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Abstract

The job of a processor is to execute incoming instruction sequences. This process
has been optimized over time and is therefore quite complex for modern processors.
Modern processors have several ports to execute instructions and thus can make use
of instruction-level parallelism to speed up execution time. This is the reason why the
port mapping, which maps the instructions to the ports, is an essential component
of such processors. Unfortunately, manufacturers normally do not publish these port
mappings for their processors. Nevertheless, knowing these mappings would help to
optimize programs.
In this thesis, we apply reinforcement learning, in particular a combination of tabular
q-learning and curriculum learning, to infer a processor’s port mapping. SMT solvers
are a well-known approach to solve optimization problems. We compare ourselves
to an SMT solver, which mostly produces optimal results for smaller mappings, but
currently cannot handle larger mappings. Our approach produces good results for small
and large mappings. In contrast to the SMT solver, it is scalable to experiments with
many instructions, even though it was only trained on the former, equally producing
good solutions. Although we limit ourselves to mappings that do not consider the
decomposition of instructions into µops, we are the first to address the problem with
reinforcement learning. Our results, especially the scalability, are promising and raise
the wish to extend these studies in future work.
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1 Introduction

Modern processors can apply out-of-order execution to process instruction sequences [27].
This is a technique that allows the processor to freely rearrange incoming instructions
as long as it does not affect the outcome. Using this technique leads to an intransparent
execution process that is very difficult to understand. The manufacturers of processors
normally do not publish which instructions can be executed on which ports. Under-
standing this process in its entirety helps to optimize programs as these programs can
then make use of the process’ characteristics (for example bottlenecks).
There exist different approaches to infer this internal information of a processor’s port
mapping, for example by using an evolutionary algorithm [24] or by applying machine
learning [18].
In this thesis reinforcement learning strategies are applied to the problem of inferring
a processor’s port mapping. In particular, the developed algorithm makes use of cur-
riculum learning [4, 20] and q-learning [25]. Q-learning is an algorithm that trains an
agent in an environment to find the actions that lead to the best outcome. Curriculum
learning describes the intuitive human learning process: starting with small problems
and increasing the difficulty from time to time. By combining curriculum learning with
q-learning the resulting algorithm is able to find good solutions for large port mappings
(meaning port mappings for many instructions and many ports). The results of the
algorithm are compared to the results of an SMT solver developed by Fabian Ritter.
The solutions of the SMT solver cannot compete with the solutions of the reinforcement
learning algorithm.
The theoretic model used in this work is developed by Ritter and Hack [24]. They
designed an algorithm that predicts the time a processor needs to execute a given
instruction sequence. This algorithm is used as a crucial part of the environment to
train the reinforcement learning agents.
The thesis is structured as following. First, the fundamental theories of processors
and port mappings are presented in chapter 2. Chapter 3 covers existing work related
to this topic. Next, the background information is completed with chapter 4 about
reinforcement learning. In chapter 5, reinforcement learning strategies are applied to
the problem and the algorithm is designed. This algorithm is then run and analyzed
in chapter 6. Chapter 7 concentrates on evaluating the algorithm with mappings of
large size and comparing the results to those of the SMT solver. In the last chapter the
findings are summed up and future work is discussed.
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2 Processors & Port Mappings

2.1 Data Hazards

Modern processors are built in a way that allows the processor to execute instructions
in parallel. While this reduces the required overall time to process instruction sequences,
new problems arise with this technique: data hazards [29]. Data hazards describe the
problem that occurs when instructions need to wait for the completion of a previous
instruction. There are three types of data hazards:

• WAW: a write-after-write data hazard occurs when a write-instruction’s destination
register is a previous write-instruction’s destination register and the execution of
this previous instruction is not completed yet

• RAW: a read-after-write data hazard occurs when an instruction tries to read from
a register to which a previously executed but not completed instruction writes

• WAR: a write-after-read data hazard occurs when an instruction writes to a
register which a previously executed but not completed instruction reads from

2.2 Processor Design

L1 ICache

µop Cache Decoder

Register Management

Scheduler

Port 0
Int ALU
Vec ALU

DIV

Port 1
Int ALU
Vec ALU

Port 2
LD/ST

Port 3
ST

L1 DCache

Figure 2.1: A simplified subdivision of a modern processor (taken from [24])
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CHAPTER 2. PROCESSORS & PORT MAPPINGS

The task of a processor is to process incoming instruction sequences. A simplified
subdivision of a modern processor can be seen in Figure 2.1. The processor has to
process incoming instruction sequences which are stored in the L1 Instruction Cache.
Every instruction can be decoded in its so-called micro-operations (µops). The job of
the decoder is to decode these incoming instructions to the corresponding µops. Because
the µops will probably be needed again in the future they will also be stored in a cache.
Modern processors can change the execution order of incoming instructions as long as
that does not change the outcome. To be more specific, the processor has to make sure
that the read-after-write dependencies between all operations are preserved, but as long
as this regulation is observed it can rearrange the program and execute instructions
in parallel. This technique is called out-of-order execution [27]. The idea behind this
strategy is that every cycle an instruction can be executed. That would not necessarily
be the case if the processor had to execute them in the incoming order because then
the processor would have to wait for each instruction to be completed to execute the
next one. So by deploying this strategy the processor can reduce the overall execution
time significantly.
Since read-after-write dependencies are observed, remaining potential data hazards are
violations against write-after-write and write-after-read dependencies. Resolving these
is the task of the register management.
Next, the µops have to be executed on the appropriate execution units. Some execution
units exist more than once such that parallel execution of similar µops is possible. Each
processor has a defined number of ports behind which the execution units are grouped.
The execution units in modern processors are often pipelined so that each port can start
executing a new instruction (or more specific new µops) each cycle. As an example,
it can be seen that in Figure 2.1 port 0 has an integer arithmetic logic unit (ALU), a
vector ALU and a divide unit and that port 0 and port 1 have an Int ALU. So some
µops have several ports as an execution option. Therefore there is a scheduler that
decides for each incoming µop on which port it will be executed.
The required time a processor needs to execute an incoming instruction sequence
depends on the dependencies of the instructions and the port mapping. In this work,
we only consider instruction sequences that do not have dependencies. That is the
reason why we concentrate on which instructions are mapped to which ports in a given
processor. Further, we assume that the instructions are scheduled optimally and that
each instruction does block a port for exactly one cycle. As described in [24] these two
assumptions normally hold for modern processors.

I:

P:

mul add store load

P1 P2 P3

Figure 2.2: A port mapping in the two-
level model

I:

U:

P:

mul add store load

U1 U2 U3

P1 P2 P3

2 1 11 1

Figure 2.3: A port mapping in the three-
level model
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2.3. PORT MAPPING

2.3 Port Mapping

A port mapping is a model that describes which instruction is decomposed into which
µops and which µops can be executed on which ports for a given processor. An example
can be seen in Figure 2.3: first, there are the instructions mul, add, store and load,
the second level consists of the µops U1-U3, and the third level consists of the ports
P1-P3. Because of these three levels, we call such a mapping a mapping in the three-level
model [24]. For this thesis, it is sufficient to further abstract from this three-level model
and consider a two-level model only, which is defined as follows.

Definition 1. A port mapping in the two-level model is a bipartite graph (I ∪̇ P,M)
with the nodes split disjointly into a set I of instructions and a set P of ports and edges
M ⊆ I× P between these [24].

This means that a mapping is a graph that defines which instruction can be executed
on which port. So we do not consider the decomposition of instructions into their
µops and instead simply map each instruction to its possible execution options. Each
instruction has to have at least one port as its execution option. Normally there do
exist instructions that can be processed without a functional unit. For example, a move
instruction that will only lead to a change in the register mapping. But in this work, we
only consider instruction sequences where each instruction can be mapped to at least
one port.
An example of a mapping in the two-level model can be seen in Figure 2.2. Compared
to the mapping in the three-level setting in Figure 2.3, it can be seen that the two-level
model comes with some restrictions in the representation. It is not possible in the
two-level model to indicate that an instruction might be decomposed in more than one
µop. Furthermore, there can exist diagonal connections in the three-level model that
might miss in the two-level model.

2.4 Underlying Model

The throughput is a measure that represents how long a certain processor needs to
execute a given program (or sequence of instructions). There do exist processors (e.g.
those by Intel) that have an integrated performance counter which counts the number
of µops that were executed for each port. Such counters can be used to infer port
mappings. But we do not want to rely on this feature as not all processors have it and
accordingly that would restrict the applicability of the results of this work. That is why
we stick with the throughput as the measure of the processor’s execution effort for given
instruction sequences.

5



CHAPTER 2. PROCESSORS & PORT MAPPINGS

Definition 2. The throughput t∗(e) of an instruction sequence (or experiment) e on
a given processor is the average number of processor cycles required to execute e in a
steady state [24].

We say that an execution reached a steady state if during an infinitely long execution
the average cycle number per iteration stays the same from some point on.
As already stated, a processor’s port mapping strongly affects the number of cycles that
are needed to execute an incoming instruction sequence. To understand this process
we have to take a look at the following definition of throughput depending on a given
mapping as defined in [24].

Definition 3. Given a port mapping m := (I ∪̇ P,M) in the two-level setting, the
throughput t∗m(e) under m for an experiment e : I → N is the objective value of an
optimal solution to the following linear program:

minimize t

subject to
∑
k∈P

xik = e(i) for all i ∈ I (A)

∑
i∈I

xik ≤ t for all k ∈ P (B)

xik ≥ 0 for all (i, k) ∈M (C)
xik = 0 for all (i, k) /∈M (D)

An experiment is defined as a function that maps an instruction to a natural number.
It represents for every instruction the number of its occurrences. The order of these
instructions is negligible since we only consider instruction sequences that do not have
dependencies. xik ∈ R describes how much of the mass of instruction i is distributed
to port k. Constraint (A) describes that for a fixed i the distributed mass of this
instruction to each port has to sum up to its total mass. So it simply means that each
instruction’s mass can be distributed to different ports. Constraint (B) states that the
throughput t is the upper bound for each port’s accumulated mass. As port k is fixed
in the formula the sum of all the instruction mass allocated on this port is less or equal
than t. So t is the greatest accumulated mass that one of the ports has. The fact that
the mass of the instructions is only distributed to ports where they are allowed to be
executed on is ensured by the last two constraints: constraint (C) ensures that each
instruction’s allocated mass on a port is greater or equal to 0 as long as the mapping m
allows executing i on k; constraint (D) ensures that if there does not exist an edge in
the mapping m, the mass of i cannot be allocated on port k.
It might seem counterintuitive that xik is a real number as it is not possible to split
up an instruction. But the intuition behind this linear program becomes clearer when
taking a look at an example. Let e := {add � 1,mul � 2, load � 1} be the given

6



2.5. BOTTLENECK SIMULATION ALGORITHM

experiment and the processor use the port mapping from Figure 2.2. Then it can be
seen in Figure 2.4 how each instruction’s mass is distributed to the three ports. The left
axis shows the required cycles. For each port, there is a bucket where the corresponding
instruction mass is put. The throughput is 1.5 as that is the upper bound for all buckets.
The allocation of add and load is straightforward because they can only be executed on
the corresponding ports according to the mapping. There remain two times mul. The
first mul is allocated to P1 since that bucket is still empty and allocating it to P2 would
lead to a throughput of 2.0. That would conflict with the minimization constraints in
the linear program. For the second mul it can be seen that it is split among P1 and
P2. This is possible for the processor by executing the second mul in every second
iteration on P1 and in every other second iteration on P2. So just looking at one of those
iterations the upper bound would be 2.0 because of either P1 or P2. But the throughput
is the average number of required processor cycles per execution in a steady state, so
the resulting throughput is 1.5. That is why the allocation mass of an instruction to
a port is not an integer but a real number, it does not mean that the instruction is
actually split.

P1 P2 P3

mul

mul

add load

0

1

2

1.5

Figure 2.4: An example for port usage (similar to the one in [24])

The linear program as defined in Definition 2 can also be defined for the three-level
model, but we will not introduce it here. We explained the three-level setting to give an
insight into the operational sequence of a processor and to demonstrate how processors
use port mappings. But the algorithm we will introduce is only constructed for mappings
in the two-level model. This is the reason why we will only consider two-level mappings
from now on, and instead of calling it a two-level mapping we simply stick with (port)
mapping.

2.5 Bottleneck Simulation Algorithm

The bottleneck simulation algorithm developed by Ritter and Hack [24] is used to
simulate the throughput of a given experiment. As solving the linear program from

7



CHAPTER 2. PROCESSORS & PORT MAPPINGS

Definition 3 for each experiment would take too much time, instead

t∗m(e) = max
Q⊆P

∑
{e(i) | Ports(m, i) ⊆ Q}

|Q|
(1)

is solved to determine the throughput t∗m(e) of an experiment e, given a port mapping
m := (I ∪̇ P,M). Here Ports(m, i) := {k | (i, k) ∈M}, so it describes the set of ports
under mapping m where instruction i can be executed on. The idea of Equation (1)
is to find the ports that are the bottleneck, meaning the ports that have the highest
throughput for the given experiment. The fraction stands for the throughput of a
given subset of ports as the numerator represents the number of instructions in the
experiment that can only be executed on these ports and the denominator represents
the size of this port subset. By taking the maximum with regards to any subset of
ports Equation (1) represents the optimal throughput of the experiment as long as the
instructions are scheduled to the ports optimally. Otherwise, the throughput t∗m(e) of
the given experiment will be higher than the result of the algorithm. So the result
is a lower bound for the throughput. It is proven that the result of this algorithm
is equivalent to the solution of the linear program in the publication by Ritter and
Hack [24].

2.6 SMT Solver

The problem of determining if a given formula is satisfiable is called satisfiability [8]. A
formula consists of quantifiers, variables, logical connectives, and function and predicate
symbols. If an interpretation of the variable and these symbols can be found so that
the result is true, the formula is called satisfiable. To interpret these symbols, so-called
background theories can be given as constraint to make sure that certain symbols are
interpreted the correct way. This is the so-called satisfiability modulo theory (SMT).
Fabian Ritter developed an algorithm that makes use of an SMT solver to find a
port mapping. It generates experiments up to predefined length and tries to find
a mapping that can explain the generated throughputs using an SMT solver. The
predefined parameter is called instruction bound. So by increasing this parameter the
resulting mapping is more stable for experiments of greater length. If it is set to a
low value the resulting mapping produces equal throughputs up to that length, but for
larger experiments the results may differ. Increasing the instruction bound leads to an
exponential boost of additional possible experiments the algorithm has to check. In the
evaluation chapter this algorithm is used for an additional comparison of the results. It
is then referred to as the SMT solver, even though it only uses one.
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3 Related Work

Finding out details and information about microarchitectures has already been the
subject of research in the past. Agner Fog published instruction tables [10] for many x86
microarchitectures by Intel, AMD, and VIA. The tables contain for all instructions their
latency, throughput, and micro-operation breakdowns. Some CPUs have integrated
hardware performance counters that can be used to measure the number of processor
cycles an instruction sequence needs to be executed. These are used by Agner Fog in
combination with manually constructed microbenchmarks to obtain the information
about the throughput and the subdivision into micro-operations. Such counters are not
integrated into every CPU. The instruction tables also contain data for some processors
without them. To get information about port usage for instructions on such processors,
the created instruction sequences are a combination of instructions with unknown port
usage and those where other sources already published port usage properties. This
approach is very cumbersome as creating these instruction sequences takes a lot of effort.
But the resulting tables were the only source for these data for some time in the past.
Abel and Reineke show in their work uops.info [1] that the port usage is underapproxi-
mated in these tables. In their approach, specific instructions are used to block a defined
subset of the available ports so that the instruction that is analyzed is executed on a
different port if possible. This principle is used for all instructions, leading to a more
accurate outcome with regards to the port usage. These microbenchmarks are generated
automatically. However, as their approach also makes use of hardware performance
counters only port mappings of corresponding processors are inferred.
Google developed EXEgesis [11], a tool that can infer latencies, throughputs and the
scheduling of µops for given instruction sequences for microarchitectures by Intel. They
use documents provided by Intel containing this information. As these documents
were initially addressed to human beings, the process of automatically parsing them
complicates this approach. Additionally to these documents not being parsable well,
they often miss information. llvm-exegesis [7] is a second project by Google inferring this
missing information by evaluating experiments that are designed for this particular case.
As the name tells, this second project is part of the LLVM-framework [15]. Nonetheless,
this approach also makes use of integrated performance counters for these experiments
to obtain the missing information.
There also exists a closed source tool by Intel, named Intel Architecture Code Analyzer
(IACA) [12], that can model the throughput and micro-operation-to-port distribution
given an instruction sequence. Although having insights in the processors that are not
publicly available, IACA’s predictions can still be different from observed outcomes as
described by Abel and Reineke [1]. IACA is not being developed any further since April
2019.
Laukeman et al. developed OSACA [16], a tool for throughput analysis of loop kernels.
The idea of OSACA is that it is an open-source version of IACA. They use existing port
mappings and validate them using generated instruction sequences. Applying this tool

9



CHAPTER 3. RELATED WORK

to processors that do not have an x86 architecture would require a port mapping to
validate.
llvm-mca [5] is a tool that predicts the performance of code. It is also part of the
LLVM-framework [15]. For its predictions the tool makes use of scheduling models
provided by the framework.
There also exists a tool that makes use of machine learning, called Ithemal by Charith
Mendis et al. [18]. It learns to predict the throughput for a given processor and is
portable among different processor architectures. As usual with neural networks, the
resulting model is a black box. Determining specific bottlenecks of a processor’s port
mapping is not possible with this tool due to the lack of access to the details of the
prediction process.
Ritter and Hack developed PMEvo [24], a framework to infer a processor’s port mapping.
PMEvo does not depend on hardware performance counters. This is achieved by a
freshly developed evolutionary algorithm that tries to find a mapping that can explain
the throughput of given instruction sequences. These sequences are constructed in such
a way that the port usage of the corresponding instructions can be inferred. Being
independent of hardware performance counters makes this approach applicable to a
much wider range of microarchitectures. An important part of the framework is a new
bottleneck simulation algorithm that can simulate the throughput of experiments for a
given port mapping efficiently. When using PMEvo to infer port mappings, the quality
of the results is comparable to that of existing work.
Alex Renda et al. recently developed DiffTune [23], a tool that can infer microarchi-
tectural parameters such as the number of micro-operations per instruction. It trains
a differentiable surrogate function whose output for a set of parameters matches that
of llvm-mca [5]. Then it trains parameters for the surrogate that make its predictions
match the measurements. Using this tool, all parameters for x86 microarchitectures in
llvm-mca [5] can be inferred.

Reinforcement learning is a paradigm of machine learning to train an agent to learn
sequential decision making [25]. While applying reinforcement learning algorithms is
originally designed for a setting with recurring agent-environment-interaction [25], it
can also be applied to combinatorial optimization problems [17]. For example, Khalil et
al. use reinforcement learning to solve classical graph problems such as the maximum
cut, the minimum vertex cover or the traveling salesman problem [13]. In particular,
they make use of q-learning [25], which is also used by others to solve combinatorial
optimization problems [2, 6].

The problem of finding a processor’s port mapping can also be seen as a combinatorial
optimization problem. In this thesis, q-learning with q-tables is applied to the problem
of inferring an unknown port mapping of a processor given throughputs of instruction
sequences for this processor. The approach is to combine tabular q-learning with
curriculum learning [4] to guide the learning path to find the unknown mapping. For the
simulation of experiments, the simulation algorithm by Ritter and Hack [24] is used.

10



4 Reinforcement Learning

Reinforcement learning is the third machine learning paradigm besides the two well
known supervised learning and unsupervised learning [25]. The difference between those
two and reinforcement learning is that the latter describes the paradigm to solve a
problem not by recognizing (un)labelled data and categorizing them but by trying to
maximize given rewards [25]. So it is much more convenient to apply to a problem
where the task is to learn sequential decision making in a given environment.

Agent Env

At

Rt+1

St+1

Figure 4.1: Agent-environment-interaction

4.1 Agent-environment-interaction

In reinforcement learning an agent is trained to choose actions that give high rewards [25].
The agent always interacts with a defined environment. That means that the agent
which finds itself in state St at timestep t can act with an action At and at time step
t+ 1 the environment will provide Rt+1 to the agent. Rt+1 is the reward corresponding
to the preceding action At. This reward tells the agent how to evaluate the chosen
action. In addition to the reward the environment also tells the agent the next state
St+1 it finds itself in after acting as chosen. This process can be seen in Figure 4.1. In
this way a trajectory [25]

S0, A0, R1, S1, A1, R2, S2, A2, . . .

can be formed to describe the interaction between the agent and the environment. The
environment can be seen as a Markov Decision Process which is defined as follows.

Definition 4. A Markov decision process is a tuple 〈S,A, T ,R〉 in which S is a finite set
of states, A a finite set of actions, T a transition function defined as T : S×A×S → [0, 1],
and R a reward function defined as R : S ×A× S → R [22].

T (s, a, s′) describes the probability of ending in state s′ when choosing action a in
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CHAPTER 4. REINFORCEMENT LEARNING

state s. Choosing action a in state s leading to state s′ will give a reward described by
R(s, a, s′). In a Markov decision process (MDP) it is not necessary that every action
can be chosen in every state, the set of all possible actions in state s is therefore defined
by A(s). However in this work, we will only work with MDPs where every action can
be chosen in every state, so ∀s ∈ S : A(s) = A.

4.2 Policy

The agent tries to find the best action for any given state, meaning an action that
results in high accumulated rewards. The goal is to find a policy that contains this
information so that by simply following this policy the agent chooses actions that lead
to high accumulated rewards.

Definition 5. An action policy is a function π : S → A that maps states to actions in
such a way that future rewards a maximized [26].

Finding a policy that tells the agent which choices give the highest reward (short or long
term) is not easy because the agent is faced with a problem: on the one hand the agent
wants to follow the policy as it depicts which of the possible actions is the best, but on
the other hand the agent has to choose other actions than the ones recommended by the
policy as otherwise, it might never find out if there are other actions better in different
states. So for the agent, it is a tradeoff between exploration and exploitation. Exploring
means to choose different actions than suggested by the policy and exploiting means to
strictly follow the policy for maximal rewards. This difficulty is often referred to as the
exploration-exploitation dilemma [25, 28]. The agent has to do both to find a good policy.
Only exploiting leads to not finding the optimal global solution and only exploring new
states leads to worse overall training results [28]. Especially at the beginning of training,
an agent should explore state-action pairs. As the agent has explored a lot it might
be good to slowly shift more and more to exploiting the policy. This is exactly what
an ε-greedy-policy does. With a probability of ε it chooses a random action out of all
possible actions in the given state, and with a probability of 1− ε it chooses the best
action greedily as returned by the policy π. Choosing the ε defines which way to go
between exploration and exploitation, the larger the ε the more exploration and vice
versa.

4.3 Return

The agent should not rate an action only upon how large the reward of this particular
action is but also by how good the possible rewards in succeeding states are. The
cumulative sum of all rewards is called the return [25] and is defined as
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Gt = Rt+1 +Rt+2 + . . .+RT−1 +RT

where T is the final step. The existence of a final step indicates that there are terminal
states from which no further action is possible. We call a trajectory of succeeding states
that ends in a terminal state an episode. An example of that is a game where the episode
ends when the agent either won or lost the game. But sometimes the problem the agent
is trained to solve does not have a final state. The return for such a continuous task is
defined by

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . =
∞∑
k=0

γkRt+k+1

with 0 ≤ γ ≤ 1 [25]. γ is called discount rate and determines how future rewards should
be weighted. For γ = 0 only the immediate reward of one action is considered whereas
for γ = 1 all future rewards are considered equally. So the larger γ the more the return
represents also rewards further away in the future. Such a discounted return can also
be used for an episodic task as can be seen later in this thesis.

4.4 Value-functions

We can now use the return to determine the quality of a state by using a state-value
function that is defined as follows.

Definition 6. A state-value function is a function v : S → R where ∀s ∈ S : vπ(s) =
Eπ[Gt|St = s] [25].

Here t is the timestep and Eπ[·] describes the expected return when following policy
π for the given state s. Similarly to this function determining the expected return of
a state we can also define such a function that determines the expected return when
taking a specific action a in a given state s and following π afterwards.

Definition 7. An action-value function is a function q : S ×A → R where ∀s ∈ S, a ∈
A : qπ(s, a) = Eπ[Gt|St = s,At = a] [25].

Both of these functions can be transformed to the recursive equations

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γvπ(s′)

]

13
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and
qπ(s, a) =

∑
s′,r

p(s′, r|s, a)
[
r + γ

∑
a′

π(a′, s)qπ(s′, a′)
]
,

also called the Bellman equations [25] for vπ and qπ. The recursive form shows how
the successor states are related to the value of the current state (respectively how the
successor state-action pairs are related to the current state-action pair).

A reinforcement learning agent’s goal is to find an optimal policy [25]. We denote an
optimal policy by π∗. When talking about optimal policies we can in the same way also
introduce the optimal value function [25] and optimal action-value function [25] as

v∗(s) = max
π

vπ(s)

and
q∗(s, a) = max

π
qπ(s, a).

They are defined by simply exploiting the policy which maximizes the return the most.
These two functions can be transformed into

v∗(s) = max
a

∑
s′,r

p(s′, r|s, a)
[
r + γv∗(s′)

]
and

q∗(s, a) =
∑
s′,r

p(s′, r|s, a)
[
r + γmax

a
q∗(s′, a′)

]
,

which are called the Bellman optimality equations [25].

4.5 Q-learning with Q-tables

Q-learning is a reinforcement learning algorithm to train an agent in a defined environ-
ment. The idea of q-learning is that for each state the agent can determine the quality
of every possible action that it can choose.

state
action A1 A2 A3

S1 Q(S1, A1) Q(S1, A2) Q(S1, A3)
S2 Q(S2, A1) Q(S2, A2) Q(S2, A3)

Figure 4.2: An example for a q-table with two states and three actions

In the tabular version of q-learning, a q-value for each state-action-pair is stored in a
table. An example can be seen in Figure 4.2. The q-table can be initialized with random
values. In the beginning, these values do not represent the quality of the corresponding
actions in any manner. During training, each time the agent chooses an action in a
state it receives a reward corresponding to the state-action pair. Now the q-value of
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this pair can be updated since the received reward gives information about how good
this action is in the given state. The q-values are updated by using

Q(St, At) = (1− α) Q(St, At) + α

(
Rt+1 + γmax

a
Q(St+1, a)

)
[25]. (2)

α is called the learning rate and describes to what extent the newly calculated value will
influence the old q-value. With α = 1 it means that the old q-value will be overwritten
by a new one such that the old value does not have any influence on the new one.
Whereas setting α = 0 means that the new observation does not have any influence at
all because the q-values always stay the same. Useful values for α lie between these two
values. The larger α the more influence new observations have and therefore already
learned action values can easily get lost. This is why usually small values are used for α.
It leads to a continuous learning curve that is slower, but therefore much more stable.
From a q-table a policy can be derived easily by just greedily choosing the action with
the largest q-value for each state.
As stated earlier in this section the q-table is initialized with random values. Using a
greedy policy that always returns the action with the largest q-value does therefore not
lead to a good policy as the largest q-value is just some random value. This is where
the exploration-exploitation dilemma (Section 4.2) comes into play. At the beginning of
training, exploration should be boosted so that the random values with which the q-table
is initialized do not have any influence anymore. While the training is progressing the
q-values replicate more and more the true quality of the corresponding state-action
pairs. To achieve this the agent uses an ε-greedy policy. The key is to start with a
large ε and decrease it during training from episode to episode. This results in a lot of
exploration in the beginning and refining the q-values over time.

4.6 Optimistic Initialization

Instead of using random initialization of the q-table at the beginning, the q-table
can be initialized with optimistic initial values, which pushes the agent towards more
exploration at the beginning of training [25]. Initializing the q-table with optimistic
values means to set the hightest possible q-value for every entry in the table. If the
hightest value is not known a high value is chosen. High q-values lead to the agent
thinking every action is good in the beginning and therefore it is more likely that the
agent explores all state-action pairs sooner.

4.7 Multi-agent Q-learning

In multi-agent reinforcement learning [21] there is more than one agent interacting with
the environment. The agents find themselves in a state and each agent can then choose
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Agent1

Agent2

Agent3

Env

At

At

At joint
actions

Rt+1

St+1

Rt+1

St+1

Rt+1

St+1

Figure 4.3: Interaction between multiple agents and the environment as in [21]

an action independently of the other agents. The environment then provides one reward
to all agents. This reward corresponds to the joint action of all agents’ actions together.
Additionally, the next state is provided to the agents by the environment. This process
can be seen in Figure 4.3 for 3 agents. Since every agent interacts with the environment
simultaneously it is considerably harder for each agent to find values that represent
each action well. For example, if an agent chooses an action that would have given a
high reward in a single-agent setting, it might be possible in the multi-agent setting
that another agent simultaneously chooses an action that changes the environment in a
way that the first agent’s action will be rewarded poorly. In this case, the agent will
decrease the q-value of an action that in most cases is a good action to choose.

4.8 Curriculum Learning

Sometimes it can be too hard for the learner to solve a complex problem right away. A
huge state space for example can confuse in the beginning because the agent might not
be able to recognize good actions. Therefore it might be a good idea to confront the
learner with a small subproblem of the actual problem and then gradually increase the
difficulty in levels from there. This learning technique is defined in the following.
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Definition 8. In curriculum learning the goal is to design and choose a full frequence
of tasks (i.e. a curriculum) M1,M2, . . .Mt for an agent to train on, such that learning
speed or performance on a target task Mt is improved [20].

A training level depicts the training of an agent on one of the tasks in the curriculum.
The idea is that the defined tasks for each training level increase in difficulty such that
the agent does not have to start to solve a complex task right away. By starting to
train the agent to learn a sub-problem of the actual problem the agent can use what it
learned in this level to solve the more complex problem in the next training level.
This strategy of defining a curriculum for the learner is derived from how humans and
animals learn. Logically it makes sense that the learner will make better progress if
the data is not presented in a random fashion but with increasing difficulty. Bengio
et al. [4] show this in an example where they train a language model. The model has
to learn a vocabulary of defined size. Training inputs are snippets of grammatically
correct English sentences of a specific length and the model has to predict the best
word that could follow this snippet. The vocabulary is the training distribution, and
it is increased from step to step: when training starts the input data will only consist
of a vocabulary of size 5,000, but each step it will increase to eventually 20,000. The
resulting model is better than a learner that is not trained using a curriculum.
So this strategy applied to a learner can improve the learning process. It can on the one
hand lead to faster convergence [14] and on the other hand it can improve the solution
quality [4]. The first advantage seems logical: a learner confronted with a very complex
problem without having any knowledge about it might need long training to find a
solution because there are too many possible ways to try; if the learner has to solve
a small subproblem of the initial problem and can use what it learned there to solve
problems of increasing size more quickly, it can find a solution more quickly. The idea
behind the second advantage is the same: if the agent starts to solve the actual problem
immediately without any knowledge it might not find the global solution but only a
local one because of the overload of data and possibilities; the global optimum might
only be possible to find if the learner figures out how to solve smaller subproblems and
how to use this earned knowledge.
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5 Applying Q-learning Methods to the
Problem

5.1 Construction of the Environment

To construct the environment the number of ports and the number of instructions have
to be specified. These define the architecture of the simulated processor. Using this
architecture, a port mapping for this processor is generated. So the simulated processor
maps instructions to ports according to this port mapping and provides a simulation
of the required processing time for given experiments. Furthermore, the environment
provides the possibility to create experiments that include the throughput measurements
of this processor for the instruction sequences. Lastly, as the environment has to provide
a reward for each of the agents’ actions, the reward function has to be defined.

5.1.1 Creating the Secret Mapping

The port mapping in the processor that the agent tries to find is called secret mapping.
As mappings in the three-level-model and therefore the decomposition into µops are
not considered in this work, the names of the instructions can be omitted. It suffices to
specify the number of instructions and the number of ports. How these instructions are
mapped is defined by the corresponding mapping. The secret mapping is created by
randomly deciding for each port-instruction pair whether a connection is set or not. We
will consider several different constraints when it comes to these connections:

1. no constraints at all,

2. each instruction has at most 75% of the ports as execution option,

3. each instruction has at most 50% of the ports as execution option, and

4. each instruction has at most 25% of the ports as execution option.

Comparing the different outcomes of training for the different constraints helps to analyze
if the secret mapping influences the solution quality of the algorithm. An additional
constraint that always has to hold for a secret mapping is that each instruction has at
least one port as an execution option (as reasoned in Section 2.3). The secret mapping
is always denoted with m′.
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5.1.2 Creating Experiments

As already explained in Section 2.4, the order of incoming instructions is irrelevant
for the experiments. The only adjustable parameter is the experiment length. Given
the length of the experiment, random instructions from the instruction set have to be
chosen until the experiment has the defined length. While the order does not matter,
the frequency of each instruction does: one instruction can be chosen several times. For
each experiment, it is simulated how long the processor using the secret mapping needs
to execute it. This simulation is done by using the bottleneck simulation algorithm
described in Section 2.5. The resulting cycle number is notated next to this experiment
so that the agent can provide the reward function the two throughputs as described in
the next section.

5.1.3 Defining the Error Function

There are several possibilities when it comes to choosing an error function. In this work
we will make use of three different error functions defined by

R1(T1, T2) := −
(
T1 − T2

)2
,

R2(T1, T2) := −
∣∣T1 − T2

∣∣,
and R3(T1, T2) := 1− exp

(
|T1 − T2|

)
.

For each of these error functions, the inputs are 2 throughputs T1 and T2 of the same
experiment for 2 different mappings. In the following R ∈ {R1, R2, R3} describes any of
these error functions, with R : R+ ×R+ → R−0 . So an error can be negative or 0. An
error of 0 means that the throughputs were equal, so 0 means there is no error at all.
The greater the difference between the two given throughputs, the worse.

5.2 The Task

Given the set of ports P and the set of instructions I, the agents have to find M such
that for all experiments e: R(tm′ , tm) ≤ δ for m := (I ∪̇ P,M) with δ ∈ [0,∞). In
reinforcement learning often near-optimal policies are found instead of an optimal policy.
The optimal case is reached for δ = 0 as this means that the found mapping m processes
instructions exactly as fast as the secret mapping m′. Later, it can be seen that this
is rarely possible for the agents (especially if the number of ports and the number of
instructions is increased). So the task is to find a mapping that fulfills this equation
with δ being as small as possible. Even if the found mapping does not reproduce the
same throughputs it can still be used for optimization if it resembles the throughputs of
the secret mapping as such a small discrepancy is in reality barely noticable.
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It should be noted that it is not possible for the agents to check this condition for every
possible experiment. Since the length of an experiment does not have an upper bound
there are infinitely many possibilities.

5.3 The MDP

Let n be the number of ports and agenti be the agent corresponding to instruction i.
Then the MDP for agenti is defined by

• the set of states

S := {P0, P0P
a1
1 , P0P

a1
1 P a2

2 , . . . , P0P
a1
1 . . . P an

n |∀j ∈ {1, . . . , n} : aj ∈ A},

• the set of actions A := {ON,OFF},

• the transition function

T (s1, a, s2) :=


1, if s1 = P0 ∧ s2 = P0P

a
1

or s1 = P0P
a1
1 . . . P am

m ∧ s2 = P0P
a1
1 . . . P am

m P am+1
with 1 ≤ m < n and a1, . . . , am ∈ A

0, otherwise

, and

• the reward function

R(s1, a, s2) :=
{

0, if s2 6= P0P
a1
1 . . . P an

n

r(s2), if s2 = P0P
a1
1 . . . P an

n

with a1, . . . , an ∈ A and r(s) := R
(
tm′(e), tm(e)

)
for an experiment e containing

instruction i and m being the mapping corresponding to the chosen actions of
each agent.

The function r is defined by the error of two throughputs for an experiment. This error
can only be calculated if a terminal state is reached as otherwise the mapping m cannot
be inferred. After an action for the last port is chosen, the error can be calculated by
using function R as defined in Section 5.1.3. Theoretically it is sufficient to have only
the information about the set ports for instruction i to calculate the throughput for an
experiment that only contains this instruction. Practically the bottleneck simulation
algorithm needs the complete mapping, so the final state of each agent. As the agents
act independently from each other this is not a problem, it is waited for each agent
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to choose actions for all ports to afterwards infer the complete mapping m from each
agent’s final state. So for each instruction i there is one agent interacting with the
environment as defined in the MDP above. Then simulating experiments that contain
more than one instruction is also possible.
The error generated for a mapping and an experiment corresponds to all chosen actions
for the instructions in the experiment. By using R as defined above the reward only
corresponds to the chosen action for the last port. But the order of these ports is
arbitrary, so giving this reward only for the action chosen for the last port does not
seem logically. Therefore reward shaping is applied such that each of the chosen actions
is rewarded with the error resulting from the experiment. This is done by using the
MDP 〈S,A, T ,R′〉 instead, where

R′(s1, a, s2) := R(s1, a, s2) + f(s2)

and

fπ(sk) :=
{

0, if k = n∑n−1
i=k R(si, π(si), si+1), otherwise

with si+1 being the state after choosing action π(si) in si for the current policy π.

So for the action leading to the terminal state, nothing changes, but for preceeding
actions the same reward is applied due to function f .
This MDP is defined to solve a combinatorial optimization problem. In reinforcement
learning the agent tries to learn which action is best to choose in a given state. As the
goal is to find the best mapping, actions are irrelevant after the task is solved. The
learner could then also forget the learned q-values as long as the mapping is contained.
This means that after training agents in the described environment the resulting agents
are not better at inferring other different port mappings. They find a good port mapping,
but afterward do not have any advantage in finding another processor’s mapping. That
is why the MDP is designed in a way that does not seem intuitive at first sight.

5.4 Construction of the Algorithm

The algorithm uses tabular q-learning to train reinforcement learning agents to find the
secret mapping of a processor. The agents are trained for a defined number of episodes.
In each episode, a mapping is generated and the environment is requested for random
experiments. The throughputs of these experiments with the generated mapping and
the ones using the secret mapping (noted in each experiment) are used to get a reward
from the environment. Using this reward the agent can update the q-table for all chosen
actions. This process is visualized in Figure 5.1.
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Model Agents

random experiment e q-table

secret mapping m′ mapping m

bottleneck simulation algorithm bottleneck simulation algorithm

tm′(e) tm(e)

R

Figure 5.1: Structure of the algorithm

5.4.1 Defining the Q-table

Designing the q-table to find the secret mapping is not straightforward. When construct-
ing the q-table for the state set as defined in Section 5.3 there are 2n+1 − 1 possible
states for n ports for each instruction. So the size of the q-table grows exponentially for
the number of ports. For example for 20 ports1 the q-table for one instruction would
have size 2,097,151. As there usually are several hundred instructions the computational
resource needed would then be even greater.
Therefore a different design is chosen for the q-tables. The goal is to find the mapping,
so the interesting states in the MDP are the final states for each agent. These final
states depict all permutations that are possible for a port mapping. Choosing only these
states as entries in our q-table would also exceed a reasonable limit as the number of
states would be half as large2 as in the previously described approach. The relevant
information in each of these final states is, if a certain port connection is set ON or
OFF. By extracting only this information without caring about how other ports are set,
the size of the q-table can be reduced dramatically. So the states P0P

ON
1 and P0P

OFF
1

are handled as one state of the q-table, denoted by P1. In general all states . . . P am
m are

handled as state Pm of the q-table independent of which states and actions are chosen
before and independent of action am. So the states of such a q-table are the different

1Most of the microarchitectures used nowadays do not have more than 10 ports, but defining an
algorithm on this assumption would restrict its usability for the ones that have more.

2As there are 2n final states this would lead to 1,048,576 rows in the q-table
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ports, and the actions for each of these states are switching the corresponding port
ON or OFF. When using this approach, the q-table has the size number of ports × 2.
Such a q-table exists for each instruction because each agent tries to find the mapping
for one instruction and therefore needs its own q-table. As the rewards an agent can
obtain lie in the range (−∞, 0], the q-values will also lie in this range (with greater
q-values representing better actions). An agent can infer the mapping corresponding to
its instruction from the q-values in the table by comparing for each port the two action
values for ON and OFF and choosing the larger one.

Example 5.4.1. Let the q-table in Figure 5.2a be the given q-table for instruction mul.
Then the corresponding mapping inferred from this q-table can be seen in Figure 5.2b.
For P1 and P2, the q-value for action ON is greater than the one for OFF, so this
connection is set. On the other hand for P3 the q-value for OFF is larger than the
corresponding ON value, therefore there is no connection to this port.

ON OFF
P1 -0.5 -0.8
P2 -0.2 -0.3
P3 -0.4 -0.1

(a) q-table

I:

P:

mul

P1 P2 P3

(b) port mapping

Figure 5.2: An example q-table and the corresponding mapping

5.4.2 Instructions as Agents

As already described when defining the MDP, for each instruction a seperate agent is
defined such that the problem shifts to a multi-agent problem. Each agent is responsible
for one instruction, meaning that each agent has a q-table as described in the previous
section and tries to find good q-values that represent the connections of the agent’s
instruction to the ports. For reasons of convenience one can rearrange the values of
each agent’s q-table and integrate it in one shared q-table. In such a shared q-table
the rows are the instructions and the columns for the different ports are in each case
divided into one subcolumn for ON and one subcolumn for OFF.

Example 5.4.2. Let an architecture with instructions add, mul, store, and load, and
3 ports be given. Figure 5.3a displays the agents’ q-tables corresponding to such an
architecture. Each agent has its q-table and only cares about one instruction. From all
agents’ q-tables the full mapping can be inferred as for each instruction the corresponding
q-table characterizes which port can be used. The mapping inferred from the 4 q-tables
in Figure 5.3a can be seen in Figure 5.3b. Figure 5.3c shows the shared q-table derived
from the four agent’s q-tables from Figure 5.3a.
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add ON OFF
P1 -0.5 -0.8
P2 -0.9 -0.3
P3 -0.4 -0.5

mul ON OFF
P1 -0.5 -0.8
P2 -0.2 -0.3
P3 -0.4 -0.1

store ON OFF
P1 -0.9 -0.8
P2 -0.2 -0.1
P3 -0.5 -0.1

load ON OFF
P1 -0.5 -0.3
P2 -0.2 -0.1
P3 -0.3 -0.5

(a) One q-table for each agent

I:

P:

add mul store load

P1 P2 P3

(b) The corresponding port mapping

P1 P2 P3
ON OFF ON OFF ON OFF

add −0.5 −0.8 −0.9 −0.3 −0.4 −0.5
mul −0.5 −0.8 −0.2 −0.3 −0.4 −0.1
store −0.9 −0.8 −0.2 −0.1 −0.5 −0.1
load −0.5 −0.3 −0.2 −0.1 −0.3 −0.5

(c) One shared q-table for all agents together

Figure 5.3: Example tables and mapping

5.4.3 Updating the Q-table

In the beginning of each episode the mapping m is inferred from the current (shared)
q-table. This mapping m is the mapping used in this episode. By inferring a mapping
the agents choose actions for all the states: for example if the current q-table would
look like the one in Figure 5.3c, agentadd would choose action ON in state P1, OFF in
state P2, and ON in state P3.
We define expnumber as the number of experiments generated and explength as the
maximal length of these experiments. Every experiment is already annotated with
the throughput of the processor using the secret mapping m′. For each experiment e
the throughput tm(e) is simulated. Since there are now two throughputs tm′(e) and
tm(e) the reward can be provided by the environment. For each experiment the reward
will only be provided to the agents corresponding to the instructions contained in this
experiment. If for example the experiment {add→ 1} leads to reward −0.5, then only
agentadd uses this reward to update its q-table, none of the other agents has to update it.
That is because the instruction in the experiment only uses the ports corresponding to
the actions that this agent chose, so it is completely independent from the other agents’
action choices. So for each of this agent’s chosen action the corresponding q-value is
updated using Equation (2).
This procedure is structured in Algorithm 1. The parameters of this algorithm are
the number of ports, the number of instructions, the reward function and the type of
initialization of the q-table (random vs. optimistic). These parameters are part of the
model and are independent of the algorithm as such. The hyperparameters that adjust
the algorithm itself are the number of episodes, the number of experiments used each
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Algorithm 1: Multi-agentTraining
1 Let P be the set of Ports;
2 Create one q-table for each instruction, initialized randomly/optimistically;
3 ε ← εstart;
4 foreach episode i do
5 Infer mapping m from current q-tables ε-greedily;
6 Generate random experiments E (each containing throughput tm′);
7 for experiment e in E do
8 Simulate throughput tm of e;
9 re ← R(tm′ , tm);

10 foreach distinct instruction insn in e do
11 Let agentinsn be the agent corresponding to instruction insn;
12 for Port Pj in P do
13 Let aj be the chosen action for Pj by agentinsn;
14 Qmaxj+1 ← max

(
Q(Pj+1,ON), Q(Pj+1,OFF)

)
;

15 Q(Pj , aj)← (1− α) Q(Pj , On) + α
(
re + γQmaxj+1

)
;

16 end
17 end
18 end
19 if ε > εend then
20 ε ← εdecay * ε;
21 end
22 end

episode expnumber, the experiment length explength, the learning rate α, the discount
rate γ, εstart, εdecay, and εend. εstart obviously describes the starting value of ε. ε will
be reduced exponentially by multiplying it every episode with εdecay. At a certain
point, it makes sense to stop this reduction as it can be good to still have some kind
of randomness in the action-choosing process. That is what εend specifies: from the
episode on when ε reaches εend it stays the same till the end of this training level.

5.5 Determining the Mapping Shape in Advance

The shape of a mapping describes how many ports are set for each instruction. When
using Algorithm 1 to find a port mapping it can happen that the agents find a port
mapping which leads to similar throughput times, but does not have the same shape as
the secret mapping. Figure 5.4 shows an example: on the left is the secret mapping
the agents tried to find, and on the right is the mapping they came up with. The
representation of the mappings differs from the one seen earlier in this work. It is the
representation used in the implementation, which is also much more convenient for
mappings of larger sizes. That is because more ports and instructions lead to more
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"0": ["2"],
"1": ["1", "2", "3"],
"2": ["0", "1", "3"],
"3": ["0", "1", "3"],
"4": ["0", "2", "3"],
"5": ["0", "1", "2", "3"],
"6": ["3"],
"7": ["2"]

(a) secret mapping

"0": ["3"],
"1": ["0", "1", "2", "3"],
"2": ["0", "1", "2", "3"],
"3": ["0", "1", "2", "3"],
"4": ["1", "2", "3"],
"5": ["1", "2"],
"6": ["0", "3"],
"7": ["3"]

(b) found mapping

Figure 5.4: A secret mapping and the mapping the agents found after training

connections crossing over each other diagonally which can be incomprehensible when
looking at. Note that the instructions (and also the ports) are just named after IDs as
the name is irrelevant. Port and instruction names start with 0. Each line corresponds
to one instruction, namely the instruction at the beginning of the line before the colon.
To the right of the instruction, all of its execution options are listed. So in this secret
mapping instruction "6" can only be executed on port "3" (whereas for the found mapping
the execution options for instruction "6" are ports "0" and "3"). In this example, it is
visible that the agents found a mapping that only resembles the shape of the secret
mapping, but differs for several instructions. Instructions "1", "2", "3", and "6" have one
additional execution option and instruction "5" has 2 instead of 4 ports as an execution
option in the found mapping.
To avoid this the shape of the secret mapping can be determined before starting the
training. One of the assumptions made for the model we use is that each instruction
takes exactly one cycle to be processed by the processor. This property of the model
can be used to infer for each instruction how many execution ports exist in the secret
mapping. An experiment containing only one instruction can be used as input for the
simulated processor. The resulting cycle number reveals how many ports are execution
options in the secret mapping. If the resulting number is 1.0, then there is exactly one
port as an execution option. If the resulting number is 0.5, then there are two ports
as an execution option. So the ports that can be used in the secret mapping for this
instruction can be calculated by 1

#cycles with #cycles meaning the number of cycles the
processor using the secret mapping needs to execute this instruction. When doing this
for each instruction, the mapping shape can be determined.
With a mapping shape, acting is not straightforward for the agents anymore: if they
always choose the actions corresponding to the greater q-values, they might end up
setting too many (or not enough) ports to ON. If the mapping shape is known in advance
there is no point in inferring a mapping from the q-table that does not match the shape.
There are several possibilities to solve this problem. The one that seems to be most
intuitive is explained in the following. Given a q-table for an instruction and the number
of ports that have to be set, the agent chooses actions of type ON as long as there
are the q-values for ON greater than the q-values for the corresponding OFF action.
If there are more of these actions available than required, the ones with the greatest
q-values are chosen. If on the other hand there are not enough of these actions available,
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the agent has to stop to consider only the ON-actions whose q-values are greater than
the ones for the OFF-actions. It will then choose the actions which have the greatest
q-value for action ON, starting with the greatest and continuing in descending order.
In this last choice process the q-values for the corresponding OFF-actions are always
greater. The choice process can be seen in Algorithm 2 for one agent.

Algorithm 2: FindActions
1 Input: the agent’s q-table, the desired number of actions n;
2 Initialize res = {};
3 Let PON be the set containing all ports with greater q-values for ON;
4 Let POFF be the set containing all ports with greater q-values for OFF;
5 for n steps do
6 if |PON| > 0 then
7 p← arg max

p∈PON
Q(p,ON);

8 add p to res;
9 remove p from PON;

10 else
11 p← arg max

p∈POFF
Q(p,ON);

12 add p to res;
13 remove p from POFF;
14 end
15 end
16 return res;

Now having the best choices, the random exploration coefficient ε has still to be
considered. That means that for each action given the result from Algorithm 2, with
a probability of ε a random value is chosen instead. Such a random value is one of
the values that is not in the set containing the best actions so that low q-values get
the chance to improve. This process can be seen in Algorithm 3. The result is a port
mapping that has the shape as determined in advance by the algorithm. When adding
this to Algorithm 1, the mapping shape has to be determined at first before training,
and then inferMappingGivenShape has to be called in line 5 instead of simply inferring
the mapping from the q-tables ε-greedily.

5.6 Defining the Training Curriculum

Finding a large port mapping right away can be hard for the agents, so it seems to be a
good idea to use curriculum learning and first confront them with smaller problems.
Unfortunately, it is not possible to somehow reduce the size of the secret mapping, train
the agents to find good q-values for it and then increase the secret mapping’s size. That
is because the q-values then only fit the mapping of this first training level, they are
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Algorithm 3: InferMappingGivenShape
1 Input: the mapping shape;
2 Let m be a mapping with no connection set;
3 foreach agent do
4 Let nagent be the desired number of ON-actions as in the given shape;
5 Pbest = FindActions(Qagent, nagent);
6 Prest = P \ Pbest;
7 for nagent steps do
8 Let numrandom be random number between 0 and 1;
9 if numrandom < ε then

10 remove random port from Prest and set the corresponding connection
in m;

11 else
12 remove random port from Pbest and set the corresponding connection

in m;
13 end
14 end
15 end
16 return m;

useless for a subsequent training level with increased mapping size (as described in
Section 5.3). So another parameter has to be chosen to increase the complexity of each
training level when applying curriculum learning to this problem. There are several
parameters to tweak in this algorithm with some of them increasing the difficulty of the
problem more than others. For example, does the choice of the reward function influence
the training process but it is not obvious by looking at different reward functions
which makes learning easier for this specific problem. But the maximal length of the
experiments that are generated each training episode clearly changes the difficulty for
the agents. Each agent is designated for one instruction and tries to find a good port
setting for it. By increasing the maximal length of the experiments, the probability that
more different instructions are contained in an experiment, increases. That means that
a given reward not only corresponds to one agent’s chosen actions, but all the agents’
chosen actions that correspond to the instructions in the experiment. For example, the
throughput of an experiment only containing one add instruction will generate a reward
corresponding to all the actions agentadd chose, so exactly |P| (for each port either ON
or OFF). For each additional distinct instruction in an experiment, the throughput will
generate a reward corresponding to |P| more actions. Therefore it is harder for the
agent to find good actions as the provided reward corresponds to more actions when an
experiment contains more different instructions.
The generated experiments can vary in length up to the defined maximal length.
By increasing the maximal length each level of the curriculum, the probability that
experiments with small lengths will occur decreases. If the probability that small
experiments are generated is too low the difficulty for the agents could increase too
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much to the next training level. Therefore two variations of generating experiments are
considered. In the first variation, the different lengths are distributed equally among
all generated experiments. In the second variation experiments of smaller lengths are
generated more often than larger experiments, so that although experiments get longer
from level to level there are still enough small experiments. The first variation is
straightforward, so in the following it is explained how the second variation is realized.
For the second variation for each experiment a random value is chosen from a list
containig each number from 1 up to the defined maximal length. This chosen value
defines the length of the experiment. The probability of generating a small experiment
is increased by adding more small numbers to this list. For example when sampling a
random value from the list [1, 1, 2] the probability that this value is 1 is twice as high as
for the value 2. Given the maximal length explength, the frequency of a given length l
in the list is calulated by

y(explength, l) := explength − (l − 1).

This leads to the following sequences (where on the left is the explength and on the right
the list containing each value l exactly y(explength, l) times):

1→ [1]
2→ [1, 1, 2]
3→ [1, 1, 1, 2, 2, 3]
4→ [1, 1, 1, 1, 2, 2, 2, 3, 3, 4]
5→ [1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5]
...

...

So the probability that small values are chosen does not decrease too much when
increasing the maximal length. This second variation is referred to as an unequal
experiment distribution whereas the first one is an equal experiment distribution.
Experiment distribution is in the following referred to as expdistr.
The key of curriculum learning consists of the fact that the learner can use the insights
it learned in the last level to solve the given problem in the next level. That means
εstart should not be set too high because with a high εstart the learner chooses random
actions all over again and might change q-values of actions that already converged to
a good value. In such a case the results of the previous training levels can get lost.
Therefore it is a good idea to set εstart to a low value, but not too low so that there is
still a small amount of exploration in the beginning.
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6 Improving and Analyzing the Algorithms

In this chapter the algorithms presented in the last chapter are analyzed. They have a
lot of hyperparameters that can be adjusted. Different values for these are evaluated and
compared to each other. After the hyperparameter search it is analyzed how much the
secret mapping influences the solution quality of the algorithm. Algorithm 1 is called
the base algorithm in the following. The second algorithm is Algorithm 1 inferring the
mapping shape in advance, so extended by Algorithm 2 in line 5. This algorithm is called
shape-acting algorithm. Before comparing these two algorithms the base algorithm is
analyzed in the succeeding section.

6.1 Increasing Solution Stability

To analyze how the algorithm performs in general, some initial values are chosen for
the different (hyper)parameters. The number of ports is set to 4 and the number of
instructions to 8. These are low values but it is sufficient to depict the procedure of one
curriculum and the issues that can occur and how they can be improved. ε is set to 1.0,
εend is set to 0.01, and εdecay is chosen in such a way that ε reaches εend after 60% of
the episodes of the first training level. The number of episodes is set to 50,000 for every
level. This leads to an εdecay of ∼ 0.99985. R1 is chosen as the reward function. The
q-table is initialized randomly. α is set to 0.002 and γ is set to 0.99. Thirty experiments
are generated for each training episode, with a maximal length of 2 in the first, 5 in the
second, and 8 in the third level, so all in all 3 levels of training. After each level, an
evaluation run with 400 episodes is executed. During each episode of such an evaluation
run, random experiments with a maximal length of 3 are generated. These experiments
are evaluated with the mapping inferred by the current q-table and are then compared
to the actual throughput. For this evaluation the same reward function is used as for
the training. So the resulting plot shows how good the current q-values are. Since there
are 30 random experiments in each of the 400 episodes (altogether 1200 experiments),
it is very unlikely that the agents find a mapping that is only equal for these specific
experiments and different for other ones. That is the reason why the training is stopped
if an evaluation run’s results are only rewards with the value 0.
Figure 6.1 shows 4 plots: 3 training plots of the 3 levels and 1 bar plot showing the
mean return for the evaluation run after the corresponding levels. The red line in a plot
displays the return. The left y-axis depicts the return scale, the right one the ε scale.
The return for a single episode is the average of all returns of the generated experiments
of this episode. It is visualized by a small dot in the plot in cyan. In the bar plot a bar
depicts the mean of the returns of one evaluation run. As there are 3 training levels
there are 3 bars. Since the return scale is negative smaller bars stand for better returns.
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(a) first training level (b) second training level

(c) third training level (d) means of the evaluation runs

Figure 6.1: Plots of a training run with 3 training levels

In the first training level, ε starts larger than in the remaining two. As described in
Section 5.6 the initial value for εstart should not be too large for other training levels
than the first one. In this case, εstart is set to 0.1 with εdecay being 0.9995. The first
training plot shows that the agents get better at finding a good setting as the reward
curve is rising towards 0. In the second level of training one can see that the agents got
even better than in the first one. This can also be seen in the corresponding bar in the
bar plot as the mean of the returns of the found mapping is close to 0. In the third
level of training however the agents got worse again as the third bar in the bar plot is
showing. The mapping the agents found and the secret mapping is shown in Figure 5.4.
It can be seen that the agents managed to find a mapping that kind of resembles the
shape of the secret mapping but is different for several instructions.
Unfortunately it does not happen all the time that the agents make steady progress
throughout all training steps. What sometimes happens during training is that in the
first level the agents learn very solidly, but in one of the succeeding levels, the average
reward jumps abruptly to much higher or lower values. This phenomenon can be seen
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# ports : 4
# instructions : 8
εdecay : ∼ 0.9995
εend : 0.01
reward function : R1

α : 0.002
γ : 0.99
optimistic init. : False

expnumber : 30
explength : 2, 5, 8
mapping constraints : 1.0
training levels : 3
expdistr : equal

Figure 6.2: Training plot of the third training level showing this phenomenon

in in the third training plot in Figure 6.1 or more clearly in Figure 6.2. It visualizes the
challenge the agents have to solve. A small change to some instructions’ settings can
have a big influence on the outcome. If such a change only leads to worse results the
q-values are adjusted correspondingly. In such a case the agents learn that the chosen
actions are bad. Such a collapse of the reward does not happen by choosing actions
that are immediately punished. This happens because choosing different ports for an
instruction can lead to better throughput times (and therefore higher reward) for certain
experiments, while for other experiments containing different instruction combinations
the choice leads to a worse throughput. If an agent already has the correct setting for
the corresponding instruction the choices can still be punished with bad rewards due
to bad settings of other instructions. That is the reason why it is particularly hard
for each agent to find a good setting. They have to come up with a solution that also
harmonizes well with the setting of the other agents.
As can be seen in Figure 6.1 just before the end of the last training level the reward
curve drops down a little bit. This means that the final q-table does not represent the
best mapping the agents found. To make sure that this does not ruin the end result
when happening towards the end of training the best mapping during each training step
is saved. For that the quality of the current mapping has to be determined regularly.
The quality is determined using the Mean Absolute Percentage Error (MAPE). Every
100 episodes, 200 random experiments with a maximal length of 10 are generated. Using
the current mapping of this episode the MAPE of this mapping is calculated. In this
way it can always be checked if the current mapping is better than the best mapping
saved to that point by comparing this freshly calculated MAPE to the saved MAPE
of this best mapping. The experiment number and experiment length to determine
the MAPE are different from the ones used for the evaluation runs after each training

33



CHAPTER 6. IMPROVING AND ANALYZING THE ALGORITHMS

level. For an evaluation run 30 experiments with a maximal length of 3 are generated
400 times. This is because an evaluation run serves as a visualization of how good the
current q-table performs, so it is not really important if it is not perfectly accurate.
On the other hand when the MAPE is calculated during the training to save the best
mapping it should be as accurate as possible because it determines the result of the
algorithm. But this calculation also suffers from a trade-off. Ideally the MAPE would
be calculated every episode of training and with many experiments. Unfortunately this
is not feasible, which is the reason why it is only calculated every 100 episodes for 200
experiments of length 10.

6.2 Mapping Shape in Advance

In this section the impact of determining the shape of the secret mapping prior to
training is analyzed. So as already stated there are two versions being compared, the
base algorithm and the shape-acting algorithm. For the training runs some values have
to be chosen for the (hyper)parameters. These can be seen in Figure 6.3. Increasing the
number of ports slows down the algorithm significantly as simulating an experiment
takes longer. When increasing the total number of instructions it is not as much slower
as when increasing the number of ports, but it still slows down the overall running time
(this is due to the bottleneck simulation algorithm). For this reason only 4 ports and
40 instructions are set for the parameter search as otherwise the required time would
be out of the scope of this thesis. In the evaluation chapter it is analyzed how well
the algorithm with the found parameters performs for a setting with larger port and
instruction numbers.

# ports : 4
# instructions : 40
εdecay : ∼ 0.9998
εend : 0.01
reward function : R1

α : 0.002
γ : 0.99

mapping shape : ___
optimistic init. : False

expnumber : 30
explength : 2, 5, 8
mapping constraints : 1
training levels : 3
expdistr : equal

Figure 6.3: Parameter setting with mapping shape being the unfixed parameter

For each of the two versions the algorithm is run 65 times. Each run uses a seperate
random seed so that the secret mapping is different in every run. Each of the resulting
mappings is used to evaluate 10,000 random experiments. By evaluating these experi-
ments the MAPE of the different throughputs can be calculated, resulting in 65 MAPEs
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for each version of the algorithm. These MAPEs can then be compared to see which
of the algorithms is better. The number 65 is arbitrary. Due to reasons of limited
time and computational resource it is not possible to do more than 65 runs per setting.
In Figure 6.4 two different histograms can be seen visualizing these errors. The first
histogram depicts for different error ranges how many of the 10,000 experiments fall
into the corresponding range. Negative errors mean that the processor using the found
mapping took longer for the experiment than the one using the secret mapping, and for
positive errors it is the other way around. In the second histogram the absolute error
is depicted in the same way. As can be seen in the histograms 10,000 experiments are
sufficient to see how well the mapping performs.
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Figure 6.4: Histograms visualizing the performance of the found mapping
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The distribution of the MAPEs of the evaluation of the 65 runs for both versions can
also be visualized in a histogram. Each resulting mapping of these 106 runs is evaluated
with 10,000 random experiments as previously explained, and thus there are 65 MAPEs
for each version. The two histograms showing the distribution of 65 MAPEs for each
version can be seen in Figure 6.5. The vertical orange line depicts the mean. The one
on the left corresponds to the base algorithm and the one on the right to the algorithm
extended by inferring the mapping shape in advance and acting correspondingly. The
difference between the two distributions is clearly visible. The algorithm finds better
solutions when inferring the mapping shape in advance as the mean of the MAPEs
with determining the mapping shape is 2.0, whereas without it it is 6.1. The standard
deviation is also much smaller for the version that determines the mapping shape in
advance. So the algorithm performs better if the mapping shape is known to the agents
before training.
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(b) shape-acting algorithm

Figure 6.5: Histograms showing the MAPEs’ distribution for both versions

Figure 6.6 shows two training plots: on the left, the graph of the first training level
without using the mapping shape (base algorithm) and on the right, the graph of the
first training level with using the mapping shape. Each of these is from one of the
corresponding 65 training runs. Showing the plots of these two runs particularly is
arbitrary, but the plots of the first training level for the other runs look similar to these,
so these two serve as a representation. It can be seen that while the base algorithm can
improve its q-values during training, the reward curve for the algorithm that infers the
mapping shape in advance looks quite disappointing. Nevertheless when looking at the
return scales it can be noticed that the base algorithm never reaches as good rewards
as the shape-acting algorithm. So when the mapping shape is inferred in the beginning
the algorithm immediately infers better mappings. Because this return is already very
good it has then a hard time to improve the q-values, especially in this training level
with the same experiment size.
It is also interesting to analyze in which training level the agents found the best mapping.
Figure 6.7 depicts for each training level how often the best mapping was found in this
level. The left histogram is for the version without determining the mapping shape in

36



6.2. MAPPING SHAPE IN ADVANCE

(a) base algorithm (b) shape-acting algorithm

Figure 6.6: Two training plots of the first training level

advance and on the right the one that determines it before training. It can be seen that
without the mapping shape for most of the runs the best mapping is found within the
first training level. So the agents do not always get better from level to level. When the
mapping shape is determined it is the other way around as for most of the trainings the
best mapping is found in the last training level. What is noticable here is that out of all
of the 65 trainings not a single time the best mapping is found in the first level. This
suggests that the agents usually make progress from level to level when the mapping
shape is known. Further it encourages to check if the agents learn better when there
are more levels.
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Figure 6.7: Histograms showing in which training level the best mapping is found
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6.3 Hyperparameter Search

To find good values for the hyperparameters a partial grid search is performed. A normal
grid search consists of searching the best values for all hyperparameters independently
of the dependencies between them. Doing this is out of the scope of this thesis. In the
following grid search, all hyperparameters except for one are set to some fixed value
while different values for the remaining (unfixed) hyperparameter are used to evaluate
the different solutions. Though after fixing the found value it will not be cross-validated
again later. Doing this partial grid search for every single hyperparameter would also
be out of the scope of this thesis. The hyperparameters being analyzed are the number
of training levels and the corresponding experiment length explength, the number of
experiments expnumber that are generated each episode, the discount factor γ, and
the experiment distribution expdistr. So the ones not being analyzed are ε, α and the
number of episodes. While hyperparameters like explength are very specific and only
exist in this algorithm, ε, α, γ and the number of episodes are hyperparameters that
are a classical component of a q-learning algorithm. That is the reason why there exists
work that specializes on finding good values for them. For example Franklin Fernandez
and Wouter Caarls propose a method that uses evolutionary computing techniques to
find good values for ε, α, and γ for q-learning [9]. Although γ is also analyzed there, it
is still evaluated in the following grid search. That is because the theory of the MDP
changes when setting γ to 0.0. By setting it to 0.0, the next port is not influencing
the new q-value when it is updated because the second part of the last summand in
equation (2) is 0. So then the actions the agents choose are independent from each other.
Therefore it is interesting to see how the solution quality of the algorithm changes when
changing the value of γ.
The evaluation concept applied in the last section to compare the different versions of
the algorithm is also used in this partial hyperparameter search. So for each parameter
under test the algorithm is run 65 times and each of these runs is evaluated using
the error between the throughput of the resulting mapping and the one of the secret
mapping for 10,000 experiments. When analyzing the next hyperparameter, the 65 runs
of the chosen setting can be reused as one of the settings for the next hyperparameter
under test.

6.3.1 Number of Training Levels & Experiment Length

In this section it is analyzed how the algorithm performs when it is run with a dif-
ferent number of training levels. Changing the number of training levels comes along
with defining the experiment length for each of these levels. That is because for each
additional level of training the experiment length has to be specified. Therefore both
parameters are changed at once in this step of the grid search. Figure 6.8 shows the
fixed parameters.
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# ports : 4
# instructions : 40
εdecay : ∼ 0.9998
εend : 0.01
reward function : R1

α : 0.002
γ : 0.99

mapping shape : True
optimistic init. : False

expnumber : 30
explength : ___
mapping constraints : 1
training levels : ___
expdistr : equal

Figure 6.8: Parameter setting with explength and the number of training levels being
the unfixed parameters

The algorithm is analyzed for three different settings:

• 3 training levels with experiment lengths 2, 5, and 8

• 4 training levels with experiment lengths 2, 4, 6, and 8

• 7 training levels with experiments lengths 2, 3, 4, 5, 6, 7, 8

The first of the three settings corresponds to one of the settings from the last section,
so these 65 runs are used again for this comparison. The three histograms showing the
distribution of the the MAPEs of the 65 runs for each parameter variation can be seen
in Figure 6.9. All three of them are quite similar: the means of these MAPEs are 2.03,
2.28 and 2.05, so fairly close together.
For these three settings it might be particularly interesting to see in which level the best
mapping is found due to the different level settings. Figure 6.9 depicts the corresponding
distributions. The histograms show that by using more levels with experiment lengths
in between the 3-level version the best mapping is often found earlier. But as seen in
Figure 6.9 these mappings are not better than the ones found late in training runs with
fewer levels. The spots when they are found are just stretched among the additional
levels, with the number of found mappings rising from level to level.
Since the results of the 4-level variant is worse than the other two choosing this setting
would not make sense. The results of the 3-level variant and the 7-level variant are
almost equally good, therefore the 3-level variant is chosen from now on. Using the
other variant would mean to sacrifice computational resource as it takes more time to
train the agents 4 more levels.
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(c) 4 training levels
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(d) 4 training levels
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(e) 7 training levels
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Figure 6.9: On the left the distribution of the MAPEs of 65 runs for different training
levels, on the right in which training level the best mapping is found
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6.3.2 Number of Experiments per Episode

The next parameter to be analyzed is expnumber. It defines how many experiments are
generated each training episode to generate rewards. As concluded in the last section
three levels of training are used with the experiment lengths 2, 5, and 8. A full list of
the parameter setting is depicted in Figure 6.10. For expnumber three different values are
used to analyze how it influences the performance of the algorithm. The used values are
20, 30, and 40. The algorithm is run 65 times for each of these settings. For the setting
with expnumber = 30 the 65 runs from the previous section are used again. Again, each
of these 195 runs is evaluated by 10,000 random experiments, generating an MAPE.

# ports : 4
# instructions : 40
εdecay : ∼ 0.9998
εend : 0.01
reward function : R1

α : 0.002
γ : 0.99

mapping shape : True
optimistic init. : False

expnumber : ___
explength : 2, 5, 8
mapping constraints : 1
training levels : 3
expdistr : equal

Figure 6.10: Parameter setting with expnumber being the unfixed parameter

The distribution of the resulting MAPEs is depicted in the histograms in Figure 6.11. It
can be seen that changing the number of experiments that are generated each episode
does not have much influence on the solution quality, the mean MAPE is about the same
for all three versions. This is very interesting as for the setting with expnumber = 40
twice as many experiments are evaluated each episode than when setting expnumber to
20. That means twice as many experiments are evaluated in total over the coarse of
50,000 episodes, for each training level. Despite these additional rewards the agents are
not significantly better at finding the mapping. This could be out of the same reason
why more episodes could also not be an improvement: at a certain point the agents
cannot learn more than they already have in this particular level, no matter how many
episodes are added. Increasing the experiment number is not the same as increasing the
total number of episodes as in the former the random exploration coefficient is higher
for a part of the added training time. Nevertheless it is similar. Another reason that the
agents do not improve despite this additional training time could be that the problem is
too complex to solve it with tabular q-learning. It could be that the agents are simply
not able to find a better mapping than one that still has a small error.
The mean of the setting with expnumber = 20 is worse than the means of the other two
settings. Therefore this setting is not chosen. The standard deviation of the setting
with expnumber = 40 is better than the one for the setting with expnumber = 30, however
the means are about equal. Because the means are about equal and simulating more

41



CHAPTER 6. IMPROVING AND ANALYZING THE ALGORITHMS

experiments each episode takes more time, the 30-experiment variant is chosen as the
resulting best setting. So for the next runs, expnumber is set to 30.
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Figure 6.11: The distribution of the MAPEs of 65 runs for the 3 parameter settings

6.3.3 Discount Factor

In the beginning of this chapter the motivation for checking the algorithm’s performance
with γ set to 0.0 is explained. Additionally to that a third version is run, where γ is
set to 0.8, to see if something in between could be better than one of the two edge
cases. Again, 65 runs for each of the 3 versions are compared by evaluating them with
10,000 experiments and the corresponding MAPEs. The parameter setting can be seen
in Figure 6.12.
Figure 6.13 shows the histograms of the distribution of the MAPEs for the different
settings. It can be seen that for γ = 0.0 and γ = 0.99 the means are almost equal, for
γ = 0.8 it is a bit worse. This suggests that the algorithm is stable with regards to γ.
That is probably because the trajectories are not very long, especially with this setting
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# ports : 4
# instructions : 40
εdecay : ∼ 0.9998
εend : 0.01
reward function : R1

α : 0.002
γ : ___

mapping shape : True
optimistic init. : False

expnumber : 30
explength : 2, 5, 8
mapping constraints : 1
training levels : 3
expdistr : equal

Figure 6.12: Parameter setting with γ being the unfixed parameter

with only 4 ports. But even when using 10 ports the trajectories are still short, that
could be the reason why γ does not have too much influence on the result. As the mean
of the setting with γ = 0.0 is only by 0.05 smaller but the standard deviation of the
setting with γ = 0.99 is by 0.23 smaller the chosen value for γ is 0.99.

43



CHAPTER 6. IMPROVING AND ANALYZING THE ALGORITHMS

0 2 4 6 8 10
MAPE

0

10

20

30

Tr
ain

in
g

Ru
ns

33

16

8

4 3
1

µ = 1.9786
σ = 1.6607

(a) γ = 0.0

0 2 4 6
MAPE

0

5

10

15

20

Tr
ain

in
g

Ru
ns

20
18

6
8

5
3

1
3

1

µ = 2.2009
σ = 1.5322

(b) γ = 0.8

0 1 2 3 4 5 6
MAPE

0

5

10

15

Tr
ain

in
g

Ru
ns

17
16

9

3

9

2

4
3

2

µ = 2.0276
σ = 1.4274

(c) γ = 0.99

Figure 6.13: The distribution of the MAPEs of 65 runs for the 3 parameter settings
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6.3.4 Experiment Distribution

The last hyperparameter that is analyzed in this grid search is expdistr, i.e. how the
length of the chosen experiments is distributed. The two settings for this hyperparameter
are either an equal experiment distribution or an experiment distribution as described
in Section 5.6, denoted as unequal. The parameter setting is shown in Figure 6.14.

# ports : 4
# instructions : 40
εdecay : ∼ 0.9998
εend : 0.01
reward function : R1

α : 0.002
γ : 0.99

mapping shape : True
optimistic init. : False

expnumber : 30
explength : 2, 5, 8
mapping constraints : 1
training levels : 3
expdistr : ___

Figure 6.14: Parameter setting with expdistr being the unfixed parameter

Figure 6.15 shows the distribution of the resulting MAPEs. It can be seen that with
unequal experiment distribution the agents do not learn as well as when the length of
the experiments are distributed equally. The intention of the distribution as defined
in Section 5.6 is to avoid that the difficulty when transitioning to the next level is
increased too quickly. The resulting histograms show that the opposite is the case: too
many small experiments seem to slow down the learning progress such that the agents
eventually come up with worse results. Therefore the equal distribution is the better
choice for this hyperparameter.
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Figure 6.15: The distribution of the MAPEs of 65 runs for the two parameter settings
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6.4 Influence of the Mapping

In this section the influence of the mapping on the outcome of the algorithm is analyzed.
As described in Section 5.1.1. 4 different mapping constraints are studied:

1. no constraints at all,

2. each instruction has at most 75% of the ports as execution option,

3. each instruction has at most 50% of the ports as execution option, and

4. each instruction has at most 25% of the ports as execution option.

For each of these constraints 65 random mappings are generated satisfying the cor-
responding constraint. Then the algorithm is run to train the agents to find these
mappings. The found mappings are then used to evaluate 10,000 experiments, leading
to 65 MAPEs per constraint on the secret mapping. Figure 6.16 shows the distribution
of these MAPEs for the 4 constraints.
It can be seen that these constraints have a big impact on the solution quality of the
algorithm. The solution quality improves if the constraints are reduced. For a setting
with 4 ports constraint 4 leads to setting exactly one port per instruction to ON (0
ports are not allowed as there has to be an execution option for each instruction). For
this kind of setting it seems very unintuitive that the algorithm does not find a good
solution. Nevertheless the reason is quite straightforward. Since the mapping shape
of the secret mapping is inferred before the training experiments of length 1 result in
a reward of 0.0 for any random mapping the agents come up with. In the first level
only experiments of length 1 and 2 are generated. As there is only one port set for
a setting with 4 ports and constraint 4 the rewards can only be −1.0 or 0.0 in this
training level. The fewer constraints are set the more rewards are possible in between
these two numbers, leading to better results. Because R1 is used rewards of −1.0 are
considerably worse than rewards between 0.0 and −1.0, therefore the reward gets better
for fewer constraints. So as more execution options are possible for each instruction the
possibility that the throughputs are closer although not the correct mapping is found
increases. The more constraints for the secret mapping the worse the performance of
the algorithm.
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Figure 6.16: The distribution of the MAPEs of 65 runs for the 4 different mapping
constraints
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7 Evaluation

Lastly, the algorithm has to be evaluated to see how well it can perform for mappings of
a larger size, which is the focus of this chapter. As good values for the hyperparameters
are found the remaining parameters have to be evaluated. It is particularly interesting
to see how the algorithm performs for larger mappings as then the complexity of the
task increases. The used setting for this evaluation is 8 ports and 310 instructions.
These numbers are chosen because Ritter and Hack [24] evaluated their algorithm using
this setting. It has to be said that their algorithm is not comparable to the one of this
thesis as they infer 3-level-mappings and thus it is important which instructions they
choose. In our approach instruction types are irrelevant. It is interesting to see how the
algorithm performs for considerably larger mappings and therefore these numbers (310
instructions, 8 ports) are taken over.
The reward functions being analyzed are the three functions defined in Section 5.1.3.
Additionally, it is analyzed how using another initialization method changes the solution
quality of the algorithm. The two initialization methods for the q-table that are
evaluated are random initialization and optimistic initialization. The idea of optimistic
initialization is to ensure a better exploration of the state space as explained in Section 4.6.
For the optimistic initialization, all values are set to 0.0 which is the largest possible
q-value. In particular, the algorithm is run with these four settings:

1. reward function R1, random initialization,

2. reward function R2, random initialization,

3. reward function R3, random initialization, and

4. reward function R1, optimistic initialization.

The remaining two settings (R2 and R3 paired with optimistic initialization) are both
omitted because the reward function and initialization method do not have very much
influence on the quality of the solution. This is showed in the following. The other
(hyper)parameters are set to the found values of the last chapter, listed again in
Figure 7.1. As seen in Section 6.4 the secret mapping itself has a big influence on the
performance of the algorithm. For this final evaluation, there are no constraints set
for the secret mappings. For each of the four settings listed above the algorithm is
run 30 times for the same 30 mappings. Additionally, the SMT solver (Section 2.6) is
also run 30 times for the same mappings. The resulting mappings of the runs of the
algorithm and the runs of the SMT solver are again evaluated using random experiments.
The tabular q-learning algorithm uses experiments of lengths 2, 5, and 8 to find the
secret mapping. The SMT solver on the other hand infers a mapping that matches the
experiment throughputs of the secret mapping with the experiment length being lower
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# ports : 8
# instructions : 310
εdecay : ∼ 0.9998
εend : 0.01
α : 0.002
γ : 0.99

mapping shape : True
expnumber : 30
explength : 2, 5, 8
mapping constraints : 1
training levels : 3
expdistr : equal

Figure 7.1: Parameter setting for the remaining (hyper)parameters

or equal to a defined instruction bound. Therefore different experiment lengths are used
to evaluate the resulting mappings, starting with an experiment length of 2.

random experiment e algorithm

secret mapping m′ mapping m

bottleneck simulation algorithm bottleneck simulation algorithm

tm′(e) tm(e)

MAPE

(30) (30)

10,000 10,000

Figure 7.2: Structure of the evaluation process

The structure of the evaluation process is visualized in Figure 7.2. The left side of the
diagram depicts the throughput generation of the experiment with the secret mapping.
This is done when the experiment is created as described in Section 5.1.2. The right
side of the diagram depicts how such an experiment is evaluated with the mapping
the corresponding algorithm found. Note that which algorithm is not further specified,
the right hand side is done 5 times: 4 times the reinforcement learning algorithm with
the different settings listed above and additionally to that, with the SMT solver. The
two throughputs are used to calculate the relative error. There are 10,000 experiments
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7.1. EVALUATING WITH EXPERIMENTS OF LENGTH 2

generated, leading to 10,000 relative errors. These relative errors can then be used to
calculate the MAPE. So there is one MAPE for the solution of each of the 5 algorithms
for the same secret mapping. And this process is then repeated for 29 other secret
mappings. Alltogether there are 30 MAPEs for each of the 5 algorithms.

7.1 Evaluating with Experiments of Length 2

As already described, the solutions are first evaluated with experiments with a maximal
length of 2. The distribution of the resulting MAPEs for the reinforcement learning
algorithms are gathered in Figure 7.3.
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(a) R1, random initialization
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(c) R3, random initialization
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Figure 7.3: Histograms showing the distribution of the MAPEs for the 4 algorithms

It can be seen that the resulting means of each of the 4 settings are very close. Due to
that it cannot be concluded which of the 4 settings produces the best results, but it
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seems that the setting with R1 and random initialization of the q-table is slightly better
than the other ones.
The 30 mappings the SMT solver inferred are evaluated in the same way, i.e. using
10,000 experiments. The histogram depicting the 30 MAPEs for these results can be seen
in Figure 7.4. This histogram shows that the results of the SMT solver are much worse
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Figure 7.4: Histogram showing the distribution of the MAPEs for the SMT solver

as the mean of the MAPEs is about 50 times higher than the mean of the MAPEs of the
reinforcement learning algorithms (no matter which of the four settings). This seems
very unintuitive as the SMT solver should find mappings whose throughputs are very
close (up to a defined bound) to the throughputs of the corresponding secret mappings
(as long as it terminates within a predefined time span). To analyze this it helps to take a
closer look at one of these secret mappings and how the SMT solver’s solution compares
to the reinforcement learning algorithms’ solutions in detail. Figure 7.5 shows several
heatmaps that depict the correlation of the found mapping and the secret mapping for
the different runs. They all correspond to the same secret mapping. In the heatmap,
a square corresponds to a number of experiments. A square with a darker grey level
represents more experiments. Squares on the straight line in the middle are experiments
that are predicted perfectly, meaning the throughputs of these experiments with secret
and found mapping are the same. Blocks on the left side of the line mean that the
throughput of the experiments using the found mapping was too large and on the right
side that the throughput was too small. So the heatmap describes how well the resulting
throughputs correlate. Additionally to the heatmaps for the solution of the 5 algorithms
there is a sixth heatmap. This sixth heatmap is an evaluation of the 10,000 experiments
with the secret mapping itself, so the perfect solution. This can be seen as the squares
all lie on the line perfectly.
These heatmaps correspond to the secret mapping of the first of the 30 training runs.
Displaying such heatmaps for all 30 secret mappings for different experiments lengths
would take too much space, especially as the found mappings are evaluated with different
experiment lengths in the following. Therefore just the ones corresponding to the first
training run are shown. It can be seen that the upper 4 heatmaps are very similar. For
some of the squares the difference in colour might be noticeable, but most of the squares
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(a) R1, random initialization
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(b) R2, random initialization
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(c) R3, random initialization
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(d) R1, optimistic initialization
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(e) SMT solver
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Figure 7.5: Heatmaps visualizing the correlation of found and the secret mapping
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look the same. This fits to the histograms showing the distribution of the MAPEs
(Figure 7.3) as the means of these MAPEs are also very close. Nevertheless, the heatmap
corresponding to the SMT solver’s solution looks different. It can be seen that the
predicted throughputs do not match the measured throughputs of the secret mapping
for much more experiments than in the other heatmaps. That is because there are more
squares further away from the correlation line and in addition to that, these squares are
fairly dark, i.e. they represent a lot of experiments. This means that the SMT solver
does not work as intended. If working correctly it should find a mapping that produces
almost perfect results - not for any experiment, but - for experiments of a length that
does not exceed the predefined instruction bound, in this case, 2. This issue seems
to have something to do with the size of the secret mapping that is inferred. That is
because for smaller mappings the SMT solver produces quite good solutions. Figure 7.6
shows the heatmap for a corresponding solution of the SMT solver for a smaller secret
mapping. In this case, the architecture consists of 8 ports and 10 instructions, with the
instruction bound being set to 5. The heatmap shows the correlation of 10,000 random
experiments of length up to 5. The resulting MAPE is 0.00% and it can be seen that
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Figure 7.6: Heatmap for a solution of the SMT solver for a smaller mapping

the results correlate perfectly.
Thus, we conclude that the size of the corresponding secret mappings is the reason
for the SMT solver’s solution not being optimal. The SMT solver seems to stop its
inference process before it should, leading to this imperfect solution.

7.2 Evaluating with Experiments of Length 5

Next, the results are evaluated with experiments with a maximal length of 5. Figure 7.7
shows the heatmaps for the found solutions for the first of the 30 runs. The histograms
depicting the distribution of the MAPEs is not shown as the result is not much different

54



7.2. EVALUATING WITH EXPERIMENTS OF LENGTH 5

0 1 2 3 4 5
measured

0

1

2

3

4

5

pr
ed

ict
ed

100

101

102

103

(a) R1, random initialization

0 1 2 3 4 5
measured

0

1

2

3

4

5

pr
ed

ict
ed

100

101

102

103
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(d) R1, optimistic initialization
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(e) SMT solver

Figure 7.7: Heatmaps visualizing the correlation of found and the secret mapping
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to the distributions seen before (Figure 7.3). When increasing the instruction bound in
the SMT solver it does not find better mappings. The corresponding heatmap visualizes
that.

7.3 Evaluating with Experiments of Length 20

Next, the results are evaluated with 10,000 experiments with a maximal length of 20
to see how the results change for longer instruction sequences. Figure 7.8 shows the
distribution of the MAPEs for each of the 4 versions of the algorithm.
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(c) R3, random initialization

2 3 4 5 6 7
MAPE

0

1

2

3

4

5

Tr
ain

in
g

Ru
ns

5 5

4

5

2

5

1

2

1

µ = 4.1757
σ = 1.1589

(d) R1, optimistic initialization

Figure 7.8: Histograms showing the distribution of the MAPEs for the four versions
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(a) R1, random initialization
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(d) R1, optimistic initialization
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Figure 7.9: Heatmaps visualizing the correlation of found and the secret mapping
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The histograms show that the results lie in the same range again, but this time there is
more difference noticeable between the four settings. The setting with R1 and random
initialization seems to be the best setting with a mean MAPE of 3.7. The two other
versions with random initialization are about equal. The variant that uses optimistic
initialization is clearly the worst as the corresponding mean MAPE is about 0.3 greater
than the one of the two other versions, which is 10% worse in total. In addition to
that, the standard deviation is also worse than for the other 3 settings. As explained
in Section 4.6, optimistic initialization of the q-table results in more exploration. The
state space in the q-table is reduced (as described in Section 5.4.1) and therefore the
trajectories in the MDP are shorter. Due to that, optimistic initial values do not
necessarily have the effect that every possible state of the original MDP is explored.
That is the reason why optimistic initial values do not improve the quality of the port
mapping the agents find.
That the MAPE for the solutions is still around 4% can also be seen in the heatmaps.
Figure 7.9 depicts the heatmaps for the first mapping (as in the last sections) for
10,000 random experiments with a maximal length of 20. The heatmaps show that
the found mapping produces similar throughputs as the secret mapping, with stronger
discrepancies for integer throughputs like 2, 3, and 4. It is hard to see by looking at
these heatmaps where the four settings produce different results, the most noticeable
changes are for the predicted and measured throughputs of 4 and 3 (the outliers). Apart
from that, they are quite similar again. The mapping by the SMT solver produces
results that have much greater throughputs than measured for the secret mapping.

7.4 Evaluating with Experiments of Length 100

Eventually, the quality of the found mappings is evaluated with much larger experiments.
This is particularly interesting as the algorithm only uses experiments of a maximal
length of 8 during training to find the secret mapping. In the following, the found
mappings are evaluated by 10,000 random experiments with a maximal length of 100.
This shows if the algorithm’s results are capable of scaling up. Figure 7.10 shows the 4
histograms with the distribution of the corresponding MAPEs. The histograms show
that the resulting mapping predicts the throughputs very good with the mean of the
MAPE being under 1%. Since the results are better for longer experiments the found
mappings perform worse for shorter experiments. One intuitive explanation for this
could be that for shorter experiments the correct mapping for each of the contained
instructions weighs more. As the experiments get longer the false predictions for a few
instructions do not carry as much weight anymore. The order from best to worst setting
is the same as before, the first setting (with R1 and random initialization) finds the
best solutions.
Figure 7.11 shows the heatmaps for the prediction quality of the solution of the first out
of the 30 runs (as in previous heatmaps). The heatmaps confirm that longer experiments
are predicted better than shorter experiments. From a certain point on, the agents’
mapping predicts the experiments very good. It can be seen in the histograms that for
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(c) R3, random initialization
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(d) R1, optimistic initialization

Figure 7.10: Histograms showing the distribution of the MAPEs for the four versions

this mapping this point is for experiments generating a throughput of about 8. What
could be seen for the heatmap of the mapping the SMT solver found is visible more
extremely for these larger experiments.
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Figure 7.11: Heatmaps visualizing the correlation of found and the secret mapping
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8 Conclusion and Future Work

In this thesis, we developed the first reinforcement learning algorithm that is able to
infer the port mapping of a given processor in the two-level model by only having
information about the throughput for randomly generated experiments. The algorithm
uses tabular q-learning for several agents in combination with curriculum learning with
3 levels of training, increasing the maximum experiment length from level to level.
We developed an alternate version of the algorithm that infers the shape of the secret
mapping before starting to train the agents and uses this information to act accordingly.
We saw that this alternate version produces much better results, but it leads to the
agents having such a high quality in the beginning of a training level that there is no
steady learning progress for the rest of this level. The algorithm has a lot of different
hyperparameters and parameters that can be adjusted. We did a partial grid search
to find good values for the hyperparameters. Afterwards, we evaluated the resulting
algorithm with 4 different settings for the remaining parameters and compared the
results to those of an SMT solver. This evaluation showed that the SMT solver cannot
compete with the reinforcement learning algorithms, no matter which of the 4 settings.
The evaluation showed that the algorithm is capable of finding a solution that produces
similar throughputs for given experiments. The mean average error of the throughputs
of the found mapping and the secret mapping is under 5% for a given set of experiments.
Despite these few errors the found mapping still resembles the behaviour of the secret
mapping and can therefore be used as an equivalent.
It is outstanding that, although only using small experiments during training, the
designed algorithm also performs very good for large experiments. To be more specific,
the resulting mapping the agents find performs even better for larger experiments than
for smaller ones. As existing work includes the decomposition of instructions into their
µops it cannot be used to compare the results to those of our algorithm.
Since the algorithm produces already good results and some of the hyperparameters
were not analyzed due to the limited scope of this thesis, it might be worth doing that
in the future as it could improve the solution quality even more. As already explained
in Chapter 6 it would be interesting to analyze how different values of the learning rate
α, the random exploration coefficient ε, and the number of episodes have an influence
on the solution quality of the algorithm. Further, as the equal experiment distribution
leads to better results it could also be investigated if the solution quality is improved
even more when using an unequal experiment distribution where longer experiments
have a higher probability to be chosen.
Since this is the first approach of using reinforcement learning to infer the port mapping
of a given processor and it works quite well, other reinforcement learning strategies
could be tried out to solve this problem in the future. It could be seen that the tabular
q-learning algorithm developed in this work is not able to improve its solution from an
early point on. Therefore it would be interesting to see if a deep Q-network (DQN) [19]
is able to perform better with regards to this issue and provide a better solution in
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general. It has been shown that DQN agents are often able to find good solutions to
complex problems as they have the ability to generalize. As for mappings of large size,
the problem becomes really complex and using DQN agents could therefore potentially
give better results. On the one hand, the DQN agents could be built as a new algorithm
to see if a DQN works better. On the other hand, it could be interesting to see if a
DQN can make use of structures or results of the algorithm implemented in this work
(for example by inferring the mapping shape in advance the reward for chosen actions
by the DQN agents can be adjusted correspondingly if the number of chosen actions
fits or does not fit to the shape). Barret et al. [3] also train a DQN in their work to
solve a combinatorial optimization problem on a graph. They run their algorithm 50
times on the same graph with different random initializations. As the initial values can
have a big impact on the solution quality this improves the outcome. The best out of
the 50 solutions can be chosen. The same principle can also be applied to the algorithm
presented in this work: by running the algorithm 50 times for the same mapping with
different random initialization of the q-table each run there are 50 resulting mappings
that can be compared and the best one can be chosen. This strategy could also be
applied if a DQN agent is implemented to find the secret mapping.
Real-world processors decompose each instruction into its µops and then execute these
µops on the ports instead of the instructions themselves. Port mappings depicting this
process are denoted as three-level mappings (as described in Chapter 2). The algorithm
developed in this work only works for mappings in the two-level model. However, it can
be used for future work solving the problem in the three-level model. As the instructions
are not further specified in this work they could also be seen as µops. Looking at it that
way the algorithm solves to find the second half of a mapping in the three-level model,
i.e. the mapping of all µops to the corresponding ports that can execute these µops.
So when using the algorithm for this part there only has to be developed an algorithm
that finds the first half of the mapping, i.e. the decomposition of instructions into their
µops.
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