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Abstract

Deep Reinforcement Learning (DRL) finds increasing application in safety-critical
domains like robotics and autonomous systems, demanding algorithms that ensure
safety, especially during deployment. The regret and state restoration in evaluation-
based deep reinforcement learning (RARE) framework offers a promising approach by
leveraging deep statistical model checking (DSMC) and state restorations to guide
exploration and provide statistical performance guarantees. However, its effectiveness
has so far only been demonstrated in discrete state and action spaces, which leaves
its potential in continuous domains unclear. This thesis addresses this gap by lifting
the RARE framework to continuous state and action spaces. We integrate both the
RAREID and RAREPR variants with two state-of-the-art continuous DRL algorithms,
Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC), backed by the
Stable-Baselines3 library that provides well-tested implementations of PPO and SAC.
The adapted algorithms are evaluated against their respective baselines on various tasks
within the Safety Gymnasium benchmark, which we modify to enable state restorations.
The performance is assessed under different reward structures using high-confidence
estimates of return, episode length, and survival probability obtained via DSMC. Our
experiments, particularly seeded runs in the Circle task, demonstrate that RARE
variants can enhance evaluation safety, often improving average survival probability
and episode length or reducing performance variance compared to baselines. This is
especially apparent under the original reward structure. Preliminary results in the
Goal task suggest potential benefits as well. However, the extent of improvement is
context-dependent, influenced by the agent, task complexity, baseline performance,
and reward density. In conclusion, this work provides evidence that RARE is a viable
framework for improving evaluation safety in continuous control tasks.
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1. Introduction

Deep Reinforcement Learning (DRL) is increasingly being utilized in real-world situa-
tions, complex and expensive tasks such as autonomously driving cars [1], robotics [2, 3],
hardware design [4] or insulin pump regulations [5] use DRL algorithms. The importance
of safe training procedures and safe algorithms is therefore not to be understated. The
frequency of crashes in an autonomous driving agent or a robotics agent during training
needs to be minimized to save costs and time, as repairing the agents is expensive in
both. More gravely, malfunction in insulin pumps or autonomous vehicles can be fatal.
Therefore, ensuring the safety of the fully trained agent is even more essential than
training-time safety, as failure to reliably meet safety requirements during deployment
can have catastrophic consequences.

Thus, many approaches to ensure safety in DRL training and deployment exist. Shielding
approaches [6, |7, [8] aim to learn a "shield", which intercept actions that are deemed
unsafe and thereby prevents the agent from taking unsafe actions. While these methods
provide strong safety guarantees, they inherently risk inhibiting exploration of the state
space, as they proactively restrict the agent from experiencing potentially informative,
albeit risky, states [9).

Alternative approaches encourage the agent to safely explore the state space instead. Ex-
amples include methods such as "Leave No Trace" [10], which additionally to the original
objective also learns how to safely return back to the initial state; "Go-Explore" |11} |12],
which systematically expands the explored state space by restoring previously visited,
promising states; and the RARE framework [9], which similarly uses systematic state
restoration, but leverages statistical guarantees to prioritize the frequency of restoration
for high-regret states.

The regret and state restoration in evaluation-based deep reinforcement learning (RARE)
framework [9] stands out among these approaches, as it provides statistical guarantees
on the agent’s current estimated performance during exploration. The performance
metric can be freely selected, for example the cumulative return or the goal-reaching
probability. Statistical guarantees regarding the agent’s performance in these metrics
are then derived with deep statistical model checking 13| during training. RARE
systematically restarts the training in previously visited states with a high evaluation
regret, which is a measure of potential performance gain. This enables guided exploration
of high-value states, where performance can be improved the most, and in turn reduces
the potential of safety violations by avoiding unnecessary revisits to sufficiently explored
states. Consequently, the trained agent efficiently develops an improved understanding
and handling of the state space, leading to enhanced safety.

Two variations of RARE are introduced in the original paper, regret and state restoration
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in evaluation-based initial distribution (RAREID), which prioritizes the initial states
according to the evaluation regret, and regret and state restoration in evaluation-based
prioritized replay (RAREPR), which adjusts the sampling priorities of a replay buffer
according to the evaluation regret. While originally demonstrated on discrete state and
action spaces, the RARE framework is algorithm-agnostic: RAREID can theoretically
be integrated with any DRL algorithm, and RAREPR can be integrated with any DRL
algorithm utilizing a replay buffer. Despite this generality and effectiveness, RARE has
so far only been applied to discrete state and action spaces. Therefore, the potential in
continuous state and action spaces, as they are frequently encountered in robotics or
autonomous driving tasks, remains unexplored and presents the research gap addressed
in this thesis.

To address this gap, this thesis adapts the RARE framework to continuous state and
action spaces. Specifically, we integrate RARE with two widely-used DRL algorithms:
Prozimal Policy Optimization (PPO) [14] and Soft Actor-Critic (SAC) [15, [16]. Both
have shown to achieve state-of-the-art performance in continuous control tasks [3, [5],
and are therefore particularly suited for this adaptation. To showcase RARE’s flexibility
we extend the PPO and SAC implementations from the Stable-Baselines3 software
package |17] without altering the underlying implementation details. The evaluation of
the RARE-enhanced PPO and SAC algorithms, along with their baseline counterparts, is
done using the Safety Gymnasium benchmark [18], which provides different continuous
robotics tasks explicitly designed for safety evaluation. While the original RARE
algorithm was specifically designed for sparse reward structures, Safety Gymnasium
features a dense reward structure, where rewards are provided regularly throughout
training.

The comparison of PPO and SAC to their RARE-enhanced counterparts aims answer
the research question: ’Can RARE improve evaluation safety in continuous state and
action spaces?’ In order to accurately answer this research question the thesis is
structured as follows: a detailed overview of related work is given in The
theoretical foundations of deep reinforcement learning and the algorithms applied in this
thesis are outlined in [Chapter 3| [Chapter 4| contains explanations for the benchmark,
the experimental design and the evaluation metrics. Implementation details for the
RARE framework and required modifications to Safety Gymnasium are documented in
[Chapter 5| [Chapter 6] presents the experimental findings. A discussion of the results
and limitations, including an answer to the research question, and potential directions

for future research are provided in [Chapter




2. Related Work

In this chapter we review literature relevant to the adaptation of the RARE algorithm for
continuous state and action spaces. We first discuss recent progress in DRL, emphasizing
the growing need for algorithms that ensure safety. Then we place existing algorithms
in a classification framework for safe reinforcement learning approaches, especially
positioning RARE in this landscape. Finally we motivate the baseline algorithms and
the benchmark that we use.

2.1. Recent Advances In Deep Reinforcement Learning

DRL has been successfully applied to various real-world decision-making tasks across
various domains. One such domain is healthcare, where DRL algorithms can be used in
the automatic regulation of insulin pumps for diabetes type 1 patients [5]. Fox et al. [5]
demonstrates that a DRL-based approach on simulated data leads to a reduction in
median glycemic (too high or low blood glucose levels) risk by 50% and a reduction of
time spent with low glucose levels by 99.8% compared to traditional methods. Another
study [19] from 2023 investigates the use of DRL with human feedback in surgical
robotics. The algorithm effectively trained policies for tracking moving objects or
picking up gauze in a simulated environment. The algorithm outperformed the baselines
in learning speed, safety and sample efficiency, while also improving exploration by
leveraging human guidance.

Another large application lies in hardware engineering, where DRL is used to plan
the physical layout of computer chips [4]. This task, which usually requires months
of human effort can now be completed by a DRL-based algorithm in just six hours,
achieving results that are comparable to or even better than those of human experts.
DRL further enables autonomous robots to perform precise real-world interactions.
OpenAlI demonstrates this in a study [3] where a robotic hand, through precise finger
joint manipulations, successfully rotates a cube between different configurations using
only visual input. Beyond research labs, companies like Boston Dynamics [20] or ANY-
botics [21] employ DRL methods to enhance the autonomy of quadruped robots. These
systems are able to navigate complex terrains and are for instance used to increase the
safety and productivity of steel plants [22] or for autonomous exploration [23].

While traditionally applied to sequential decision-making tasks, DRL also plays a key
role in improving large language models (LLMs), which are subject to a lot of recent
research. OpenAT’s ChatGPT for instance is fine-tuned using reinforcement learning
from human feedback (RLHF) [24], a technique that uses human preference signals to
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better align the LLM’s outputs to the prompts. This results in better responses and
less undesired outputs.

2.2. The Need for Safe and Continuous Algorithms

These examples make it clear why trustworthy, safe algorithms are necessary. Fox et
al. [5] highlights the critical importance that in closed-loop insulin control the DRL agent
needs to correctly dose the insulin to prevent catastrophic failures. In surgical robotics,
Ou and Tavakoli [19] emphasize the necessity of safety measures, as an uncontrolled
agent could lead to serious harm in a medical environment. Errors in chip layout would
result in increased production costs |4], while an incorrectly powered actuator in a robot
could lead to mechanical failures, such as breaking a joint [3]. Moreover if the controller
of an autonomous quadruped robots fails and the agent becomes immobile or damaged,
it cannot complete its task and requires human intervention. Therefore methods that
produce guarantees about the agent’s performance after training are essential in these
applications.

Additionally, many of the problems tackled in the papers mentioned above feature
continuous state [3} |4} 5, 19] and action spaces |3, 5, |19]. While different techniques exist
to discretize the action space, such as binning joint angles [3], it would preserve fine-
grained control and offer greater flexibility to use the continuous actions directly [25].

2.3. Classification of Safe DRL Algorithms

To address the critical need for safety, researchers have developed various approaches to
safe DRL. Garcia and Fernandez [26] provide a useful taxonomy for classifying these
methods. They classify algorithms into two broad categories based on whether they
change the optimization criterion or the exploration process. Each category has multiple
subcategories for a more granular distinction.

The first group of algorithms changes the optimization criterion. Unlike classical
(deep) RL, which maximizes the average cumulative return, these algorithms introduce
constraints to limit unsafe behaviors and integrate them into the optimization procedure.
Algorithms like conservative safety critics (CSC) [§] or constrained policy optimization
(CPO) [27] belong to this category. Both methods introduce costs as an additional
episodic quantity, similar to rewards, which quantify the severity of undesirable actions.
CPO |27] uses primal-dual optimization on a modified trust-region optimization criterion
that directly incorporates these costs. CSC [§] on the other hand trains a safety critic
that conservatively estimates the costs of each state-action pair. The optimization is as
well a primal-dual optimization, but instead of the costs it uses the safety critic’s cost
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estimate instead. Simultaneously the safety critic prevents the policy to act out actions
that are evaluated to be unsafe during training.

The second category of safe RL algorithms defined by Garcia and Fernandez [26] contains
algorithms that modify the exploration process. They further differentiate the category
between algorithms that make use of external knowledge and algorithms that are risk-
directed. Algorithms that contain external knowledge, can include this knowledge for
instance in the form of a teacher component that advises the agent on action taking.
This means that shielding approaches [6, 7] fall under this category, but also the safety
critic in the CSC algorithm [8] can be understood as a teacher. Another method is
called leave no trace (LNT) [10] and trains two policies: a "forward" policy, which learns
the original objective and a "backward" policy that returns the agent to the starting
position. The algorithm freely explores the state space as long as the backward policy
is confident enough in its ability to return to the initial state. This method prioritizes
real-world training, where resets require human intervention and should therefore be
minimized. A major drawback of these kinds of algorithms is that the teacher could
prevent access to parts of state space during training that would be beneficial in arriving
at an optimal safe policy [9)].

The Go-Explore |11} [12] and RARE [9] algorithms are also exploration-focused safe
RL algorithms. Go-Explore and RARE both utilize state restorations during training,
making them viable when an accurate simulation of the environment is available. They
sample those states from an archive of previously visited states, but their sampling
method differs. At each reset Go-Explore samples based on the state’s visitation
frequency, then the agent restores that state and explores from there. RARE performs a
more robust statistical evaluation of archived states using deep statistical model checking
(DSMC) periodically during training. Instead of the visitation frequency, it prioritizes
states based on their evaluation regret, i.e. the difference between the best and current
evaluation value. In the RAREID variant the evaluation regret is used to sample from
the archive. The RAREPR variant samples the restoration state uniformly, but weights
the priorities in the replay buffer according to the evaluation regret. By leveraging
DSMC, RARE systematically prioritizes high-regret states, leading to a more efficient
and safety-aware exploration than Go-Explore’s visitation-based approach. Because of
this new exploration process that puts the agent deliberately in unsafe positions during
training, the authors of the original RARE paper coin the category of safe DRL of their
algorithm risk-directed exploration. Notably, although Go-Explore shares similarities
with RARE, it does not regard safety metrics and therefore is not placed in the safe
DRL taxonomy.

2.4. Baseline Algorithms

To extend RARE to continuous state and action spaces, a base algorithm capable of
handling such spaces is needed. Proximal Policy Optimization (PPO) [14] and Soft



CHAPTER 2. RELATED WORK

Actor-Critic (SAC) [15] 16] are two state-of-the-art DRL algorithms which fulfill this
requirement.

Proximal Policy Optimization (PPO) [14] has demonstrated remarkable performance
in real-world applications. It has been used to achieve state-of-the-art results in the
aforementioned dexterous finger joint manipulation [3] and chip placement for hardware
design [4]. PPO is an on-policy actor-critic algorithm, making it suitable for RAREID,
which modifies the initial state distribution.

Similarly, Soft Actor-Critic (SAC) [15] [16] has set new benchmarks in robotics |15} |16,
19|. Its entropy-regularized learning enhances exploration efficiency while maintaining
robust performance. Beyond robotics, SAC has been successfully applied in closed-loop
blood glucose control for type 1 diabetes patients as mentioned earlier [5]. Given SAC’s
use of a replay buffer, it serves as a natural foundation for adapting RAREPR, allowing
prioritized replay based on evaluation regret.

The Stable-Baselines3 (SB3) [17] software package implements various well-tested DRL
algorithms to provide a reliable and adaptable foundation for RL research. The package
further supports 'callbacks’, which allow to modify algorithm behavior at specific steps in
training without changing the source code. By integrating RARE with SB3’s PPO and
SAC via callbacks, we ensure that RARE is integrated with well-established continuous
DRL methods.

2.5. Common Benchmarks

Standardized benchmarks are crucial for evaluating and comparing DRL algorithms.
The original RARE paper [9] demonstrates its effectiveness on the discrete benchmarks
Racetrack [28] and MiniGrid [29]. The state space of Racetrack consists of the agents
x and y position, as well as its current velocity, all in discrete units. For MiniGrid,
the state space depends on the specific MiniGrid environment, but always contains a
discrete direction vector, a rgb colored image tensor and environment specific details,
which are also discrete. The action space as well is discrete in both benchmarks. In
Racetrack the actions are discrete numbers which either signal no acceleration or a
one unit acceleration in one of the eight cardinal directions. Similarly, in MiniGrid
the actions are discrete and correspond to certain movements or environment-specific
actions (e.g. picking up a key). This presents a gap in research where it is unclear how
RARE performs in continuous environments.

To close this gap we utilize the Safety Gymnasium (SG) benchmark [18]. SG is extending
the Safety Gym benchmark [30], which was deprecated in 2019. SG provides several
robotics agents (e.g. Point and Car) and tasks (e.g. Goal and Circle) with continuous
state and action spaces. In contrast to Racetrack or MiniGrid, SG incorporates cost
signals associated with safety violations. While algorithms like CSC or CPO can directly
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handle these, RARE provides no direct way of using cost signals. Additionally, there
is no simple way to restore a state in this benchmark. We explain how we solve these
problems in further detail in [Chapter 4] and [Chapter 5| Further SG predominantly
features a dense reward structure compared to the sparse rewards in Racetrack or
MiniGrid, contrasting the sparse reward settings that were used in the RARE paper.
This allows us to investigate the performance of RARE in dense reward structures
as well. The selection of Safety Gymnasium thus provides a suitable and challenging
testbed for assessing the continuous RARE algorithm.







3. Theoretical Background

3.1. Fundamentals of Reinforcement Learning

At the foundation of DRL lay Markov decision processes (MDPs). A MDP is a tuple
(S,A, P,R, 11,7), where S is a set of possible states, which can be discrete or continuous.
A is a set of actions and defines the action space, actions too can be discrete or continuous.
P is the transition probability function, it describes the probability of arriving in state s’
when applying action a in state s. R is the reward function, which describes the return
when arriving in a state. p is the initial state distribution, it describes the probability
of starting in a certain state. We define Z = {s : u(s) # 0} as the set of initial states.
v € (0, 1] denotes the discount factor balancing the immediate and future rewards

Reinforcement Learning has the goal to learn a policy 7(als) that assigns a probability
of taking action a in state s. The optimal policy maximizes the expected cumulative
discounted reward, also known as the return

T
Gi= > "Ry
k=t+1

where T represents the final time step.

3.1.1. Constrained Markov Decision Processes

Many safety scenarios can be modeled by using constrained Markov decision processes
(CMDPs) [26, 31]. A CMDP extends the MDP tuple to (S, 4, P, R,C, u,v,d), where
C is a cost function analogous to the reward function R, assigning a cost C(s,a,s’) to
transitions. The vector d specifies the maximum allowable expected cumulative cost d;
for each constraint. The objective within a CMDP is to find a policy 7w that maximizes
the expected return, subject to the constraints on expected cumulative costs:

max B [Go]

o
subject to E, thCi(st,at,stH) <d; Wi
t=0
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This formalism allows explicit encoding of safety considerations. Algorithms like
CPO [27] or CSC 8] directly address this constrained optimization problem. The RARE
framework used in this thesis does not optimize the CMDP objective, although the
benchmark we test against incorporates safety constraints via costs. Therefore, to
integrate the notion of safety violation we treat any incurred cost as an episode-ending
event.

3.1.2. Reward Shaping

While CMDPs provide a formal way to handle constraints using explicit cost functions,
agent behavior can also be guided by modifying the reward signal itself, a technique
known as reward shaping. This approach is particularly useful when the primary reward
signal from the environment is sparse (e.g., only received at the end of an episode)
or when we want to provide more direct feedback to encourage or discourage specific
behaviors related to objectives like safety.

Reward shaping transforms the original MDP M = (S, A, P, R, ii,7y) into the shaped
MDP M’ = (S, A, P,R’, u,7y) where R' = R+ F, with F': S x A x S — R is called the
shaping reward function [32]. The goal of F' is to provide additional reward signals that
guide the agent’s exploration and learning process.

In the context of safe DRL it is often beneficial to use negative rewards to integrate
safety considerations directly into the objective. This approach gives an immediate
feedback signal for safety violations, and should therefore aid algorithms in improving
the safety performance of agents.

In our work, since we treat cost incurrence as episode termination rather than an explicit
constraint signal during learning, we additionally to the original reward structure, also
experiment with reward shaping as a mechanism for discouraging unsafe actions.

3.1.3. Continuous State and Action Spaces

In DRL, state and action spaces can be either discrete or continuous. While discrete
spaces consist of distinct, countable sets of states and actions, continuous spaces are
characterized by states and actions that can take any value within a continuous range.
Formally, in continuous environments, the state space S is typically a subset of a
Euclidean space R™, and the action space A is a subset of R™, where n and m represent
the dimensions of the state and action spaces, respectively.

One advantage of using continuous spaces is, that they allow a direct modeling of

environment dynamics. If e.g. we have a robot with two sensors that measure distance
to different objects in the environment, each of the sensors can be described with one

10
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dimension of the observation space that depicts the distance measured by that sensor
as a real-valued number. If the agent is equipped with 2 actuators that control the
steering wheel an accelerator, then in continuous action spaces, each actuator can be
directly controlled to arbitrary precision simultaneously.

Well researched models like Deep Q-Networks only work on discrete action spaces,
because they take the maximum state-action value over all actions. This max operation
is not possible in continuous spaces. One way to use these methods would usually
consist of enumerating all combinations of actions and binning them into discrete ranges,
which scales poorly with complex, multi-actuator settings and reduces the granularity
of actions, by discarding information about the structure of the action domain [25].

3.2. Deep Statistical Model Checking

Deep statistical model checking (DSMC) [33] is a verification technique used to formally
evaluate properties of a given policy within a MDP. Examples of such properties include
the return or the goal-reaching probability of the agent in the environment. The key
strength of DSMC lies in its ability to provide statistical guarantees on the accuracy of
these estimates. Specifically, we can define an acceptable error tolerance € > 0 and a
confidence parameter x € (0,1). DSMC then performs sufficient simulations to guarantee
that the probability of the estimation error for the property of interest exceeding the
tolerance ¢ is less than the specified x. This guarantee is formally expressed as

P(error > ¢) < k. (I)

This probabilistic guarantee is achieved through established statistical techniques, like
the construction of confidence intervals or the Chernoff bound. In the algorithm we use
in this thesis, DSMC is used in regular intervals during the training procedure. This
provides high-confidence assessments of the policy’s return value. In the following, these
will be referred to as evaluation values.

Additional to its usage in the training procedure of RARE, DSMC is also used to
compute high-confidence means during our experiments’ evaluations.

3.3. RARE

Regret and state restoration in evaluation-based deep reinforcement learning (RARE) [9]
offers a framework to utilize DSMC to guide the training. The original authors distinguish

11
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between two different variants of RARE: regret and state restoration in evaluation-
based initial distribution (RAREID) and regret and state restoration in evaluation-based
prioritized replay (RAREPR). They differ in how they guide the training using the
evaluation values gathered through DSMC.

However, their training loops are very similar. RARE is split into two alternating stages:
the learning stage and the evaluation stage. During the learning stage states are collected
in an archive A; and the algorithm learns from experiences. In the evaluation stage
the initial and archived states are evaluated using DSMC and the sampling priorities
are updated. As computing evaluation with DSMC is a time intensive operation, the
evaluation stage is only conducted in a certain interval instead of after each learning
stage.

3.3.1. Learning Stage

During the learning stage the policy is updated. For this, first a state is sampled either
from the initial states or from the current archive A;. In the case of RAREID, the
states are sampled according to a joint probability distribution that is generated during
the evaluation stage. Therefore, we defer the explanation to the next section. After
sampling, that state is then restored and an experience is generated with the underlying
algorithm. Afterwards for each state that was visited the relevance is determined
through the wvalue heuristic or novelty heuristic and the state is added to the next
archive A;41.

The value heuristic computes the temporal difference of the value function

|Virg (51) = (Virg (81:41) + 11) (IT)

between the current state s; and successor state s;+1. Intuitively this measures how well
the current state’s value is estimated by our policy. A large value indicates a knowledge
gap in this state and necessitates further training to improve the estimate. This makes
the state relevant for training.

The novelty heuristic is based on random network distillation (RND) [34]. In the
beginning of training two feed-forward neural networks (NN) are initialized randomly.
One NN is the target network which weights will not be updated during training. The
other network is the predictor network and is trained to, given a state, estimate the
output of the target network. With small differences between model outputs, the
state was already sufficiently explored, while with large differences the state was not
encountered often enough.

12
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Finally the underlying algorithm learns from the experience, using the its original
procedure to do so. In the case of RAREID the original procedure is not changed at all.
In the case of RAREPR, which requires a replay buffer, the sampling priorities are set
according to the results of the last evaluation stage.

3.3.2. Evaluation Stage

In the evaluation stage the inital states and the archived states are evaluated with
DSMC. Using the evaluation values the sampling priorities or the joint probability
distribution are updated.

In the first step the next archive A;1, which currently holds all states encountered
during the learning stage, is merged with the previous A; and reduced to a fixed size.
This is done to reduce computational load and focus the training on the most important
states. Two strategies are available for the reduction: the cluster strategy and the
maximal distance strategy.

In the cluster strategy the archive is split into clusters according to e.g. the x-y
position of the agent in the states. In each cluster only the most relevant state, according
to the value or novelty heuristic, is kept.

In the maximal distance strategy the goal is to capture the largest part of the state
space in the evaluation. For this the most relevant state s* is selected and added to
the reduced archive .A;» 11 Iteratively the next states are added according to the largest
minimum distance of that state to the already selected states, i.e. the state that fulfills

/
§ = argmaXe 4, S/Ierjiil s, s, - (II1)

After the archive is reduced, all states in the initial states set Z and the reduced archive
Aji1 are evaluated using DSMC. This evaluation value is denoted by Er,(s) for each
state s. The evaluation value is used to compute an approximation of the evaluation
regret

R(8) = Biest(s) — En, (5), (IV)

where Fpes(s) is the best evaluation value encountered thus far. In the special case
where this is the first evaluation stage in the algorithm, this is set to Epest(s) = 1, which
ensures that the priority for the state s will be high. The evaluation regret quantifies the

13
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potential for improvement in that state. Both the evaluation values and the evaluation
regret are linearly interpolated between 0 and 1.

After the computation of evaluation regrets, the priorities are updated. For this, first a
weighing factor for the initial states is computed, it enforces a focus on the initial states
compared to archived states during training because these are the original objective of
the environment. The clipped average evaluation value is defined by

¢ = Chp <|‘;| Z Eﬂ-g (S), 1- ¢maX7 wmin> ; (V)

seT

where Ymax, Ymin are hyperparameters, which constrain the focus on initial states.

In the case of RAREID, using v and the evaluation values, a joint probability distribu-
tion

1— Ris)+ep if s € 7,
(1-9) S (1R +ep)
s'eA; UL
pls) = — (VD)
P L else,
S (1=R(s)+ep)
s'€A; 1 UT

is constructed, using a small constant €, for numerical stability. Intuitively p(s) is
large for high-regret values and the weighing with v prevents catastrophic forgetting [9).
Catastrophic forgetting describes the loss of performance for already learned states
during later training steps.

For RAREPR, the replay priority of each state is updated according to

5(st) = {(1 — ) - (R(so) + ep) ifsop el (VID)

Y - (7@(30) + ep)a else.

Again, 1 prevents catastrophic forgetting by increasing the sampling priority of initial
states if they achieve low evaluation values, and ¢, is a constant for numerical stability.
a € [0,1] is a hyperparameter that controls the impact of higher and lower evaluation
regret values on the priority. Intutively, a smaller o equalizes the priority of high and
low regret states. sg is the starting state (either intial or archived) of the experience
(8¢, at, Te41, St+1). This replay priority essentially increases the sampling rate of states
that originated from a high regret state during policy updates.
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3.4. Baseline Algorithms

3.4.1. Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) [14] is an on-policy actor-critic algorithm. In
actor-critic methods, the actor network directly learns the policy function, whereas
the critic network estimates the value function. Being on-policy implies that only
experiences gathered under the current policy are used to update that policy, and all
other experiences are discarded.

PPO builds upon Trust Region Policy Optimization (TRPO) [35], which employs the
Kullback-Leibler (KL) Divergence as a constraint during policy updates. Although
TRPO uses a more expensive second-order optimization procedure, it generally performs
similarly to PPO’s simpler clipped surrogate objective. Both algorithms explicitly ensure
that the updated policy remains close to the old one, thereby mitigating the risk that a
single adverse update can irreversibly harm performance.

During training, samples generated by the current policy are used to update both the
actor and critic networks. To this end, a joint loss function is employed:

L%oint _ Ltactor + Lgritio + LgntrOpy‘ (VHI)

The entropy loss is given by
Lentropy — Hﬂ(St), (IX)

which measures the entropy of the policy at state s;. Including this term encourages the
agent to distribute probability mass more evenly among similarly good actions, thus
promoting better exploration and more stable training.

The critic loss N
Lgrltlc — Rt—i—l + ’YV(SH-I) — V(St) (X)

corresponds to the temporal difference error (TD-error) at state s;. Essentially, it
quantifies how closely the critic’s predicted value of s; matches the actual return from
that state.

Finally, the actor loss
Ljctor = Et{min<rt(6) Ay, clip(ri(0), 1 — €, 1 +¢) flt)}, (XT)

is the clipped surrogate objective proposed by Schulman et al. [14], where A, denotes
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the generalized advantage estimate (GAE) [36] and

7r9(at ‘ St)
T0o1a (at ‘ St)

r(0) = (XII)
is the ratio between the new and the old policy. By clipping the ratio to the interval
[1 —¢€, 1+ €], PPO ensures that the new policy does not deviate excessively from the
old one.

Algorithm [I] outlines the PPO implementation used in this thesis. In each episode,
N independent actors run the current policy mg_, in the environment until the goal
is reached. After computing advantage estimates Ay, ..., Ay for each trajectory, the
algorithm optimizes the joint loss L™ for K epochs and then updates 61q.

Algorithm 1 PPO
1: for episode =1, 2, ... do

2:  foragent =1,2,..., Ndo

3: Run policy mg_,, until goal is reached

4: Compute advantage estimates fll, e ,flT
5: end for

6:  Optimize L™ w.r.t. 6 for K epochs

7 Oolq < 0

8: end for

3.4.2. Soft Actor-Critic (SAC)

Soft Actor-Critic (SAC) |15, |16] is also an actor-critic algorithm. In contrast to PPO, it
operates off-policy, enabling the use of experiences gathered from older policies for the
current policy updates. A key feature of SAC is its mazimum entropy objective, which
differs from standard approaches (e.g., DQN, PPO) that merely maximize the average
return. Specifically, SAC maximizes both return and policy entropy:

T

J(m) = Esanympe [R5ty ae) + a H(x(- | s1))], (XTIT)
t=0

where « is a hyperparameter that balances the trade-off between reward and entropy.
In contrast to PPO, where entropy primarily serves as a regularizer, here it is explicitly
part of the optimization objective. In the original SAC version [15], a was a fixed
hyperparameter requiring manual tuning, whereas in a later variant [16] it is learned via
constrained optimization. This revised version also introduces training multiple critics
independently, which is reported to improve performance. This latter version is also
used in our implementation.
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The critic’s optimization relies on repeated application of the Bellman backup operator,

TTFQ(Sta at) = R(stv at) + 7E8t+1~p [V(St+1)]7 (XIV)

where

V(st) = Eqynorn [ Q(s1,0:) — alogm(as | st)] (XV)

is the soft state value function. In practice, we use a neural network to approximate
and apply stochastic gradient descent to minimize the soft Bellman residual:

[eritie — E(s;,0:)~D B (Qe(st, ar) — (R(st,ar) + 7E8t+1~p[vé(5t+1)]))] (XV)

Here, 0 parameterizes the local Q-network, while 6 parameterizes the target Q-network,
which stabilizes training. The gradient of this loss is given by

VoL = VyQq(st, ar) (Qe(st,at) — (R(st,a¢) + '7V0_(5t+1)))- (XVII)

SAC typically employs two Q-functions for increased robustness [16], taking the minimum
of both when computing targets:

@@'Lcritiq = veiQei(St7 at) (Qei(st7 at) - (R(St7 at) + ’Y(H%Iin Vén (St-l-l))))' (XVHI)
The actor is also represented by a neural network with parameters ¢. Its loss is:

LT =B, 5 [an% [a logmy(ar | s¢) — mr}n Qo,, (st, at)H. (XIX)

To minimize L3*°T, we use the reparameterization trick,

at = fqﬁ(ft;St)a (XX)

where ¢; is a noise vector drawn from a Gaussian distribution. This approach transforms
the expectation over actions into an expectation over ¢;, removing the direct dependence
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of action sampling on ¢. Hence, the gradient is

@¢Lacwr = V4 (o log(me(as | st)))
+ (Va,a log(mg(a | st)) = Va, min Qo,, (s, ar)) Vg fo(erise). (XX

We similarly update o by minimizing

J(@) = Eqpmor, [~ log me(ar | s¢) — a H], (XXII)

where H is a target entropy parameter. Although this approach does not theoretically
guarantee convergence, its practical effectiveness was demonstrated [16] .

Finally, to boost stability, we maintain two soft Q-functions with independent local and
target networks. The complete algorithm is presented in Algorithm

Algorithm 2 SAC
1: Input: 61,02, ¢
2: (91 < 91, 92 — 92
3: D+
4: for each iteration do

5.  for each environment step do

6: ar ~ mp(ar| st)

T Se41 ~ P(St1 | st,at)

8: D <—DU{(st,at,R(st,at),sHl)}
9: end for

10:  for each gradient step do

11: 0; + 0; — Xg @giLcritici Vie{1,2}
12: G ¢ — Ay Vg Laotor

13: o a— Xy VaoJ(a)

14: éz‘(—TQ@'—i—(l—T)éi ViE{l,Q}
15:  end for

16: end for
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4. Methodology and Benchmark

We use the safety gymnasium (SG) benchmark [1§] to test our implementation of
continuous RARE. To get a better understanding of the strengths and weaknesses of
RARE different scenarios are investigated. We investigate two agents: the point agent
and the car agent. Both agents differ in their action and observation space. We further
train these agents in two different tasks: the circle task and the goal task. Both tasks
come in three different difficulty levels, ranging from easy, unconstrained (level 0), over
challenging with some obstacles (level 1) to hard with many obstacles (level 2).

All three versions of continuous RARE (RAREID-PPO, RAREID-SAC and RAREPR-
SAC) are evaluated on all combinations of these two different agents, three different
tasks and three different difficulty levels. This results in 12 different scenarios for each
algorithm. We observe how during training the mean reward, mean episode length and
crash amount progress.

After training, we evaluate the policy which achieved the best training reward using
DSMC. This enables us to make high-confidence claims about the mean reward, mean
episode length and mean survival probability of the policy. RARE’s state restorations
deliberately put the agent in critical situation during training, we therefore expect to
see a smaller mean reward and smaller mean episode length during training time than
during evaluation time.

Each RARE agent is compared against its baseline algorithm: RAREID-PPO is com-
pared against PPO, while RAREID-SAC and RAREPR-SAC are compared against
SAC. We expect that during training the reward, as well as the safety metrics of the
baselines are superior to those of the RARE agent because of the restoration of critical
states. However, during evaluation the initial states distribution for both is the same,
which offers a fair ground for comparison. During the evaluation we expect RARE to
either achieve similar results to the baselines, especially in the case where the baselines
succeeds in finding an optimal policy, or exceed the baseline’s performance.

In each task, SG uses costs to indicate a safety violation. RARE is not designed as
a constrained safety algorithm as we pointed out in [Chapter 2| and [Chapter 3| which
means that we must incorporate the safety violations differently. One way to do this is
based on the realization that a safety violation in the two task we will look at in a bit,
are interpretable in the real world as a possibly catastrophic failure that we need to
avoid under any circumstance. For this reason we interpret any safety violation as an
episode-ending event.

As this removes any notion of safety from the feedback given to the agent, it is potentially
beneficial to reformulate the reward structure to include penalties for unsafe actions.
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We therefore also include a reward shaping approach in our experiments.

Additionally, we change the reward structure of the goal task to create a sparse reward
structure. This enables us to do an additional comparison to the original RARE
paper [9], where the environments also have sparse rewards.

We now detail the agents and tasks that are used in the experiments. RARE’s restore
functionality should provide good exploration and performance even when the initial
states do not cover the majority of the possible state space. We assume that the
difference in performance to the baseline would therefore be less pronounced when the
initial states already cover the majority of the state space. Therefore in the tasks the
agent is placed solely in the coordinate (0,0) for each reset, as we assume that RARE
provides stronger improvements in that scenario.

4.1. Agents

SG offers multiple different agents that simulate robots. These agents are equipped
with different sensors that influence the shape of the observation space, as well as with
different actuators that influence the shape of the action space. We use two agents
of differing complexity in our experiments . We do this to improve the

robustness of our findings.

(a) Point agent (b) Car agent

Figure 4.1.: Point and car agents, taken from safety gymnasium [18].
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4.1.1. Point Agent

The point agent is composed of two simple geometric shapes: a ball, which depicts its
main body, and a square, which indicates the front. There are two actuators on its body,
one that moves it forward or backward, and another one that controls the rotational
velocity of the agent. Both actuators are controlled simultaneously by the policy with
values in the range [—1, 1] each. It also contains different sensors which are part of the
observation space: an accelerometer, a velocimeter, a gyrostat and a magnetometer
that each measure the corresponding metric in x, y and z direction and can take on
any values in R3 each. In total there are 12 different resulting observations at each
timestep.

We assume that the Point agent should outperform the Car agent because of its simpler
control scheme.

4.1.2. Car Agent

The car agent is more complex compared to the Point agent. Its main body is a square,
is has two front wheels and a rear wheel that can take on any direction, in front it has
a smaller square to determine the front, in the back a small shield to cover the rear
wheel. It uses two actuators that each control one of the front wheels. This makes it
harder to steer and accelerate the car compared to the point agent which has separate
actuators for these functions. As the point agent, the car agent employs four sensors
for acceleration, velocity, angular velocity and magnetic flux. Further it observes the
current rotational position of the rear wheel, described by quaternions, and the angular
velocity of the rear wheel. This results in 24 observations at each timestep.

4.2. Tasks

Tasks in SG define the objective, reward structure, cost function, environmental objects,
and the required additional sensors of the agent. Although SG offers many task types,
including vision-based and multi-agent scenarios, we restrict our experiments to two
navigation-focused tasks. This selection maintains closer alignment with the benchmarks
used in the original RARE paper [9], facilitating a more direct comparison than other
task types would allow.
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(a) Difficulty level 0 (b) Difficulty level 1 (c) Difficulty level 2

Figure 4.2.: Circle task at different difficulty levels, taken from safety gymnasium [18].

4.2.1. Circle Task

In the circle task , the agent must drive inside a circle with a radius of 1.5
in a counter-clockwise direction as fast as possible and as close as possible to the edge
of the circle. In the easiest difficulty level the agent is presented with no additional
obstacles. Level 1 adds two walls to the left and right side of the circle each at 1.125
units from the origin. Level 2 adds two more walls on the top and bottom of the circle.

At each time step, the agent’s observation is extended with 16 sensors that simulate light
detection and ranging (LIDAR) sensors, equidistantly positioned around the agent’s
body. Each individual sensor’s value is computed by O; = %, where D; is the distance
to the closest object measured by the ith sensor and D,,4; is the maximal distance that

the LIDAR sensors can measure. In the circle task Dj,q, = 6.

The original reward structure is described by

1 —
R, « uy + vx

T 1y |7 — Tei M
agent — Tcircle | Tagent

where 744ent describes the Euclidean distance of the agent to the origin, e the radius

of the circle, u, v the velocity in x- and y-direction and z,y the x- and y-axis coordinate

of the agent. This is scaled by a constant factor of 0.1. Intuitively, the agent maximizes

the reward by driving forward in a counter-clockwise direction as fast and close to the

circle’s edge as possible.

The second relevant reward structure we use, slightly modifies by subtracting
a constant of 2.5 from it if the agent crashed because of action a;. Changing the reward
structure in this manner is a reward shaping approach, as explained in the previous
chapter.
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4.2.2. Goal Task
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(a) Difficulty level 0 (b) Difficulty level 1 (c) Difficulty level 2

Figure 4.3.: Goal task at different difficulty levels, taken from safety gymnasium |[18§].

The goal task randomly creates at each environment reset a small, green
goal circle on the map. The task of the agent is to drive into that circle. When it
accomplishes that objective a new goal is randomly placed on the map. This continues
until the agent accomplished 1000 steps or until it crashes. On difficulty level 0 there
are only the agent and the goal on the map. The goal’s location is uniformly sampled
in a square area encapsulated by the points (—1,—1),(—1,1), (1,—1),(1,1). It becomes
slightly harder on level 1, where additionally eight hazards and one vase are placed on
the map in the same square are as the goal, which is increased by 0.5. Difficulty level 2
is the hardest, it places ten hazards and ten vases on the map and the square area is
increased by another 0.5.

The hazard object is a small, blue circle that creates costs when the agent touches
it. The wvase object is a small cyan box. In level 1 is has no costs associated with it,
therefore the agent can freely touch it and is only slowed by the collision. However, in
level 2 a collison also creates costs and therefore is episode-ending.

The agent’s observation space is extended with 48 sensors: 16 LIDAR. sensors for goal
objects, 16 for hazard objects and 16 for vase objects. They work exactly as in the circle
task, but the maximal distance is reduced to D,,q, = 3 for each sensor.

The original reward structure is split into two components. The first component is the
distance reward,

Rt(distance) _ (Dlast _ Dnow)a (H)

where Dj,s; and D, are the distance of the agent to the goal in timestep t — 1 and ¢
respectively. Intuitively this rewards the agent to get closer to the goal.
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The second part of the reward is only relevant when the agent reaches a goal, it is
defined by
R_tqoal = Rgoaly (HI)

where Ry = 1 in the original reward structure.

Similar to the circle task we also construct a reward shaping approach where we subtract
2.5 from the reward on crash. Further we can trivially create a sparse reward structure
by setting Rt(dismme) = ( for all timesteps t. Using this fact we create three more sparse
reward approaches where we set Rgou = 1, Rgoal = 9, Rgoat = 10 and in each subtract

2.5 on crash.

4.3. Experiments

We use both Point and Car agent to solve the circle task with the two reward structures.
For the original reward structure we deploy the training in each difficulty level for
one million steps. This provides a perspective how RARE performs on cost-dependent
environments, compared to the also cost-agnostic baselines. The second reward structure
provides insight how a naively implemented constant negative reward influences the
performance of our baselines, and in particular RARE’s relative performance to those.
We expect that a negative reward might discourage exploration and therefore necessitates
longer training, which is why we train each agent for 5 million steps instead. As the
lowest difficulty level does not present any hazards to the agent, we only train the agents
on the second and third difficulty level in this case.

We use again both point and car agent to solve the goal task with all five reward
structures. For the original reward structure we deploy the training in each difficulty
level for five million steps, as we expect the task to be inherently more difficult to solve
than the circle task. This, as in the cirlce task, provides insights in how RARE performs
on a cost-dependent environment compared to the baselines. Given the absence of
hazards in difficulty level 0, we perform the reward shaping approach and the three
sparse reward approaches only on difficulty level 1 and 2, each for again 5 million
timesteps. We expect that the reward shaping approach performs better than the
original reward structure as it provides the agent with information about suboptimal
moves too. The sparse reward structures provide an interesting angle of comparison
to the original RARE paper, where both benchmarks used were also equipped with a
sparse reward structure. We expect this to be harder to solve for the baseline algorithms,
while the RARE variants could benefit due to their enhanced exploration capabilities.

Ultimately, as the goal of this thesis is not to optimize the SG benchmarks but rather
to evaluate the capabilities of RARE in SG compared to its baselines, we deliberately
experiment with three simple sparse reward configurations. This aims to mitigate the
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risk that poor performance originate from an insufficient reward structure rather than
from limitations of the method.

4.3.1. Evaluation

Each configuration is trained on the High Performance Computing (HPC) cluster
provided by the university. Afterwards we plot the training rewards, training episode
length, and crashes throughout the training. We save the model weights each 50,000
steps and select the best performing model checkpoint with respect to the training
reward for evaluation. In the case of the circle task we were able to train five different
seeds per algorithm and can therefore additionally report the 95% confidence interval
of each metric. The more complex goal environment could not be tested with this
statistical rigor because of time constraints.

In the evaluation we use the selected model weights to instantiate an agent in the
environment. In this environment we utilize DSMC to obtain high-confidence estimations
of the mean reward, mean episode length and survival probability of each algorithm.
We plot each of the three metrics and note the best performing PPO and SAC based
agents in each of the metrics. In the circle task we instead provide the average high-
confidence mean of each metric for all seeds, as well as the standard deviation of those
high-confidence means.
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5. Implementation

In this chapter we explain the implementation of the RARE framework [9] into SB3 [17]
using callbacks. We further detail the changes which were made to the safety gymnasium
benchmark to enable state restorations directly in code.

5.1. Overview

We orientate our implementation on the implementation of RARE that the original
authors provided. We use gymnasium wrappers to implement different environmental
specifications for the tasks, which we discussed in the last chapter. For example,
ending an episode prematurely if costs happen or changing the reward structure are
implemented using wrappers. SB3 VecEnvWrappers and SB3 Callbacks are used to
achieve our implementation of continuous RARE on top of SB3 algorithms. Additionally,
we define a Starter object which encapsulates the necessary logic to restore specific
states, depending on their type: initial state or archived state. In order to use this logic,
certain changes to the source code of the SG benchmark are necessary, as well as small
changes to the archive and DSMC implementation which the original authors provide.

5.2. Safety Gymnasium Changes

The SG benchmark, while providing many different safety relevant tasks, does not
implement a restoration functionality. Thus we need to adapt the source code to enable
finer control over the reset process. These changes primarily focus on exposing control
over the simulator state and modifying the environment setup process during resets.

The first critical change involves the World class, where we introduce methods to retrieve
and set the simulator state. This encompasses all simulation relevant variables: time,
joint position, joint velocities, applied actuator activations, warm-start acceleration and
the last applied control mechanics. Access to these variables is important to not only
reset the position but also the simulation state that controls the observations of the
agent.

Furthermore, in SG on each reset the objects’ positions are sampled and placed randomly

in the world. We adapt this so it becomes possible to set an agent’s location or the whole
position layout directly, before sampling the remaining positions. Having exact control
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over all objects’ positions becomes necessary when we restore archived states, which
must not resample the objects positions because this would change the observations.

Specifically for the goal task we need an additional adjustment. The original code
uses an extra method after the reset method to specifically randomly sample the goal
position. As we already place the goal at the correct position during our modified
reset method, we implement an attribute that is set during restoration and skips this
resampling procedure.

Finally, we add a method that exposes the seed. This is needed to ensure that the
restoration process creates the same environment as when it was originally seen. Notably,
setting the seed during the reset is disconnected from the randomness in the policy
which chooses the actions, so the DRL models are not seeded by this. These collective
modifications allow for state restorations in the circle and goal task, which is elementary
for the RARE framework.

5.3. Starter object

The RARE framework fundamentally relies on the ability to restore states, both initial
states and archived states visited during exploration. Since the SG benchmark does
not provide a built in state restoration feature, we developed a dedicated Starter object
structure to manage this process and utilize the previously explained changes. This
structure encapsulates the necessary information and logic to reset the environment to
a specific configuration. It is important to note that the alternative would be to train
a goal-conditioned policy, which is able to restore states. But as this was not used in
the original paper, we deliberately not explore this approach further to improve the
comparability of our results.

We define a base class, BaseStarter, to hold common information relevant to any
saved state. This includes the raw MuJoCo simulator state, the random seed used to
initialize the episode from which the state originates, environmental values like the cost
and steps at that state, and the agent’s position and rotation. The BaseStarter also
provides utility methods for discretizing the agent’s position into indices, calculating
Euclidean distance between states, and defining equality and hashing based on these
indices. Discretizing the indices is a simplification that is used in the archive. The
Euclidean distance is needed for the maximal distance heuristic and the comparison
methods are particularly useful for managing the archive of states within the RARE
algorithm, e.g., when checking for duplicate states. The actual restoration logic is
deferred to subclasses via an abstract restore method.

For initial states, the InitialStarter class defines the restoration logic. To restore

specific initial states we set the agent’s location parameter and then reset the environment.
In the ArchiveStarter we define the restoration logic for archived states. In this case
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we set the initial position and rotation of the agent, and the world layout in that
state. In case of the goal task, we deactivate the resampling of the goal position. Then,
resetting the environment with the archived state’s seed and setting the saved simulator
state in the environment results in the complete state restoration. Note that both
restoration methods only work because we change parts of the SG source code.

5.4. Archive

During the learning stage RARE saves visited states together with their relevance inside
of an archive. This class encapsulates the merge, reduction and sampling logic associated
with archived states. It is slightly adapted from the original author’s implementation to
handle our starter objects.

Notably, while the RARE paper [9] describes an arbitrary archive form, the concrete
implementation maps states into cells according to their x-y coordinates. For simplicity
we similarly map states into cells. While in the case of Racetrack and MiniGrid these cells
have a very close correspondence to the observation states, this is not necessarily true
for SG. First, we need to discretize continuous x-y coordinates into bins. Second, when
the placements of objects is random, as in the goal task, the same x-y coordinate can
produce vastly different observations because the observations depend on the distance
to objects but not on the coordinates alone.

We acknowledge that this might negatively influence the performance of RARE and
discuss possible solutions in Our implementation allows to define width and
height of a map where cells are recorded, as well as the resolution. This is necessary
because there is no restriction on the agent’s position in the circle and goal tasks and
we want to allow for arbitrarily small cells.

5.5. Evaluation Stage

The code that performs DSMC was provided by the original authors and only slightly
adapted to work with our benchmark, SB3 policies and starter objects. The evaluation
stage class is called inside the RAREID and RAREPR callbacks to perform DSMC on
the states and during evaluation to compute high-confidence means of our evaluation
metrics.

We note that that the notion of goal-reaching probability that was used in the original
RARE paper, cannot be applied to the SG benchmark. In the circle task there is no
goal to reach, while in the goal task the objective is to reach as many goals as possible
compared to a singular goal. For this reason our changes to the evaluation stage code are
only applicable with the return value as evaluation metric. During the evaluation we use
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the survival probability, which is thematically similar to the goal reaching probability.
With small changes this probability should also be possible to use as an evaluation
function during the training of RARE.

5.6. Environment Wrappers

To implement task specific modifications and integrate RARE without altering the
SG source code more than necessary we utilize wrappers. Wrappers are an interface
provided by SG to provide additional functionality on top of the base environment. In
particular they allow to extend the step and reset methods with custom behavior.

In order to end the episodes when a cost is registered, count crashes and imple-
ment the different reward structures (reward shaping and sparse rewards) we use
the SafeCostEndEpisode wrapper. At each step it checks if the cost exceeds 0 and ends
the episode by setting the terminated flag. This aligns with our methodological choice
to treat safety violations as episode-ending events. Additionally, if the parameters for
reward shaping is set, it also deducts the penalty from the reward if the cost exceeds 0.
If the parameter for sparse rewards is set it further changes Rt(dismnce) = ( at each step

and sets [2y,q accordingly.

The SafeRestoreWrapper implements the restoration and part of the state saving logic.
It intercepts the reset call and expects a starter object in the options dictionary. Then,
the starter’s restore method is called. Finally, it saves the starting position and rotation
in a parameter. It also intercepts the step method and appends the current x and y
coordinate to the info dictionary. This is used by the VecRareIDWrapper to create an
ArchiveStarter object. The SafeRestoreWrapper is used for RAREID.

As RAREPR updates the priorities in a replay buffer after each evaluation stage,
it is necessary to additionally keep track of the current starter’s priority, as well
as its x-y coordinate in the archive’s cells. The replay buffer we use for RAREPR
uses a very similar data structure to keep track of the priorities. This allow us to
update the priorities for all experiences in the replay buffer efficiently. Therefore
the SafeRestoreWrapperPrioritizedReplay extends SafeRestoreWrapper with this
additional functionality during the reset and step methods.

Finally, for the baselines PPO and SAC we do not use starters. In order to specify the

starting states we use another wrapper that randomly selects a coordinate from a fixed set.

In our case this set consists solely of the coordinate (0,0). SafeDiscretizeStartingStatesWrapper
implements the logic for this. It as well builds on our changes to the SG source code

to specify the exact starting position. The same wrapper is also used for visualizing

agents.

30



5.7. VECTORIZED ENVIRONMENT WRAPPERS

5.7. Vectorized Environment Wrappers

SB3’s algorithms use vectorized environments for training, this means that multiple
instances of the environment are created and used simultaneously. RARE uses different
constructs, which require centralized management, for instance the archive between two
evaluation stages is static, as well as all associated sampling probabilities. To improve
comprehensiveness a central vectorized environment wrapper handles this overarching
environment logic. In particular the sampling methods for initial states, the creation
of ArchiveStarter objects and the counting of all crashes in all sub-environments is
handled by these wrappers.

Similar to SG wrappers, SB3 also provides an interface for wrappers that can be used
to modify environment behavior at certain points. In particular for both RAREID and
RAREPR we implement their own wrapper. VecRareIDWrapper implements the logic
necessary for RAREID, VecRarePRWrapper the logic for RAREPR.

Both wrappers handle the sampling of the initial states by injecting the respective starter
object into the info dictionary at each reset. In the case of RAREPR the priority is
also inserted and tracked internally using an array that is updated after each evaluation
stage.

The core logic for creating ArchiveStarter objects lies here as well. After each step,
if the agent’s coordinate is still in the bounds defined by the archive, all relevant
information is extracted and the starter object created. This is further used in the
callbacks.

Finally, after each step, the sum of crashes over all sub-environments is computed and
saved internally.

5.8. Callbacks

SB3 provides a callback system that allows to execute custom code at various points
in their DRL algorithms, e.g. after each step or before the rollout collection. These
callbacks are independent classes that can be passed to the learn method of any SB3
algorithm. We leverage that system to implement the core logic of RARE, i.e. the
creation of the next archive, the computation of relevance and the evaluation stages,
together with the associated priority updates. The callback is then handed to SB3’s
PPO and SAC implementations.

As for the vectorized environment wrappers, we developed two separate callbacks for
RAREID and RAREPR. The RAREIDCallback implements the RAREID algorithm.
During its initialization, it configures parameters related to the frequency of evaluations,
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archive management settings including size and reduction strategy and the chosen
relevance heuristic. This callback maintains the next archive, which accumulates states
encountered between evaluation stages. It also tracks the best evaluation values observed
for each state region to facilitate regret calculation. If the novelty heuristic is selected,
the callback initializes a Random Network Distillation (RND) module as well.

After each step in the vectorized environment, the relevance of each starter is determined
either with the novelty or value heuristic. In the case of the value heuristic we differentiate
between the baseline algorithms. SB3’s PPO version implements a value network as
critic which we can directly use to compute the temporal difference error

[Virg (51) = (Vg (5641) + 74) - (D)

SB3’s SAC version on the other hand does not use a value function directly, but instead
uses multiple g-functions. In order to approximate the value function we set the policy
evaluation to deterministic, which is possible via a flag in SB3’s algorithms. The when
we sample an action the policy always returns the one which has the largest probability
mass. Using the identity of the value function

Vﬂ'g(st) = Qng(st,ﬂo(st)) (H)

for deterministic policies, we compute We note that this approximation is a
limitation in the comparability to the original RARE implementation, where the value
function was used directly.

If we use the novelty heuristic s; is passed to the RND network and the mean squared
error between predictor and target network constitutes the relevance.

After the relevance is computed in the step method, the callbacks add the stater,
which was passed to the info dictionary by the vectorized environment wrapper, and its
relevance to the archive.

Periodically, before the rollout collection process, an evaluation stage is conducted. For
this the archive in the vectorized environment and the one in the callback are merged
and reduced. Then the DSMC evaluation is done for each starter and regrets, evaluation
values, psi and probabilities are updated. Afterwards the callback passes the reduced
archive to the vectorized environment. Lastly a new, empty archive is created that
collects states for the next evaluation stage.

The implementation details for RAREPR are largely the same. The main difference is

that instead of starting probabilities the replay priorities are computed. The updating
thereof is outsourced to the replay buffer.
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5.9. Replay and Rollout Buffer

All algorithms implemented in SB3 use either a replay buffer or a rollout buffer to collect
experiences for training the algorithms. We create our own subclass for replay buffer
and rollout buffer in order to update the RND network if the novelty heuristic is used.
This correctly updates the RND network only with samples used during training.

We implement another version of the replay buffer for RAREPR, which correctly adds
states with their priority, samples states according to their priority, and updates the
samples’ priorities efficiently with vectorized operations.

5.10. Training Script

The training script train_rare_safetygymnasium.py allows us to centralize the train-
ing for the RARE agents. Using the command line interface (CLI) we can specify the
concrete configuration we want to train on the HPC server. The workflow is as follows:
First, we create the environment using the wrappers and vectorized wrappers on the
standard safety gymnasium environment. Then, we build the callback and replay or
rollout buffer according to the CLI arguments. Additionally, the CLI arguments are
saved to hyperparameters. json for reproducibility. Finally we instantiate the baseline
algorithm with the wrapped environment, and pass the callback to the learn method
call. This starts the training. After training the script saves the model is saved to a
folder specified with the CLI.

Similarly, the script train_baselines_safetygymnasium.py is used to train the base-
line algorithms, PPO and SAC for the corresponding configuration. The workflow is the
same as the RARE case, but callbacks and replay or rollout buffer are not modified.

These scripts allow us to flexibly declare our different training configurations for the
server in submission files.

5.11. Evaluation Script

The evaluation is also conducted on the server. The corresponding logic is encapsu-
lated in the evaluate_comparisons.py script. Using the CLI we specify the model
checkpoint which we want to evaluate. The script then rebuilds the environment using
the hyperparameters. json file and selects the correct baseline model and loads the
model’s weights. Finally the model evaluated in the environment with DSMC. After
DSMC converges, the script saves the high-confidence means of return, episode length
and survival probability in the model folder in a csv file.
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5.12. Visualization

For rendering the model in the environment we provide a script called visualize.py,
it enables us to specify a model checkpoint and render the models’ performance in the
environment. This is useful to interpret the model’s statistics. A policy that always has
the maximal episode length but low reward could for example just refuse to take any
risk after an initial reward was gathered, rather than actually being cautious. Instead of
plotting more metrics a visual inspection builds useful intuition about policy behavior.

For plotting the training and evaluation graphs, we provide the code as a jupyter
notebook create_plots.ipynb. For the training curves we load the progress. json
file using SB3’s logger class. This file was created during training by said logger class
automatically. This json file provides all the necessary training information. The
evalution graph is plotted by loading the csv files with pandas, computing the mean and
standard deviation for return, length and survival probability, and then using seaborn
to plot a bar graph.

5.13. Hyperparameters

All hyperparameters related to PPO and SAC utilize the default hyperparameters from
SB3. For the environment setup, the agent’s initial position is fixed at coordinates
(0, 0) and the training employs 5 parallel environments (n_envs=5). RARE-specific
parameters include the state discretization resolution of 10 and an archive_size
of 25. The boundary for inclusion in the archive (max_coordinate) is set to 2.0 for
all but the goal environment at difficulty 2, where it is set to 3.0. This is done to
accomodate for the larger creation area of goal and objects in this difficulty level. The
number of RARE evaluation stages (num_eval_stages) is set to 20 for 1-million-step
training runs and 100 for 5-million-step training runs, this achieves an evaluation stage
at each 50,000th timestep. As relevance strategy, the value heuristic is used in every
experiment.

The hyperparameters for the evaluation stage are es_alpha=1, es_kappa=0.05 and
es_minimal_prio=0.01 for every experiment. In the circle task we use es_epsilon=1.0,
while in the goal task we set it to es_epsilon=0.5. This is done to achieve stricter
estimates, as the goal task is assumed harder. The minimal amount of simulations
in DSMC (es_initial_runs) is set to 10. The hyperparameters for 1, and ¥
are set to psi_min=0.2 and psi_max=0.8. All policies choose the action stochastically
(deterministic=False) during the episode collection in the evaluation stage. As archive
reduction strategy we employ the cluster strategy in each experiment. The interpolation
parameters of the reward (negative_reward and positive_reward) are —2.5 and 30
in the circle task, —5 and 40 in the goal task with the original and shaped reward
structure, and —2.5 and 5 X Ry,q in the sparse reward structures. The reward shaping
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penalty is —2.5 and reward_shaping is set to True in every but the original reward
structure experiments. The sparse sparse goal reward is set to 1,5 or 10 in the respective
sparse reward structure experiments with sparse_reward = True.

For the evaluation we set the admissible errors €eium = 1, €jengtn = 25 and e, = 0.1,
and use at least 100 episodes.

A complete table summarizing all hyperparameters can be found in
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6. Experiments and Results

6.1. Circle Task

In the circle task we trained 5 different seeds of each of our algorithms under the original
and shaped reward structures. The original reward structure includes all three difficulty
levels, while the shaped reward structure was only trained on levels 1 and 2. We now
report the metrics during training and during evaluation time for each algorithm, agent,
task and reward structure.

6.1.1. Original Reward Structure

First we look at the original reward structure, where the reward of an action is calculated
according to

1 —U VX
R, = x W M
1+ |ragent - 7ncircle| Tagent
as explained in

PPO Baseline - Training Results

We begin the report of the results with the PPO and RAREID-PPO training curves for
the car agent. All referenced plots for the car agent are visible in and all
plots for the point agent in In difficulty level 0 both algorithms perform
equally well over the course of the whole training. As level 0 contains no dangers, it is
unsurprising that the episode length is maximal and that no crashes occurred in either
of the algorithms.

In difficulty level 1, the training curves follow our initial hypothesis that RARE during
training slightly underperforms in all metrics. Because the restoration process puts the
RARE agent deliberately into critical states, it comes as no surprise that the confidence
interval for RAREID-PPO is also bigger.

Interestingly, difficulty level 2 does not follow our initial hypothesis. Even though the
task contains the most hazards, RARE performs very similar to the baseline with a
similar confidence interval. Moreover, RARE actually crashes less often during training
than the baseline.
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Looking at the point agent, we observe mostly similar performance for both RARE and
PPO on all metrics for all three difficulty levels. Notably, the baseline achieves a slightly
better reward in difficulty level 1, which follows our initial hypothesis of behavior during
training time, but just as in the car agent case on level 2 RARE surprisingly crashes
less often during training than the baseline.

PPO Baseline - Evaluation Results

After we now explained the training results for PPO and RAREID-PPO, we continue
with the evaluation results. As explained we extracted the best model checkpoint for
each seed with respect to the training reward, then we evaluated these models with
DSMC and set €repurn = 1, Elength = 25 and g4 = 0.1. We now report the average of
these high-confidence means of reward, episode length and survival probability, together

with their standard deviations as shown in

Starting with the car agent in level 0 (see , we can see in the evaluation
data that the lack of difference between both algorithms during training also shows
during evaluation. Both algorithms achieve a very similar return of 20.71 for PPO and
20.45 for RARE, with similar standard deviations (0.37 PPO/0.61 RARE). They also
achieve the same episode length and survival probability.

In difficulty level 1 the difference which we observed in the training data
between both algorithms does not continue. PPO slightly outperforms RARE in each
metric, however, RARE reduces the standard deviation in the safety relevant metrics:
43.02 standard deviation for episode lengths in PPO and 24.01 in the RARE variant,
and for survival probability a much bigger difference of 0.22 in PPO and only 0.06 in
RARE. For rewards both achieve a similar standard deviation. This result aligns with
our hypothesis that RARE improves safety.

A similar result can also be observed in the evaluation data of level 2 .
Both algorithms achieve similar mean values in each metric, while RARE achieves a
smaller standard deviation. In contrast to level 1, RARE also achieves on average better
results in each metric. Thus RARE clearly improved safety for all car agents.

We continue the analysis of the evaluation data with the point agent. As with the

car agent, the point agent shows no remarkable performance difference in the easiest
difficulty level (Figure 6.4a)). Because there are no obstacles the average episode length
and survival probability stays the same for both algorithm types.

In difficulty level 1 we observe the same pattern as before for the car agent: RARE, on
average, achieves slightly better performance in each metric and reduces the standard

deviation greatly ([Figure 6.4Db)).

Interestingly, the evaluation data for the point agent in difficulty level 2 presents an
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Figure 6.3.: Evaluation results for the car agent in the circle task on difficulty levels 0,
1, and 2 for five seeds evaluated with DSMC.
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outlier ([Figure 6.4c)). Not only does the average RARE policy perform worse compared
to the average PPO policy in each metric, but the RARE policies are also exhibiting

a much bigger standard deviation than the baseline. This is especially interesting, as
RARE seemed to perform much better than the baseline in the training data.

SAC Baseline - Training Results

We now turn our attention to the performance of the SAC baseline, and its RAREID
and RAREPR counterparts. The corresponding plots can be found in and
Figure 6.6

During training on difficulty level 0, all three algorithms perform essentially identically.
Rewards quickly plateau at a high level, episode lengths remain maximal throughout
training, and no crashes occur, which is consistent with the lack of hazards in this
environment.

For the car agent on difficulty level 1, the training dynamics stay similar: all three
metrics for all three algorithms develop very similarly across the training. In particular
our initial assumption that RARE would lead to worse performance in all metrics does
not hold here neither.

On difficulty level 2 for the car agent, the RARE variants show slightly less crashes
on average during training. Besides this, the RARE variants and the baseline achieve
similar metrics during training.

Turning to the point agent on difficulty level 1, the SAC baseline achieves slightly
higher results in each metric compared to the RARE variants. This difference is most
pronounced between the baseline and RAREPR, but RAREID is also outperformed by
the baseline. In particular this training graph elicits the expected behavior of RARE
during training again.

Finally, for the point agent on difficulty level 2, the SAC baseline achieves the highest
rewards and maintains longer episode lengths throughout training, while also accumu-
lating less crashes compared to the RARE variants. Both RARE variants show lower
average rewards and more variable episode lengths compared to the baseline SAC. In
summary our initial assumptions about RARE’s training performance hold for the
simple point agent, but not for the more complex car agent.

SAC Baseline - Evaluation Results

We now analyze the evaluation data for the SAC baselines, our protocol for evaluation
is the same as in the PPO baseline.
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On difficulty level 0 for both car (Figure 6.3al) and point (Figure 6.4a)) agents, all three

algorithms achieve essentially identical and perfect evaluation results. This shows that
all algorithms are able to solve the simplest difficulty setting equally well.

For the car agent on difficulty level 1 , the evaluation shows benefits from
the RARE methods. Both RAREID-SAC and RAREPR-SAC achieve notably higher
average survival probabilities compared to the SAC baseline. RAREPR-SAC also leads
in average returns and episode lengths, indicating strong overall performance. RAREID-
SAC also improved on average upon the baseline, but the standard deviation is large.
This indicates high fluctuation of model performance over various seeds. RAREPR on
the other hand reduced the standard deviation. This contrasts with the training phase
where all three algorithms performed very similarly.

This advantage for the RARE variants continues on difficulty level 2 for the car agent
. Again, both RAREID-SAC and RAREPR-SAC demonstrate better
average survival probabilities and episode lengths than the baseline SAC. The average
returns are comparable across the three, though RAREID-SAC shows the highest
average return. It is important to note, that the standard deviation for the surivial
probability is very large for all three algorithms, while for the returns and episode length
the RARE variants show a smaller standard deviation than the baseline.

The evaluation results for the point agent are similar. On difficulty level 1 ,
RAREID-SAC provides the best safety performance with the highest survival probability
and longest episode lengths, while simultaneously achieving the smallest standard
deviation in all three metrics. RAREPR-SAC also shows better safety metrics than
the SAC baseline, and reduces the standard deviation in all metrics. However, the
baseline SAC achieves slightly higher average returns than RAREPR, aligning with
the training results where the baseline slightly outperforms RARE variants, especially
RAREPR-SAC.

Finally, and most surprisingly, on difficulty level 2 for the point agent (Figure 6.4c)),
the SAC baseline significantly outperforms its RARE counterparts in evaluation. It

achieves perfect average survival probability (1.00 mean, 0.01 standard deviation) and
the longest average episode length. Both RAREID-SAC and RAREPR-SAC show
considerably lower survival probabilities with larger standard deviations and achieve
lower average returns and average episode legnths. In particular RAREID-SAC also
achieved large standard deviations in the return and episode length metrics. This
outcome is particularly noteworthy as it contradicts the general trend and the training
results for this specific scenario, where the baseline also leads in rewards/episode length
but RAREID-SAC accumulates fewer crashes.

In summary, evaluating the SAC variants shows that RAREID and RAREPR generally
enhance safety for the car agent and moderately for the point agent on level 1, at a slight
cost to returns for RAREPR-SAC compared to the baseline. However, the standard
SAC algorithm demonstrates superior return and safety performance for the point agent
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on the most difficult level.

6.1.2. Shaped Reward Structure

The second reward structure we investigate for the circle task is the shaped reward
structure,

Ry if no costs occurred
R, = (1I)
Ry — 2.5 if costs occurred

where R; is the original reward function. This modification penalizes unsafe behavior
by reducing the reward. Intuitively we expect this adjustment to improve the safety
metrics of all algorithms by encouraging the policy to avoid unsafe action using the
stronger association between unsafe behavior and the end of an episode.

As this modification is only relevant in the presence of cost-inducing objects, we ignore
the easiest difficulty level and only investigate policy performance on difficulties 1 and
2.

PPO Baseline - Training Results

We begin with the PPO baseline under the shaped reward structure. The training
graphs of the car agent can be found in and for the point agent in
For the car agent on difficulty level 1, the training curves show that RAREID-PPO
consistently underperforms compared to the baseline PPO across the safety metrics,
while also staying slightly below the rewards. RAREID-PPO accumulates significantly
more crashes, which aligns with our initial hypothesis that the restoration process might
lead to inferior training performance.

This trend continues on difficulty level 2 for the car agent. RAREID-PPO achieves lower
rewards, shorter episode lengths, and accumulates substantially more crashes throughout
the training compared to the PPO baseline. The performance gap is more apparent
on this difficulty level than the previous one, which again supports the hypothesis for
training time performance.

Turning to the point agent with shaped rewards, on difficulty level 1 we observe a similar
pattern. The PPO baseline consistently outperforms RAREID-PPO in terms of rewards
and episode lengths, while also accumulating fewer crashes during training.
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Figure 6.7.: Training mean reward, mean episode length and cumulative crashes for the
PPO variants with the car agent in the circle task under the shaped reward
structure on all difficulty levels for five seeds.
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Figure 6.8.: Training mean reward, mean episode length and cumulative crashes for
the PPO variants with the point agent in the circle task under the shaped
reward structure on all difficulty levels for five seeds.
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Similarly, on difficulty level 2 for the point agent, the PPO baseline maintains better
performance across all metrics compared to RAREID-PPO throughout the training du-
ration. Overall, under the shaped reward function, the training performance consistently
aligns with the hypothesis that RAREID exhibits inferior training time performance
compared to the standard baseline.

PPO Baseline - Evaluation Results

We evaluate the PPO agents trained with the shaped reward function using the same
strategy as in the original reward function. For the car agent on difficulty level 1
, the evaluation results mirror the training observations. PPO policies on
average outperform RAREID-PPO policies in episode length and survival probability,
while only slighlty underperform for the reward. In contrast to the original reward
structure, RARE-PPO does not reduce the standard deviation of the means compared
to PPO under the shaped reward structure.

On difficulty level 2 for the car agent , RAREID-PPO shows a slight
advantage in average survival probability and episode length compared to the PPO
baseline, achieving higher safety with less variance. However, the baseline PPO achieves
slightly better average returns. The safety benefit for RAREID-PPO here is less
pronounced than observed under the original reward structure.

Looking at the point agent evaluations, on difficulty level 1 (Figure 6.10a)), the PPO

baseline achieves higher average returns, episode lengths and survival probability than
RAREID-PPO. Most notably it also performs worse with regards to the standard
deviation. Thus, RARE shows no improvement over the baseline in this environment.

Finally, for the point agent on difficulty level 2 (Figure 6.10b)), both algorithms achieve
similar results in each metric. Unlike under the original reward structure, RAREID-PPO

does not perform significantly worse here.

Overall, with the shaped reward function, the training performance of RAREID-PPO is
consistently worse than the baseline, which matches our expectation, but the evaluation
results are mixed. RAREID sometimes offers safety benefits by reducing the variance
of resulting policies (car circle 2), but in other environments decreases safety while
increasing variety (point circle 1). In the remaining environments RARE performs on
par with the baseline.

SAC Baseline - Training Results

Now we examine the SAC algorithms under the shaped reward structure. We depict

the training curves of the car agent in and of point agent in [Figure 6.12}
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(a) Evaluation mean reward, mean episode length and survival probability for car agent with
shaped rewards on difficulty level 1 for five seeds evaluated with DSMC.
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(b) Evaluation mean reward, mean episode length and survival probability for car agent with
shaped rewards on difficulty level 2 for five seeds evaluated with DSMC.

Figure 6.9.: Evaluation results for the car agent in the circle task with shaped rewards
on difficulty levels 1 and 2 for five seeds evaluated with DSMC.

For the car agent on difficulty level 1, the training curves for SAC, RAREID-SAC, and
RAREPR-SAC are remarkably similar for rewards, while episode lengths and cumulative
crashes show slightly worse average performance for both RARE algorithms. This does
not align with our expectations, as we would expect the reward to also be consistently
below the baseline during training.

A similar pattern holds for the car agent on difficulty level 2. All three algorithms
exhibit very similar performance during training. Rewards track closely, while RAREID
and RAREPR are slightly worse in episode length and cumulative crashes. Interestingly,
RAREID is closer to the baseline than RAREPR, in particular RAREID shows a
very similar development of crashes during training. Again, our hypothesis of worse
performance is not confirmed.

For the point agent on difficulty level 1, the training dynamics do not differ. The
rewards are comparable for all three algorithms, and while RAREID and the baseline
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(a) Evaluation mean reward, mean episode length and survival probability for point agent with
shaped rewards on difficulty level 1 for five seeds evaluated with DSMC.
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(b) Evaluation mean reward, mean episode length and survival probability for point agent with
shaped rewards on difficulty level 2 for five seeds evaluated with DSMC.

Figure 6.10.: Evaluation results for the point agent in the circle task with shaped rewards
on difficulty levels 1 and 2 for five seeds evaluated with DSMC.

are close in performance for episode length and cumulative crashes, RAREPR performs
worse in the two safety metrics, especially consistently worse than the baseline.

On difficulty level 2 for the point agent, the SAC baseline achieves slightly higher
rewards, longer episode lengths and lower crashes than the RARE variants. This fits
our initial hypothesis again.

In summary, the training performance under the shaped reward function for SAC
variants does not show a consistent trend relative to the baseline. For the car agent the
performance is very similar, while for the point agent sometimes the baseline performs
better, particularly compared to RAREPR-SAC. Our assumption that RARE would
obtain lower rewards, shorter episodes and more crashes during training does generally
not hold.
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6.1. CIRCLE TASK

SAC Baseline - Evaluation Results

Finally, we evaluate the SAC agents trained with the shaped reward function.

For the car agent on difficulty level 1 , the evaluation results show a clear
safety benefit for the RAREPR variant. RAREPR achieves the best survival probability
and the best episode length while reducing the variance. In particular it does so without
a reduction in reward, compared to the SAC baseline. RAREID on the other hand
performs similar to the baseline in regards to return and episode lengths, but obtains a
lower survival probability with a higher standard deviation.

On difficulty level 2 for the car agent , RAREID-SAC stands out with
the highest average survival probability, the longest average episode length but also
the highest return. All of those with a smaller standard deviation than the baseline.
RAREPR-SAC performs worse than the baseline in terms of survival probability, where
it also shows a larger variance. But it achieves similar episode length and reward to the
baseline. Notably, it also exhibits a larger standard deviation than the baseline in the
returns.

Turning to the point agent evaluation on difficulty level 1 (Figure 6.10a)), the safety
metrics are very close to optimal for all three algorithms, however, the baseline achieves

optimal results while the RARE variants are imperfect. Return-wise SAC also performs
best, closely followed by RAREPR, although RAREPR has a greater standard deviation.
RAREID greatly lacks behind in this metric with a smaller mean and larger variance
altogether.

For the point agent on difficulty level 2 ([Figure 6.10b)), standard SAC again achieves
perfect survival probability and maximal episode length, clearly showing the best safety

performance. While both RARE variants perform close to perfect in terms of episode
length, the average survival probability of RAREID lacks behind RAREPR and SAC
with a larger standard deviation. SAC also achieves higher average returns compared to
RAREID and RAREPR, although the difference is less pronounced than in the previous
difficulty level.

In summary, the evaluation of SAC variants under the shaped reward function shows
mixed results. RARE methods improve our safety metrics for the car agent compared
to the baseline. However, for the point agent, they did not manage to improve upon the
baseline performance and in the case of RAREID even degrade the safety performance.
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6.2. Goal Task

In the goal task we trained one algorithm for each reward structure defined in
We examine the original reward structure, shaped reward structure and sparse reward
with goal reaching rewards 1, 5 and 10. Under the original reward structure we
investigate each difficulty level, while we constrain ourselves in the rest to the difficulties
1 and 2, which introduce hazards in the environment. We do this to focus the analysis
on the safety aspects while providing a trivial environment without hazards to show
RARE’s principal ability to solve the goal task.

Similar as before we present each PPO and RAREID-PPO, and SAC, RAREID-SAC
and RAREPR-SAC group together and analyze their training performance in the return,
episode length and cumulative crashes, and the DSMC high-confidence mean of return,
episode length and survival probability for the best policy encountered during training.

However, in contrast to the circle task, we were unable to train multiple seeds per

algorithm due to time constraints. Therefore we can reason about the best performance
we can observe, but not about the average performance of RARE.

6.2.1. Original Reward Structure

The original reward structure of the goal task is two fold. The agent is rewarded for
reducing the distance to the goal according to

szistance — Dlast . Dnow (III)

where D is the distance before and after the last action respectively. If the agent arrives
in the goal area, the goal reward

Ryoar =1 (Iv)

is added to the overall reward. This further incentives the agent to pursue the goal
area.

PPO Baseline - Training Results

We begin by analyzing the training performance of PPO and RAREID-PPO in the
goal task under the original reward structure. The curves can be seen in
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Legend Long_CarGoal - PPO Comparison
—— PPO (Baseline)
= RAREID-PPO
%  BestAvailable Checkpoint
Difficulty 0 Difficulty 1 Difficulty 2
— * 6 *
© *WWW 15 ,!Av

N
3

Training Rewards
3
o

o
o

=]
g
S
®
3
3

)
980 *
500 300 |7
x
960 200 200
0.04 / 20000
6000 *
0.02 15000
e 4000
0.00 * x 10000

) 5000 P
-0.04 /
0
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4
Total Timesteps 1e6 Total Timesteps 1e6 Total Timesteps

Training Episode Lengths
5
8
)

Training Crashes
*

5
1e6

Figure 6.13.: Training mean reward, mean episode length and cumulative crashes for
the car agent in the goal task with PPO variants and original rewards on
all difficulty levels.

and [Figure 6.14] On difficulty level 0 both algorithms demonstrate similar training
curves for both the car and point agents. While the curves are effectively the same for
the point agent, for the car agent our hypothesis that RARE performs worse than the
baseline is observable. The rewards rapidly converge to their maximum, and the safety
metrics are optimal, as we expect in this safe environment. Interestingly, the car agent,
which we assume to be harder to learn due to its action space, achieves better rewards
than the point agent.

On difficulty level 1, the performance diverges. For the car agent neither of the
algorithms consistently outperforms the other, and RAREID-PPO achieves notably less
accumulated crashes during training than the baseline. Therefore we cannot confirm
our hypothesis that the training performance of RARE are below those of the baseline.
This hypothesis does show, however, for the point agent: most of the time, RARE
performs below the baseline in all three metrics, and only towards the end of training
approaches the baseline performance. While the car agent again performs slightly better,
the difference is not as pronounced as in the previous difficulty setting.

On difficutly level 2 the curves of the PPO baseline and RAREID-PPO do not differ
significantly. For both agents RAREID achieves on average slightly longer episodes and

slightly less crashes, while the rewards develop similarly.

In summary, during training under the original reward structure, PPO and RAREID-
PPO perform identically in the absence of hazards. In hazardous environments, the
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Figure 6.14.: Training mean reward, mean episode length and cumulative crashes for
the car agent in the goal task with PPO variants and original rewards on
all difficulty levels.

PPO baseline generally shows slightly better or comparable training rewards, while the
episode lengths show no preference. In three of the four hazard tasks, PPO actually
accumulates more crashes than RAREID-PPO. This is surprising as the restoration
process restores critical states more often.

PPO Baseline - Evaluation Results

Following the training phase, we evaluate the best-performing model checkpoint for
each algorithm using DSMC. On difficulty level 0 (Figure 6.15af and [Figure 6.16al), for
the car agent PPO achieves a better average reward than RAREID. However, in the
point agent scenario both algorithms achieve very similar rewards. The performance
gap we observed in the training data, is also present in the DSMC evaluation.

On difficulties 1 and 2 (Figure 6.15b}, [Figure 6.16b|[Figure 6.15¢/ and |[Figure 6.16¢|), and
for both agents, RARE performs slightly better than PPO in all metrics. We must
stress however, that the survival probabilities in these tasks are generally low and that
our admissible error in the evaluation is 10%. Therefore, while these advantages look
promising, it is unclear if they remain under stricter guarantees or multiple seeds.

In conclusion, the evaluation results indicate a benefit of using RAREID-PPO in the
goal task with hazards under the original reward structure. Despite showing similar
performance during training compared to the baseline, RAREID-PPO leads to policies
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with higher returns and improved safety at evaluation time. Nonetheless, this is merely
a hint at performance improvements, as we only evaluate on seed for each algorithm.

SAC Baseline - Training Results

We now examine the training performance of the SAC baseline compared to its RAREID-
SAC and RAREPR-SAC counterparts in the goal task under the original reward struc-
ture. We present the corresponding graphs in [Figure 6.17 and [Figure 6.18 As observed
with PPO, on difficulty level 0, all three algorithms exhibit identical performance for
both car and point agents. The rewards are noticeably higher for the car agent again,
too.

On difficulty levels 1 and 2 the observations remain similar to before. Our hypothesis
about the training performance is only observable in the RAREPR algorithm on difficulty
level 2 for the car agent and difficulty level 1 for the point agent. For RAREID the
performance are similiar to the baseline. We cannot observe the pattern that the RARE
variants achieve less crashes than the baseline during training for the SAC algorithms.

Overall, the training results for SAC variants under the original reward structure show
that the baseline SAC generally performs similar or better during training.

SAC Baseline - Evaluation Results

Finally, we assess the evaluation performance of the SAC, RAREID-SAC, and RAREPR-
SAC algorithms using DSMC on the best model checkpoints. On difficulty level 0
(Figure 6.15al and [Figure 6.16a)), the average returns are high and very close, with
RAREID-SAC achieving the highest return for the car agent and the baseline achieving
the highest for the point agent (29.20). The safety metrics are maximal, as no hazards
are present in level 0.

On difficulty level 1, the results become more varied. While for the car agent
, all results are very similar again: RAREPR slightly outperforms the baseline
in all metrics, RAREID on the other hand performs slightly worse than the baseline.
For the point agent , the baseline outperforms both RARE algorithms:
RAREPR still performs close to the baseline, but RAREID shows noticably worse
performance in all three metrics.

On difficulty level 2, the performance pattern diverges significantly between the agent

types. For the car agent (Figure 6.15¢)), RAREID-SAC achieves the highest average
return, average episode length and average survival probability. The baseline SAC

performs second best with only a small performance gap, and in the case of survival
probability equally well. RAREPR-SAC in contrast is significantly worse in all metrics.
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(b) Evaluation mean reward, mean episode length and survival probability for car agent with
original rewards on difficulty level 1 evaluated with DSMC.
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(c) Evaluation mean reward, mean episode length and survival probability for car agent with
original rewards on difficulty level 2 evaluated with DSMC.

Figure 6.15.: Evaluation results for the car agent in the goal task with original rewards
on difficulty levels 0, 1, and 2 evaluated with DSMC.
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(b) Evaluation mean reward, mean episode length and survival probability for point agent with
original rewards on difficulty level 1 evaluated with DSMC.
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(c) Evaluation mean reward, mean episode length and survival probability for point agent with
original rewards on difficulty level 2 evaluated with DSMC.

Figure 6.16.: Evaluation results for the point agent in the goal task with original rewards
on difficulty levels 0, 1, and 2 evaluated with DSMC.
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However, for the point agent (Figure 6.16¢]), the SAC baseline outperforms both RARE
variants across all metrics significantly, achieving the highest average return, average
episode length and average survival probability.

In conclusion, the evaluation data presents mixed results. For the more complex car
agent, RARE methods show only small improvements to the baseline SAC. Either
RAREID or RAREPR are able to match or marginally improve the baseline, however,
on difficulty 2 we observe that RAREPR underperforms. Conversely, for the simpler
point agent, the standard SAC baseline achieves superior performance. While both
RARE variants perform similar to each other and not far from the baseline, they cannot
surpass its performance. Especially in the hardest difficulty level for the point agent
the difference between RARE and the baseline in all three metrics is significant.

6.2.2. Shaped Reward Structure

Under the shaped reward structure we investigate whether RARE performs better
compared to the baseline if direct feedback signals about unsafe actions are available.
For this we penalize actions which lead to crashes by 2.5, while keeping the original
reward structure intact. As this only changes the reward structure in the presence
of crashes, we investigate just difficulty levels 1 and 2. As before we first explain the
results for the PPO based algorithms, and then those of the SAC based algorithms.

PPO Baseline - Training Results

We first examine the training dynamics of PPO and RAREID-PPO under the shaped
reward structure. We show the plots in and For the car
agent on difficulty level 1, the reward stays below the baseline for a majority of the
training duration. However, in terms of episode length and accumulated crashes both
develop very similar. On difficulty level 2, the performance is again very close, with no
discernible differences between both algorithms.

Turning to the point agent, on difficulty level 1, we can again not detect any notable
differences between both algorithms’ training curves. On difficulty level 2, both algo-
rithms start similarly, but towards the middle of the training the baseline is consistently
achieving higher rewards and episode lengths, while RARE starts accumulating more
crashes.

In summary, the training results under the shaped reward structure are inconsistent
regarding our hypothesis. Besides difficulty level 2 of the point agent, the algorithms
match each other in their performance. A clear benefit of the baseline during training
due to less critical initial states is not observable.
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PPO Baseline - Evaluation Results

Evaluating the best model checkpoints with DSMC provides further insights. For the
car agent on difficulty level 1 (Figure 6.21a)) RARE achieves a comparable reward to
the baseline, but outperforms it in episode length and survival probability. On level 2

(Figure 6.21bf), both algorithms achieve the same survival probability, and very similar
return and episode lengths.

For the point agent on difficulty level 1 (Figure 6.22a)), the baseline PPO outperforms
RAREID-PPO in all three metrics, although the return and survival probability are

very similar. On difficulty level 2 (Figure 6.22b)), the RARE algorithm managed to
increase the mean survival probability and episode length, at the cost of a lower, but
comparable return.

Overall, the evaluation results for PPO and RAREID-PPO under the shaped reward
function show similar performance, and in the case of the point agent on difficulty 2 a
safety tradeoff.

SAC Baseline - Training Results

Now we analyze SAC, RAREID-SAC and RAREPR-SAC under the shaped reward
structure during training. The plots are presented in [Figure 6.23| and [Figure 6.24] For
the car agent on difficulty level 1, all three algorithms develop similarly for the return
and the episode length. While RAREID accumulates more crashes than the baseline,
RAREPR accumulates less.

On difficulty level 2, the curves exhibit a slight advantage for the RARE variants
with regards to the rewards. The curves of the episode lengths for RAREID and
SAC are similar, but RAREPR performs consistently below the baseline in this metric.
Concerning the crashes RAREID and SAC again develop equally, while RAREPR
accumulates more crashes during training.

For the point agent on difficulty level 1, the baseline SAC clearly outperforms the
RAREPR variant in terms of rewards, while RAREID shows very close rewards to the
baseline. All three algorithm develop equally in the episode length metric. RAREID-
SAC accumulates more crashes than the baseline, while RAREPR-SAC mirrors the
baseline performance.

On difficulty level 2, the baseline SAC clearly outperforms RARE in the first half of
training on the reward, but then decreases such that in the end all three algorithms
perform similarly. Notably all policies yield rewards near 0, therefore we can assume
that the algorithms do not manage to learn a acceptable policy. In terms of episode
length and accumulated crashes both RARE policies perform better than the baseline.
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(a) Evaluation mean reward, mean episode length and survival probability for car agent with
shaped rewards on difficulty level 1 evaluated with DSMC.
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(b) Evaluation mean reward, mean episode length and survival probability for car agent with
shaped rewards on difficulty level 2 evaluated with DSMC.

Figure 6.21.: Evaluation results for the car agent in the goal task with shaped rewards
on difficulty levels 1 and 2 evaluated with DSMC.
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(a) Evaluation mean reward, mean episode length and survival probability for point agent with
shaped rewards on difficulty level 1 evaluated with DSMC.
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(b) Evaluation mean reward, mean episode length and survival probability for point agent with
shaped rewards on difficulty level 2 evaluated with DSMC.

Figure 6.22.: Evaluation results for the point agent in the goal task with shaped rewards
on difficulty levels 1 and 2 evaluated with DSMC.
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Figure 6.23.: Training mean reward, mean episode length and cumulative crashes for
the car agent in the goal task with SAC variants and shaped rewards on

all difficulty levels.
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Figure 6.24.: Training mean reward, mean episode length and cumulative crashes for
the point agent in the goal task with SAC variants and shaped rewards on

all difficulty levels.
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In summary the results are mixed. While in the point agent the rewards are consistently
less in the RARE policies than in the SAC policy, the other metrics do not confirm our
initial hypothesis that RARE would perform worse during training. In particular it
stands out that all three algorithms achieve very low rewards on difficulty 2.

SAC Baseline - Evaluation Results

Evaluating the best checkpoints for the SAC algorithms reveals distinct performance
differences.

For the car agent on difficulty level 1 , RAREID-SAC achieves the
highest average return, average episode length and average survival probability, clearly
outperforming the baseline. But RAREPR-SAC performs worst in all three metrics in
this scenario. Nonetheless, the results are still in a an acceptable range. On difficulty level
2 (Figure 6.21b)), RAREID-SAC again stands out, achieving the highest performance
in the safety metrics and achieving a comparable reward to the baseline. RAREPR
outperforms RAREID and the baseline with respect to the reward metric, and matches
the baseline’s performance in the safety metrics.

For the point agent on difficulty level 1 (Figure 6.22al), RAREID-SAC again performs
best across all metrics. RAREPR-SAC, however, again falls behind the performance of

the baseline, in particular in the reward metric. Although, episode length and survival
probability are very close to the baseline, the reward has a larger, but still acceptable
gap. On difficulty level 2 (Figure 6.22b)), RAREID performs best in the safety metrics
while RAREPR achieves results close to the baseline. In the return metrics, however,
RAREID performs worst, followed by RAREPR, which both fall behind the SAC
baseline. We want to point out that the scaling of our bar chart can suggest a larger
difference in the reward than there actually is, the difference of around 1 is not very
large.

While these results might suggest that RARE improves the safety at the price of reward,
it is also important to emphasize that the rewards for all agents and algorithms on
difficulty level 2 are very low. This means, that the agent could just remain still in the
majority of complex hazard layouts and increase it’s safety performance without much
loss of reward. Nonetheless, the results suggest a safety benefit for RAREID-SAC over
the baseline. RAREPR-SAC does not show such a benefit, as it underperforms in all
but one experiment.

In conclusion, the evaluation results under the shaped reward structure favor RAREID-
SAC over both the baseline SAC and RAREPR-SAC across both agent types and
difficulty levels in these single-run experiments. RAREID-SAC consistently achieves
the best results in nearly all evaluated metrics, suggesting that the combination of
SAC, the shaped reward’s direct penalty, and RAREID’s exploration mechanism can
lead to superior policies, at least based on the best checkpoint found during these
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specific training runs. RAREPR-SAC, however, did not show benefits compared to the
baseline.

6.2.3. Sparse Reward Structure

RARE was tested in the original paper [9] in the Ractrack [28] and MiniGrid |29
environments. Both of these environments do not only utilize a discrete action space,
but also a sparse reward structure. In this section we examine how RARE performs in
a continuous domain with sparse rewards. For this we set the distance reward Rgistance
to 0. While we trained models with goal reward Ry set to 1, 5 and 10, we only
discuss Rgoq = 5 here. The reason for this is, that with a reward of 1 both difficulty
2 experiments achieve on average a negative reward for all algorithms. This indicates
that the policies failed to learn the desired behavior. Consequently, high safety metrics
are deceiving as they reflect the inaction of the agent. With Ry, = 5 and Ryeq = 10
however, all environments show similar signs of learning. As the results are similar and
Rgoq1 = 5 achieves slightly better values for the safety metrics, we only discuss this one
in detail, and share the relevant graphs for Rgoq = 1 and Rgoq = 10 in
for completeness. As before, we only examine difficulty levels 1 and 2, which include
hazards.

PPO Baseline - Training Results

We begin by analyzing the training performance of PPO and RAREID-PPO under the
sparse reward structure. As before be present the grouped training curves by difficulty
in [Figure 6.25| and [Figure 6.26|

For the car agent on difficulty level 1, RAREID-PPO initially shows similar curves in all
metrics compared to the baseline but quickly diverges. Then PPO outperforms RARE
consistently.

On difficulty level 2 for the car agent, RAREID consistently outperforms the baseline in
the reward metric, but achieves significantly less average episode lengths and accumulates
more crashes. Notably the baseline generates a reward close to 0 during the whole
training. We can therefore assume that the training did not converge to a sensible
policy.

Turning to the point agent on difficulty level 1, both algorithms develop very similar
over the training.

On difficulty level 2 for the point agent, RAREID-PPO again exhibits better performance

in the reward metrics. Episode lengths are similar for both algorithms, while RAREID
crashes more often overall.
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Figure 6.25.:

Figure 6.26

Legend LongSparseRewardsReward5_CarGoal - PPO Comparison
= PPO (Baseline)
= RAREID-PPO
%  BestAvailable Checkpoint
Difficulty 1 Difficulty 2

fa
03
v 75

Training Rewards
3 8 8
o N o 5
o o o °
E
L4 ;

o
]
N
2

Training Episode Lengths
g 8 3 8 8
8 8 8 8 8

g 8 B8

8 8 8

2

5 <*

400

6000
5000 /
4000
4000 * *
/ 3000

. 2000
€ 2000 7
/ 1000 =

0 0

0 1 2 3 4 5 0 1 2 3
Total Timesteps 1e6 Total Timesteps

IS
S
3

Training Crashes

4 5
166

Training mean reward, mean episode length and cumulative crashes for
the car agent in the goal task with PPO variants and sparse rewards on

all difficulty levels.

Legend LongSparseRewardsReward5_PointGoal - PPO Comparison
= PPO (Baseline)
= RAREID-PPO
%  BestAvailable Checkpoint
Difficulty 1 Difficulty 2
10 *
830 * 8
IS
3 6 g
g WW
o 4
£
§ 10 2
=
0
0
» 900 900
£
2 800 800
o
3
g 700 700
2 600
ucj' 600 * )
D500 500 ko
£
] 400
£ 400

6000 /

x
4000 /

2000

Training Crashes
N 5 Y
8 5 121
8 8 3
3 38 3
\\

2 3 4 5
Total Timesteps 1e6

o
N
»
IS
o
o

Total Timesteps 1e6

. Training mean reward, mean episode length and cumulative crashes for

the point agent in the goal task with PPO variants and sparse rewards on
all difficulty levels.

67



CHAPTER 6. EXPERIMENTS AND RESULTS
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(a) Evaluation mean reward, mean episode length and survival
probability for car agent with sparse rewards on difficulty level
1 evaluated with DSMC.

LongSparseRewardsReward5_CarGoal2 Evaluated with DSMC
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(b) Evaluation mean reward, mean episode length and survival
probability for car agent with sparse rewards on difficulty level
2 evaluated with DSMC.

Figure 6.27.: Evaluation results for the car agent in the goal task with sparse rewards
on difficulty levels 1 and 2 evaluated with DSMC.

In summary, under the sparse reward setting, the training data does not support our
training time hypothesis. While RAREID does consistently accumulate more crashes
and either lower or equal episode lengths, it does also achieve a greater average return.
This showcases RARE’s exploration benefits in sparse reward structures, as it is able to
learn a policy on difficulty level 2 for the car agent where the baseline failed.

PPO Baseline - Evaluation Results

We now evaluate the DSMC results of the best model checkpoints observed during
training.

For the car agent on difficulty level 1 (Figure 6.27a)), the evaluation results favor the
baseline PPO. In terms of reward both algorithms perform equally well, while the safety
metrics are slightly better under the PPO algorithm.

On difficulty level 2 for the car agent (Figure 6.27bf), the results are mixed. RAREID-
PPO achieves a significantly higher average return (5.58 vs 1.30). However, the baseline
demonstrates superior safety, with much longer average episode lengths (929.43 vs
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Figure 6.28.: Evaluation results for the point agent in the goal task with sparse rewards
on difficulty levels 1 and 2 evaluated with DSMC.
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523.67) and a much higher survival probability (0.85 vs 0.36).

For the point agent on difficulty level 1 (??7), PPO again outperforms RAREID-PPO
across all metrics. In particular it achieved noticeably stronger safety metrics.

On difficulty level 2 for the point agent (?7), similar to CarGoal2, the results are split.
RAREID-PPO achieves a higher average return (6.36 vs 4.77), while PPO shows better
safety performance with longer average episode lengths and higher survival probability.

In conclusion, the evaluation results for PPO in the sparse reward setting are mixed.
On difficulty level 1 with car and with point agent both RAREID-PPO and PPO
learned a similar performing policy. However, for both agents the baseline performed
slightly better. In contrast, on difficulty 2 for the car agent the baseline seems unable
to learn a policy that effectively navigates the environment. The baseline performs
better on the safety metrics, but in combination with the very low average reward it
is sufficiently probable that these better performance originate from a lack of action
in the environment. RAREID-PPO on the other hand is able to learn a policy, whose
average return suggests that consistently one goal is reached (as the average return is
above Rgoq). This showcases RARE’s improved exploration capabilities.

SAC Baseline - Training Results

Next, we analyze the training performance of SAC, RAREID-SAC, and RAREPR-
SAC under the sparse reward structure. The plots can be seen in [Figure 6.29 and

For the car agent on difficulty level 1, the SAC baseline generally performs slightly
above RAREID in rewards, and clearly above RAREPR. The RARE variants perform
similar to the baseline in regards to episode length, while they accumulate less crashes
during training overall.

On difficulty level 2 for the car agent, both RARE variants perform similar to each
other in the reward and outmatch the baseline consistently. For episode length all three
algorithms develop similarly. RAREID and the baseline crash approximately equally
often throughout training, while RAREPR crashes to a lesser degree than both.

Turning to the point agent on difficulty level 1, all three algorithms share very similar
curves for rewards and episode lengths, while the RARE variants accumulate slightly
less crashes overall.

On difficulty level 2 for the point agent, RAREID-SAC and RAREPR-SAC follow a
similar trend in the reward, and outperform the baseline for the majority of timesteps.
In terms of episode length no algorithm clearly excels over another. Further RAREPR
crashes less often while RAREID and baseline behave equally well.
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Figure 6.29.: Training mean reward, mean episode length and cumulative crashes for
the car agent in the goal task with SAC variants and sparse rewards on
all difficulty levels.
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Figure 6.30.: Training mean reward, mean episode length and cumulative crashes for
the point agent in the goal task with SAC variants and sparse rewards on
all difficulty levels.
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In summary, the baseline performs slightly better or comparable to the RARE variants
on the first difficulty level, while the RARE variants crash less often. On the second
difficulty level this behavior is inverted and both RARE variants show an improvement
to the baseline. In both difficulty levels and with both agents the episode length develops
similar for each algorithm. Further, RAREPR consistently crashes less often than the
baseline, in contrast to RAREID, which sometimes exceeds the baseline in this metrics.
Our hypothesis of worse training performance for RARE therefore does not hold.

SAC Baseline - Evaluation Results

Finally, we analyze the evaluation data for the SAC group.

For the car agent on difficulty level 1 (Figure 6.27al), the SAC baseline outperforms
both RARE variants significantly in the reward metric, where the baseline achieves a

reward of 64.32 against RAREID’s 55.97 and RAREPR’s 47.12. In terms of episode
length both RARE variants perform equally well and fall slightly behind the baseline.
The average survival probability is highest for RAREPR, but very similar for all three
algorithms.

On difficulty level 2 for the car agent , the RAREID-SAC algorithm
performs best in all three metrics. For the average reward it achieves 5.38 against the
similar performing RAREPR (4.87) and SAC (4.77) algorithms. RAREPR and the
baseline also perform similar in the two safety metrics, where RAREID leads with a
small gap.

For the point agent on difficulty level 1 (Figure 6.28a)), the SAC baseline outperforms
both RARE variants in each metric. Hereby RAREID’s performance are still very

similar to the baseline, while RAREPR shows a bigger gap.

The same pattern repeats for level 2 of the point agent (Figure 6.28bf). While the
baseline outperforms both RARE algorithms, the performance of RAREID-SAC is very

close. They achieve nearly identical average returns (SAC: 5.86, RAREID: 5.85), episode
lengths (SAC: 793.83, RAREID: 785.28) and survival probabilty (SAC: 0.71, RAREID:
0.70). In contrast, RAREPR-SAC lacks behind both but still achieves acceptable
rewards (5.33), episode lengths (723.15) and survival probability (0.62).

In conclusion, the evaluation results for the SAC group in the sparse reward setting are
promising. Especially RAREID seems to either match or improve the performance of the
baseline in each of the 4 settings, in particular for the safety relevant metrics. RAREPR
on the other hand seems to slightly decrease performance overall, as in each setting
it either matches or decreases the performance compared to the baseline. However,
RAREPR also shows improvement for the survival probability on difficulty level 1 of
the car agent. As this is a single-seeded experiment it could still be that RAREPR
shows similar improvements under different random initializations.
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In this thesis we lifted the RARE algorithm [9] to continuous state and action spaces.
We achieved this by implementing RARE on top of the StableBaselines3 package, which
provides us with various well-tested deep reinforcement learning algorithms that can
be extended through the use of callbacks. In particular we implemented RAREID on
top of the PPO algorithm [14], and both RAREID and RAREPR on top of the SAC
algorithm |15, 16] using these callbacks. This also showcases the flexibility of RARE as
an extension to existing algorithms.

We tested this extended RARE version for continuous state and action spaces on
the safety gymnasium benchmark [18], which we modified slightly to enable state
restorations. We used two tasks, which each contain three difficulty levels and various
reward structures to evaluate our algorithms against the SB3 baseline.

For each configuration and algorithm we recorded the average reward, average episode
length and accumulated crashes during training. We further used deep statistical
model checking [33] to evaluate the best model checkpoints with respect to the rewards
observed during training. This gave use high-confidence mean performance for the
reward, episode length and survival probability of each algorithm.

In the case of the circle task we did so with 5 seeds per experiment, which allows us
to make more generalizable claims about the algorithms average performance. Due to
time constraints, we trained only one seed for the goal task. This does not enable us to
make claims about the average performance, but is still usable to showcase RARE’s
performance in the training and evaluation data.

In this chapter we summarize the results we obtained by these experiments and discuss
them. Afterwards we point out limitations and future research directions. Ultimately
we conclude the thesis by answering our research hypothesis.

7.1. Discussion

Our results for the circle task show that during evaluation both RAREID and RAREPR
either match the performance of the baselines, or outperform them. These observations
are particularly apparent under the original reward structure with the car agent. Here,
the SAC-based RARE variants clearly outperform the baseline in each metric, while
RAREID-PPO variant either improves the average or the variance of each metric.
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With the point agent this changes slightly. Here the benefit of RARE is less pronounced,
while still clearly present on difficulties 0 and 1. Difficulty 2 presents us with an outlier
where RARE performs visibly worse than the baseline. We assume, as we report the
averages over 5 seeds and observe a large standard deviation, that one of our seeds
underperforms and thereby shifts the mean. A larger experiment could confirm this
hypothesis.

The improvements of the RARE variants upon the baselines are also visible under the
shaped reward structure. Although, generally the benefit is less strong as under the
original reward structure. We claim that this arises from the improved performance of
the baselines, compared to their performance under the original reward structure. While
RARE utilizes the baseline’s update rule, its effectiveness depends on the baseline’s
ability to learn from the data distribution RARE provides. When the baseline already
performs near-optimally, the additional benefit from RARE’s data selection may be less
pronounced.

In particular, RAREID-PPO also improves the safety on difficulty level 2 with the point
agent. It seems like the more direct feedback helps the algorithms to more reliable
converge to good policies. Therefore, besides one outlier, the results for the circle task
suggest that RARE-enhanced algorithms on average achieve better results than the
baselines. In particular, RARE seems to greatly improve performance in the absence of
direct negative feedback signals.

Our results for the goal task are less clear. As we only experiment with one seed, it is not
possible to make general statements about RARE’s performance in these experiments.
We can however identify that either RAREID and RAREPR result in a policy in each
of our experiments that matches the baseline and in some experiments (e.g. shaped
rewards with the car agent) improve upon the baseline. However, we can also observe
multiple instances where the RARE variant vastly underperforms compared to the
baseline (e.g. RAREID-SAC and RAREPR-SAC under the original rewards with the
point agent on difficulty 2).

Just as in the circle task, these improvements of RARE upon the baselines are less
strong under the shaped reward structure than under the original reward structure. We
again interpret this as an improvement in the baseline, that cannot be further improved
by RARE and therefore results in more similar results. Discrepancies, such as those
in the rewards for the SAC-based algorithms on the second difficulty level of the point
agent under the shaped reward structure could arise from the statistical inaccuracies
because we only have one available seed.

Another observation that was also made in the original paper [9] is that RARE can aid
policy convergences due to its improvements in exploration capabilities. Our data also
suggests that in the case of the sparse reward structure for the car agent. However, due
to the lack of differently seeded experiments we cannot decisively claim RARE as the
reason for this improvement.
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Our results generally indicate that the RARE framework is capable of providing aid to
the baseline algorithm in the continuous goal environment. The extend of this benefit
remains unclear as we lack the data to properly support claims about the average
performance of RARE agents and their baselines in the goal environment with the
different reward structures.

Further our initial hypothesis about the training performance of RARE does not hold.
We assumed that, because of the state restorations which place the agent in situations
where it is performing suboptimal, we would encounter more crashes, shorter episodes
and less reward for RARE agent during training. While this behavior appears sometimes,
generally it is not the case. We propose that the reason for this lies in the environment
structure. If the structure is relatively simple, as in the circle task, we can imagine that
the policy quickly learn how to behave in critical states. Therefore, after this initial
learning is consolidated the policy performs better again, which would show in the plots
as a brief dip in performance, followed by an increase. This quick learning can also
explain why the RARE policies often accumulate less crashes during training, as they
learn earlier how to avoid them.

Concerning the difference between RAREID and RAREPR, we could not find clear
differences between both variants’ performance in the evaluation data. While RAREPR-
SAC performs better with the car agent under the original reward structure of the
circle task, RAREID-SAC performs better with the point agent. Under the shaped
reward structure of the circle task, RAREPR achieves better values in three of the four
experiments. In the goal task, under the original reward structure, both variants again
perform very similar. However, RAREID obtains a small edge in the second difficulty for
the car agent. Under the shaped and sparse reward structure of the goal task, RAREID
achieves the higher performance of the two variants. We thus assume both variants can
achieve improvements compared to the baseline, with no clearly better variant.

7.2. Limitations and Future Work

The research conducted within this thesis serves as an initial exploration of the RARE
framework in continuous state and action space domains. While our results identified
potential of RARE in these domains, the full scope and limitations of this potential
require further exploration. The aspects which we find pose an interesting continuation
of this thesis’s research are outlined in this section.

On the technical side, a refactoring of the existing code into a more modular and
decoupled approach would greatly benefit the ease of extensions and ensure reliable
results. Both callbacks and vectorized environment wrappers for RAREID and RAREPR
share a lot of common functionality like the handling of the archives, sampling and
restoration of states or the deployment of evaluation stages. Refactoring this into a
common interface would benefit the extendability of RARE, and would also ease the
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integration of additional SB3 algorithms.

During the course of this thesis, several limitations and obstacles were identified. A
primary challenge is that safety-relevant environments do not necessarily offer a state
restoration method [18|,30], which restricts RARE’s direct applicability in its current
form. Furthermore, the strategy of mapping continuous observations to discrete archive
cells based on x-y coordinates loses more information in the SG benchmark than
in Racetrack or MiniGrid which were used in the original RARE paper [9]. This
discretization might merge distinct observation states, especially with the random
object placements in the Goal task. This potentially hinders RARE’s ability to identify
critical states. Future work should therefore revisit the original paper’s suggestions [9]
of implementing a goal-conditioned policy to circumvent the need for the restoration
functionality and exploring abstract, latent space representations (e.g., via autoencoders)
for the archive to enable more general and robust state mapping.

Methodologically, the adaptation of the value heuristic for the SAC algorithm required
an approximation based on the action-value function and deterministic action sampling,
as detailed in Chapter 5. This approximation might not accurately capture the temporal
difference error, which potentially impacts the state relevance calculations and the effec-
tiveness of RARE variants using this heuristic with SAC. This could also be the reason
that some of our SAC-based RARE variants performed under the baseline’s performance.
Therefore investigating the experiments with the novelty heuristic represents a valuable
direction.

Furthermore, RARE’s strength lies in providing statistical guarantees via DSMC. In
this thesis we only explored these statistical guarantees with respect to the return.
While these are informative to some degree about the safety performance, using the
costs or survival probability would allow RARE to prioritize state restorations based on
potential safety improvements. If costs are used this would also enable comparability
with CMDP-based methods, like CSC [8] or CPO [27]. This connects to a broader
limitation in our safety evaluation, which uses the average episode length and survival
probability. While correlated with safety, the algorithm can also maximize these metrics
through inaction. An agent achieving high survival probability by remaining passive
does not demonstrate effective safe behavior. Future analyses should incorporate more
direct safety metrics.

Additionally, the presented experiments utilized default hyperparameters for the baseline
algorithms and the RARE framework. Performance is possibly sensitive to these settings,
and a systematic hyperparameter optimization study could yield further insights and
potentially greater improvements from RARE.

Finally, while this thesis finds potential in RARE’s application in continuous state
and action spaces, it does so within the robotics-focused SG benchmark. It would be
beneficial to establishing general applicability and robustness of the approach, if RARE
were also evaluated on a larger variety of benchmarks that cover different domains, e.g.
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finance or autonomous driving.

By exploring these avenues, future research can enhance the practicality and reliability
of RARE in continuous domains.

7.3. Conclusion

This thesis investigated the research question: Can RARE improve evaluation safety in
continuous state and action spaces? Based on the implementation and evaluation of
RAREID and RAREPR variants for PPO and SAC algorithms within modified Safety
Gymnasium environments, our findings suggest: yes, RARE can improve evaluation
safety in continuous state and action spaces.

The results from the seeded experiments in the circle task demonstrate that RARE
possesses the potential to improve evaluation safety metrics in continuous domains
under certain conditions. We observed instances, particularly with the original reward
structure and the more complex car agent, where RARE variants led to significant
improvements in average survival probability and episode length, or notably reduced
the variance of these metrics across different training runs compared to the baseline
algorithms. This reduced variance indicates more reliable average performance of RARE,
therefore also improving the safety of these tasks. However, the effectiveness was not
universal. The benefits were less pronounced for the simpler point agent, and one specific
scenario (Point agent, difficulty 2) showed degraded performance. Furthermore, the
introduction of shaped rewards improved baseline performance, consequently reducing
the relative safety advantage offered by RARE in those specific settings.

The experiments in the more complex Goal Task, while limited by the use of a single
seed per configuration, provide preliminary indications that RARE can contribute to
safer policies, but definitive conclusions about average performance cannot be drawn.
In several evaluations, RARE variants matched or occasionally exceeded the baseline’s
safety metrics. Additionally, aligning with findings from the original RARE paper, our
results in the sparse reward setting exemplifies RARE’s ability to improve exploration,
potentially leading to policies that can solve tasks the baseline struggles with.

Comparing RAREID and RAREPR did not reveal a consistently superior variant across
all tested scenarios.

In summary, while not a guaranteed improvement for all scenarios, the evidence suggests
RARE can be a valuable tool for enhancing evaluation safety in continuous control. Its
ability to improve average safety metrics and reduce performance variance across runs
was demonstrated in different settings. However, its effectiveness is clearly influenced by
the specific agent dynamics, task complexity, baseline algorithm, and reward structure.
The promising but inconclusive results in the goal task underscore the need for further
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research to fully understand the conditions under which RARE delivers safety benefits
in continuous state and action spaces.
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A. Hyperparameter Overview

For reference we provide the full hyperparameter list as a table here.

Table A.1.: Complete Hyperparameter List.

Parameter Value / Setting
RL Algorithm (PPO/SAC)
Algorithm Hyperparameters Default values from Stable-Baselines3 (SB3) library [17].

Environment Setup

initial x 0
initial y 0
n_envs 5 (parallel environments during training)

General RARE Settings

resolution 10 (State discretization resolution)

archive size 25

max_coordinate 2.0 for Circle task (all difficulties) and Goal task (difficulties
0, 1).
3.0 for Goal task (difficulty 2).

relevance_ strategy Value Heuristic

reduction__strategy Cluster

RARE Evaluation Stage (DSMC)

es_alpha 1
es_ kappa 0.05
es_minimal_ prio 0.01
es_ epsilon 1.0 for Circle task.
0.5 for Goal task.
es initial runs 10 (Minimal simulations per state)
psi__min 0.2 (Minimum survival probability threshold)
psi__max 0.8 (Maximum survival probability threshold)
deterministic False (Stochastic action selection during episode collection)

Reward / Task Specific Settings

negative reward Used for reward interpolation in RARE.
-2.5 for Circle task (Original & Shaped) and Goal task
(Sparse).

-5 for Goal task (Original & Shaped).

Continued on next page

85



APPENDIX A. HYPERPARAMETER OVERVIEW

Table A.1 — continued from previous page

Parameter

Value / Setting

positive_reward

reward__shaping

reward__shaping_penalty
sparse_ reward

sparse__goal_reward

Used for reward interpolation in RARE.

30 for Circle task (Original & Shaped).

40 for Goal task (Original & Shaped).

5 X Rgoq for Goal task (Sparse), where Rgoq is 1, 5, or 10.
Boolean flag controlling penalty addition.

False for experiments using the ’Original’ reward structure.
True for experiments using 'Shaped’ or 'Sparse’ reward struc-
tures.

-2.5 (Applied when reward_shaping is True).

Boolean flag enabling sparse reward calculation.

False for experiments using ’Original’ or ’Shaped’ reward
structures.

True for experiments using ’Sparse’ reward structures.

Base reward value when reaching a goal in sparse settings.
1, 5, or 10 for the respective Sparse’ reward experiments.
N/A otherwise.

Training Duration

total_timesteps

num_ eval_ stages

1,000,000 for Circle task (Original reward).

5,000,000 for Circle task (Shaped reward) and all Goal task
experiments.

Number of RARE evaluation stages during training.

20 (for 1M step runs, evaluating every 50,000 steps).

100 (for 5M step runs, evaluating every 50,000 steps).
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Figure B.1.: Training mean reward, mean episode length and cumulative crashes for the
PPO variants with the car agent in the goal task under the sparse reward
structure with goal reward 1 on all difficulty levels.
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Figure B.2.: Training mean reward, mean episode length and cumulative crashes for the
PPO variants with the car agent in the goal task under the sparse reward
structure with goal reward 1 on all difficulty levels
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Figure B.3.: Training mean reward, mean episode length and cumulative crashes for the
SAC variants with the car agent in the goal task under the sparse reward
structure with goal reward 1 on all difficulty levels.
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Figure B.4.: Training mean reward, mean episode length and cumulative crashes for the
SAC variants with the car agent in the goal task under the sparse reward
structure with goal reward 1 on all difficulty levels

89



APPENDIX B. SPARSE REWARD PLOTS

LongSparseRewardsReward1_CarGoal1 Evaluated with DSMC
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(a) Evaluation mean reward, mean episode length and survival probability for car agent under
sparse rewards on difficulty level 1 evaluated with DSMC.

LongSparseRewardsReward1_CarGoal2 Evaluated with DSMC
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(b) Evaluation mean reward, mean episode length and survival probability for car agent under
sparse rewards on difficulty level 2 evaluated with DSMC.

Figure B.5.: Evaluation results for the car agent in the goal task under sparse rewards
with goal reward 1 on difficulty levels 1 and 2 evaluated with DSMC.
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LongSparseRewardsReward1_PointGoal1 Evaluated with DSMC
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(a) Evaluation mean reward, mean episode length and survival probability for point agent under
sparse rewards on difficulty level 1 evaluated with DSMC.
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(b) Evaluation mean reward, mean episode length and survival probability for point agent under
sparse rewards on difficulty level 2 evaluated with DSMC.

Figure B.6.: Evaluation results for the point agent in the goal task under sparse rewards
with goal reward 1 on difficulty levels 1 and 2 evaluated with DSMC.
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APPENDIX B. SPARSE REWARD PLOTS
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Figure B.7.: Training mean reward, mean episode length and cumulative crashes for the
PPO variants with the car agent in the goal task under the sparse reward
structure with goal reward 10 on all difficulty levels.
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Figure B.8.: Training mean reward, mean episode length and cumulative crashes for the
PPO variants with the car agent in the goal task under the sparse reward
structure with goal reward 10 on all difficulty levels
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Legend LongSparseRewardsReward10_CarGoal - SAC Comparison
= SAC (Baseline)
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Figure B.9.: Training mean reward, mean episode length and cumulative crashes for the
SAC variants with the car agent in the goal task under the sparse reward
structure with goal reward 10 on all difficulty levels.
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Figure B.10.: Training mean reward, mean episode length and cumulative crashes for
the SAC variants with the car agent in the goal task under the sparse
reward structure with goal reward 10 on all difficulty levels
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LongSparseRewardsReward10_CarGoal1 Evaluated with DSMC
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(a) Evaluation mean reward, mean episode length and survival probability for car agent under
sparse rewards on difficulty level 1 evaluated with DSMC.

LongSparseRewardsReward10_CarGoal2 Evaluated with DSMC
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(b) Evaluation mean reward, mean episode length and survival probability for car agent under
sparse rewards on difficulty level 2 evaluated with DSMC.

Figure B.11.: Evaluation results for the car agent in the goal task under sparse rewards
with goal reward 10 on difficulty levels 1 and 2 evaluated with DSMC.
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LongSparseRewardsReward10_PointGoal1 Evaluated with DSMC
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(a) Evaluation mean reward, mean episode length and survival probability for point agent under
sparse rewards on difficulty level 1 evaluated with DSMC.

LongSparseRewardsReward10_PointGoal2 Evaluated with DSMC
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(b) Evaluation mean reward, mean episode length and survival probability for point agent under
sparse rewards on difficulty level 2 evaluated with DSMC.

Figure B.12.: Evaluation results for the point agent in the goal task under sparse rewards
with goal reward 10 on difficulty levels 1 and 2 evaluated with DSMC.
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C. Al Usage

For this thesis the usage of Al was explicitly permitted. Because of this, parts of the
code were implemented with the help of generative Al:

In particular the code which creates the plots for both the training curves and evaluation
bar charts was mostly done with AI. For this different Large Language Models, namely
Claude 3.7, Deepseek R1 and Gemini 2.5 were used. The code was then checked for
correctness and used in the creation of the plots.

While ChatGPT was also used to help with formulations during writing, no part of the
write-up is Al generated.
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