02, 0.05}
step cost (DQGL) 1
discount (γ2) 0.9

In Table 9.1, the hyperparameters used for all algorithms are listed. As proposed by
Andrychowicz et al. we use a learning rate of α = 0.0003 as a starting point and adjust
it if necessary [3]. The Table 9.2 shows hyperparameters specific to the TL algorithms.
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9.1 DQL Reinvestigation

A first look at the training curves (9.1) reveals that the task fails due to catastrophic
forgetting, as discussed in chapter 5.1.

(a) seed 1 (b) seed 2 (c) seed 3

(d) seed 4 (e) seed 5

Figure 9.1: Learning curves of DQL for the Barto-small map

Taking a look at the heatmap visualising the Q-values (9.2), we do not observe the same
pattern as discussed before in chapter 5.1. Q-values were not higher than Q-values of
states closer to the start.

Figure 9.2: Heatmap of Q-values after the final learning step, weighted by visits for all
velocities
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Upon inspecting the exact values, we discover another reason why the task fails that the
heatmap does not capture. Alongside Q-values becoming equal and therefore rendering
the agent uninformed, we also observe that many state-actions pairs do have a Q-value
larger (>20%) than the maximum possible reward of 100. We call this phenomenon
Q-value explosion.

When evaluating the goal reachability for random starting locations, (9.3) we observe a
higher timeout probability than in the experiments of Gros [7].

(a) α = 0.00003

Figure 9.3: Win-Lose-Timeout evaluation of all DQL agents on Barto-small map (random
start)

9.1.1 Effects of Reducing Overestimation Bias on Q-value Explosion

While it is true that Q-values becoming equal must cause a goal reachability drop, we
suspect that Q-value explosion is a more significant problem, since the issue will carry
over to TL methods. We suspect that this problem is a consequence of pairing the
overestimation bias of DQL [23] with using a discount factor of γ = 1. This allows
circular paths to push Q-values above achievable return values. Several techniques have
been proposed to reduce overestimation bias [23], but we are not aware of a method
preventing it. When applying double DQN as proposed by Guez et al. we observe better
results.

Only one seed (9.4b) showed signs of catastrophic forgetting when looking at the learning
curves (9.4).
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(a) seed 1 (b) seed 2 (c) seed 3

(d) seed 4 (e) seed 5

Figure 9.4: Learning curves of double DQL for the Barto-small map

The goal reachability evaluation (9.4b) shows that double DQN achieves a better win
probability. The low timeout rate can be explained by the observation that the Q-values
are updating at a slower rate than it is the case for DQL, therefore delaying the issue of
Q-values becoming equal or overestimated.

(a) α = 0.0003, δ = 0.01

Figure 9.5: Win-Lose-Timeout evaluation of double DQL agents on Barto-small map
(random start)
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The heatmap 9.6 shows a Q-value pattern more similar to the pattern seen in Figure 5.2.
We suspect that overestimation pushes Q-value explosion, especially near the starting
states.

Figure 9.6: Heatmap for the estimated maximal Q-values with zero velocity

Even if we observe an improvement, we do not consider Q-value explosion to be fixed.
The issue here is that double DQN only reduces the probability of Q-value overestimation,
but does not prevent it. We predicted that the DTL algorithm will not be successful
as it is right now, due to Q-value explosion interfering with the undiscounted part. In
fact, piloting experiments for DTL suggested that Q-value explosion is not only an issue
when using a DQN as network structure for the components, but also when double
DQN is used. Therefore, we need to find a solution for dealing with Q-value explosion
before considering DTL.

9.1.2 Dealing with Q-value Explosion

We present an idea for preventing Q-value explosion in the first place in chapter 10.
For now, we make use of the fact that we want to show functionality of DTL on an
environment with binary rewards. Therefore, capping the Q-values such that the future
reward estimation is lower than the reward when reaching a goal state eliminates the
problem of Q-value explosion. Whereas this does not help in case of DTL itself, since
we define the overestimated Q-values to be equal, this does not harm a DTL agent due
to still having its secondary component.

In terms of the definitions in chapter 8, we replace yP (s, a,Θ1,Θ2) by min(yP (s, a,Θ1,Θ2), ρ),
where ρ ∈ R is the highest reward in the binary reward setting, and use the updated
variant for the following evaluation.

9.2 DQQL Results

In this section, we report the results of the DQQL method on the Barto-small and
Barto-big map.
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9.2.1 Barto-small

For DQQL applied on the Barto-small map, we find that the agent was able to solve
the environment for every seed when starting from the starting line. When looking at
the learning curves shown in Figure 9.7, we partially observe performance collapses
during the training process. However, with further learning, the performance of the
agent quickly recovers.

(a) seed 1 (b) seed 2 (c) seed 3

(d) seed 4 (e) seed 5

Figure 9.7: Learning curves of DQQL for the Barto-small map

Figure 9.8 shows the Win-Lose-Timeout percentages when starting in a random initial
state. Here, an increased tolerance factor correlates with a lower goal reachability.
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(a) α = 0.0003, δ = 0.01 (b) α = 0.0003, δ = 0.02 (c) α = 0.0003, δ = 0.05

Figure 9.8: Win-Lose-Timeout evaluation of DQQL agents on Barto-small (random
start)

9.2.2 Barto-big

When applying DQQL on the Barto-big map, we find the agents being able to solve the
environment on all seeds (9.9).

(a) seed 1 (b) seed 2 (c) seed 3

(d) seed 4 (e) seed 5

Figure 9.9: Learning curves of DQQL for the Barto-big map
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In Figure 9.10, we observe a higher goal reachability when using a lower tolerance
factor.

(a) α = 0.0003, δ = 0.01 (b) α = 0.0003, δ = 0.02 (c) α = 0.0003, δ = 0.05

Figure 9.10: Win-Lose-Timeout evaluation of DQQL agents on Barto-big map (random
start)

9.3 DQGL Results

Here, we report the results of the DQGL method on the Barto-small and Barto-big
map.

9.3.1 Barto-small

For the DQGL variant, we observe similar learning curves as in the DQQL setting
(Figure 9.9). We observe partial performance drops during the learning process which
do no harm in the long run.
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(a) seed 1 (b) seed 2 (c) seed 3

(d) seed 4 (e) seed 5

Figure 9.11: Learning curves of DQGL for the Barto-small map

Considering the evaluation for random starts (9.12), we observe worse results than in
the DQQL setting. In contrast to before, we do not see a correlation between the choice
of tolerance factor and the goal reachability.

(a) α = 0.0003, δ = 0.01 (b) α = 0.0003, δ = 0.02 (c) α = 0.0003, δ = 0.05

Figure 9.12: Win-Lose-Timeout evaluation DQQL agents on Barto-small map (random
start)

47



CHAPTER 9. DEEP METHODS EVALUATION

9.3.2 Barto-big

For Barto-big we find that agents were able to solve the environment with all 5 seeds (9.9).
We partially observe more performance drops during the learning process (9.13d).

(a) seed 1 (b) seed 2 (c) seed 3

(d) seed 4 (e) seed 5

Figure 9.13: Learning curves of DQGL for the Barto-big map with α = 0.0003 and
δ = 0.01

In contrast to before, for the goal reachability evaluation, we do not observe a correlation
between tolerance factor choice and goal reachability. Instead, we observe worse results
for δ = 0.02.
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(a) α = 0.0003, δ = 0.01 (b) α = 0.0003, δ = 0.02 (c) α = 0.0003, δ = 0.05

Figure 9.14: Win-Lose-Timeout evaluation DQGL agents on Barto-big map (random
start)

Figure 9.15: Visits per state during training of an DQGL agent with α = 0.0003 and
δ = 0.02 (all velocities combined)

Upon inspecting the seeds individually, we find that two seeds performed worse than the
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other three. A map showing the visit amount per state after training (Figure 9.15) shows
that insufficient exploration lead to the bad results. We think that despite capping
rewards, overestimation bias favours visiting states near the starting line.

9.4 Magic Button Racetrack

For empirically verifying that TL does not only solve the racetrack but also optimises an
undiscounted goal reaching performance measure, we designed a variant of the racetrack
called magic button racetrack.

The difference to the racetrack benchmark is that the zero-acceleration action is replaced
with the action of pressing a magic button in case the car is not moving. This action
has the behaviour that with a 50% chance, the task is immediately considered to be
either successful or failed. Formally, if T is the stochastic transition function of the
racetrack map, then

TMB(s, a, s′) =


T (s, a, s′), yx 6= 0 ∨ vy 6= 0
1
2 · T (s, a, s′), vx = vy = 0 ∧ s′ /∈ {>,⊥}
1
2 · T (s, a,>) + 1

2 , s′ = > ∧ vx = vy = 0 ∧ s′ = >
1
2 · T (s, a,⊥) + 1

2 , s′ = > ∧ vx = vy = 0 ∧ s′ = ⊥

(9.1)

is the transition function of the magic button racetrack.

9.4.1 Results

A look at the results reveals that for DQQL as well as for DQGL, the agent learned to
take the button press action, thus learning a suboptimal and unreliable policy (9.16).

Figure 9.16: Learning curves of a TL agent on the Barto-small map (magic button
variant)
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In both cases, the agent does not move, since the episode ends immediately.

Figure 9.17: Path after final learning step of a TL agent on the Barto-small map (magic
button variant)

Looking at the states which were visited during training, we see why TL cannot learn
a desired policy. Due to the exploration-exploitation dilemma [21], the probability of
finding a better alternative path is low.

Figure 9.18: Visits per state during training (all velocities combined)

Note that the total number of visits appears lower, since the initial placement on the
starting line does not count as a visit and neither does the press of the magic button
increase the visits of any state.

However, we can observe the performance of TL if the agent has enough knowledge by
disabling the magic button option until episode 15,000. This time, we observe that a
change of the environment mid-training did not harm any TL agent (9.19, 9.20).
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Figure 9.19: Path after final learning step of a DQQL agent on the Barto-small map
(magic button variant), delayed button availability

Figure 9.20: Path after final learning step of a DQGL agent on the Barto-small map
(magic button variant), delayed button availability

There are learning curves for which we observe a performance drop, shortly after the
magic button is enabled, but the agent learns that the action hurts its performance and
recovers (9.21).

Figure 9.21: Learning curve of a TL agent on the Barto-small map (magic button
variant), delayed button availability

Investigating the exact values also show that the primary agent adjusted the expected
value of the magic button action, and thus was able to follow a path with higher goal
reachability.
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9.5 Summarising Deep Learning Methods

In this chapter, we observed that Q-values becoming equal is not the only reason
undiscounted DQL is not able to solve the racetrack. Due to an overestimation bias of
DQL, we observe that Q-values higher than the actually achievable total reward are
learned. Since this issue inevitably carries over to TL, we capped the target values at
the maximal achievable reward.

With this change, TL was not only able to solve the standard racetrack but was also able
to solve the magic button racetrack, verifying that TL learns to discard actions yielding
immediate rewards but are not optimal in regard to optimising the total undiscounted
reward. However, we observe that the TL methods proposed are prone to suffering from
the exploration-exploitation dilemma.
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10 Undiscounted Value Function
Reconstruction

To deal with Q-value explosion, we previously capped the maximum value an action-
value function may have. For generalising DTL to environments which do not solely
yield binary return values, we need to prevent Q-value explosion in the first place
instead of dealing with its consequences. We think that Q-value explosion only occurs
for sufficiently high discount factors γ → 1. Therefore, we propose to learn a discounted
state-value function together with additional data, which allows us to reconstruct the
undiscounted state-value function without suffering from Q-value explosion.

10.1 Recovering the Data

For this initial approach, we make the assumption that rewards are only received when
reaching a goal or a failed state. However, we think that it is possible to transform
environments, such that rewards are delayed to final states, which would allow us to
generalise this approach.

For a set policy π and state s ∈ S let

xγ1 = vγ1
π (s) (10.1)

xγ2 = vγ2
π (s) (10.2)

be the expected return value in the state under the policy with γ1 6= γ2 ∈ (0, 1). We
denote the unknown expected return value in the state under the same policy with
x1v

1
π(s).

Note that since xγ1 , xγ2 and x1 are expected returns when following the same policy, we
know that

x1 = xγ1

γ1n
= xγ2

γ2n
(10.3)

where n is the expected number of steps from s to a goal or failed state.
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Thus, we can calculate x1 in case we know the goal distance n. This is the case since
xγ1

γ1n
= xγ2

γ2n
(10.4)

⇔
(
γ2
γ1

)n
= xγ1

xγ2
(10.5)

⇔ n · log
(
γ2
γ1

)
= log

(
xγ1

xγ2

)
(10.6)

⇔ n =
log(xγ1

xγ2
)

log(γ2
γ1

) (10.7)

such that n is known. Alternatively, we can learn the goal distance directly.

10.2 Results

We evaluate the idea of the approach by training a DQGL agent with its primary
agent learning a discounted state-value function and using undiscounted value function
reconstruction for decision-making.

Figure 10.1 shows a learning curve of an uncapped DQGL agent. We observe similar
learning curves for every hyperparameter configuration we tried, i.e., none of the
uncapped DQGL agents was able to solve the racetrack. Even though when investigating
Q-values during training, we partially observe good approximations of the undiscounted
values, this is not the case across the board.

Figure 10.1: Learning curve of an uncapped DQGL agent

We think that the main issue of the approach is that it assumes that the approximations
of the undiscounted expected return and the goal distance are perfectly in sync. If that
is not the case, the calculated expected undiscounted return might have a large error,
which leads to unpredictable decision-making. This also explains why we observe that
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the agent becomes uninformed after already having learned a policy which can reach
the goal.
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11 Conclusion and Further Work

11.1 Conclusion

Throughout this thesis we investigated methods which do not rely on discounting.
We differentiated approaches commonly referred to as undiscounted methods from
approaches which optimise the total reward while still aiming to reach the goal.

We presented tuple learning methods, alongside its theoretical foundation and derived
the QQL and QGL algorithms.

The algorithms were compared with Q-learning and other undiscounted methods. We
concluded that in contrast to the other investigated algorithms, the tuple learning
methods were able to optimise an undiscounted goal reaching performance measure, thus
achieving the goal of this thesis. We observed that due to the exploration-exploitation
dilemma, tuple learning methods are prone to being hindered in their learning process.

Alongside the formerly observed problem of agents becoming uninformed when training
them using Q-learning with a discount factor of γ = 1, we observed that overestimation
bias caused another problem we called Q-value explosion. Even though this did not
pose a problem in the environments we used for evaluation, we expect this issue to
hinder the generalisation of tuple learning methods to environments with more complex
reward structures.

We proposed the method of undiscounted value function reconstruction to deal with
Q-value explosion. Despite having theoretical arguments that this approach might solve
the issue, in practice the issue is more complex and requires further investigation.

11.2 Further Work

We think that tuple learning methods can be generalised such that they become feasible
learning methods for other environments. For doing so, the two issues of the approach
have to be addressed.

Firstly, the method has to be combined with a strategy which ensures better exploration
properties to achieve reasonable learning durations.

Secondly, the issue of Q-value explosion needs to be addressed such that tuple learning
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methods can be used on environments with more complex reward structures. We
think that the undiscounted value function reconstruction approach, despite not being
successful as proposed, provides a core idea which can be built and extended on such
that the issue might be solved.

It is also of interest if varying the tolerance factor mid-training or during evaluation
improves the performance of TL agents.
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