
Saarland University

Bachelor Thesis

Explainable Classification for an

Application System
Submitted by:

Paul Nikolaus Krieger

Submitted on:

September 3, 2020

Reviewers:

Univ.-Prof. Dr. Verena Wolf

Univ.-Prof. Dr. Jan Reineke

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in
die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken,______________________ _____________________________
 (Datum/Date) (Unterschrift/Signature)

Abstract

The objective of this thesis was the examination of the use of artificial intelligence for
the admission of students to the master programme in computer science of Saarland
University. Given a set of student applications, the aim was to develop a classification
approach based on decision trees and random forests to provide a recommendation of
acceptance or rejection of a student. In addition to the decision engine a variety of
data cleaning methods was developed to make the input data set compatible with the
machine learning models’ requirements. Also, features such as spelling of the applicant
and university rankings were added to the data as part of feature engineering. The data
was also labelled. This was a particular challenge, as only a few applicants in the data set
were accepted at Saarland University and the labelling was based on their performance.
An important part of this thesis was the explainability of the trained models. For that
approaches were developed to make the reasoning of the models understandable for
humans. These approaches are based on visualisations of the decision trees and the
analysis of the most important features. The available application data were labelled
in several ways and models could be trained with a high accuracy. Furthermore, the
performance of the decision trees and random forests was compared to gradient boosting
models. The final part of the thesis provides a critical analysis of the practical suitability
of the trained models, which revealed that the recommendation quality is questionable
for several reasons. For example, the performance of the models is very poor, if a
student is from an university which the models have not seen before.

iii

Acknowledgments

This Bachelor thesis was written at the Faculty of Mathematics and Computer Science
at Saarland University. At this point I would like to thank my supervisors Prof. Dr.
Verena Wolf and Timo Gros for their friendly and dedicated support as well as for helpful
suggestions and ideas for my thesis. I would also like to thank the study coordination
for providing the data and explaining it.

v

Contents

1. Introduction 1
1.1. Focus of this Work . 1
1.2. Process Model . 2
1.3. Organisation of the Thesis . 3

2. Preliminaries 5
2.1. Artificial Intelligence and Machine Learning 5
2.2. Explainable AI . 5
2.3. Classification . 5
2.4. Decision Trees . 6
2.5. Ensemble Methods . 8

2.5.1. Bagging . 9
2.5.2. Boosting . 10

2.6. Feature Selection . 11
2.6.1. Recursive Feature Elimination 11
2.6.2. Feature Selection with Chi-Square Tests 12

2.7. Data Sampling Methods . 12
2.7.1. Undersampling . 12
2.7.2. Oversampling . 13

2.8. Evaluation . 14
2.8.1. Cross-Validation . 14
2.8.2. Confusion Matrix . 14
2.8.3. Accuracy, Precision, Recall and F1 Score 15
2.8.4. Wilson Score . 16

2.9. Explainability Methods . 17
2.9.1. Shapley Values . 17

3. Data Acquisition and Understanding 19
3.1. Data Acquisition and Data Set . 19
3.2. Data Cleaning . 20

3.2.1. Universities . 23
3.2.2. Study Programmes . 25
3.2.3. Language Test . 25
3.2.4. Replacement of NA Equivalents 28
3.2.5. Outliers . 28
3.2.6. Missing Values . 29
3.2.7. Results . 29

3.3. Data Exploration . 30

vii

Contents

4. Modelling 39
4.1. Feature Engineering . 39

4.1.1. University Rankings . 39
4.1.2. IT- and STEM-related Study Programmes 41
4.1.3. Spelling of the Study Programme in the Application Form 42
4.1.4. Summary . 43

4.2. Data Labelling . 46
4.2.1. Data Labelling based on Performance at Saarland University . . 46
4.2.2. Data Labelling for Applicants with unknown Performance 48

5. Model Training and Evaluation 53
5.1. Training with Applicants with known Performance 53
5.2. Adding negatively labelled Applicants with unknown Performance . . . 57
5.3. Adding positively labelled Applicants with unknown Performance 59
5.4. Model Tuning . 60
5.5. Comparison with Boosting Methods . 64
5.6. Wilson Lower Bound Score . 65

6. Approaches for Explainability 67
6.1. Decision Trees . 67
6.2. Random Forests . 72
6.3. Gradient Boosting . 72

7. Conclusion and Future Work 79
7.1. Quality of the Model . 79

7.1.1. Modelling . 79
7.1.2. Explainability . 80
7.1.3. Other . 81

7.2. Deployment Recommendation . 81
7.2.1. Adaptation of the Application Form 81
7.2.2. Maintenance of the Database . 81

7.3. Future Work . 82

Appendices 93

A. Appendix Stuff 93

viii

1. Introduction

1.1. Focus of this Work

Artificial intelligence is an increasingly important area of computer science and is used
in many areas of our lives. In recent years, numerous successes have been achieved,
especially in the field of machine learning. These successes are partly due to scientific
progress, which uses complex algorithms to find patterns in data that no human being
would discover. On the other hand, they are also due to the enormous increase in the
amount of data that is collected every day [40, 73]. Meanwhile there are agents based
on artificial intelligence which are able to win highly complex games like chess or go
against world leading players [1]. But impressive results have also been achieved in the
areas of autonomous driving, education, manufacturing, recruitment and many other
areas. This variety of possible applications has already led to artificial intelligence-based
applications being used in many areas of our lives, and this trend is likely to increase
in the future [20]. For example, systems that make decisions automatically have an
ever-increasing impact on our lives. It is therefore of enormous importance that these
systems function very well. However, the performance not only plays an important role
here, but also whether one can trust these systems and understand why they behave
the way they do. For example, artificial intelligence can be used to support doctors
in diagnosing diseases [40, 73]. When such a tool diagnoses a disease, it is desirable
that the tool also provides reasons why it believes the patient has the disease. The
doctor can then check whether the diagnosis is plausible. The same applies to tools
that support recruitment. If an artificial intelligence wants to accept an applicant, it
is important to know what the decisive reasons were. The need to understand why a
decision is made is also shown by the example of amazon, which has developed a tool
to optimize the application process. The tool, which is based on artificial intelligence,
sorted out CVs that contained the word women’s [65]. Such practices should obviously
be avoided and the goal should be to ensure that the artificial intelligence is not only
performance-driven, but also explainable. In this context, one also speaks of explainable
AI, which should ensure the explainability, comprehensibility and traceability of artificial
intelligence. Explainable AI also has the opportunity to create more trust among users.
Apart from that, there are also legal regulations that require an explanation of artificial
intelligence. This is defined as the right of explanation in the new European data
protection regulation (DSGVO, see also with ISO/IEC 27001) [40, 73]. However, it
often relatively difficult to provide explainability. For example, words are mapped to
high-dimensional vectors and are therefore no longer understandable for humans. Also
the explainability depends on the machine learning algorithm used. The decisions of
models like neural networks or support vector machines are not comprehensible for
humans, they are so-called black box models. But there are also models, such as decision
trees, which are easy to understand. Decision trees have the advantage that the decision
can be easily understood on the basis of simple rules, which are ordered hierarchically.

1

CHAPTER 1. INTRODUCTION

Furthermore, decision trees show a good performance in practice, even if it is not as
good as that of neural networks [40, 57, 73].

This thesis is about the explainable classification of applicant data. The underlying
data set is the applicant data set for the master’s programme in computer science at
Saarland University. At Saarland University there is a large number of international
applicants with different backgrounds. The applicants differ in personal and academic
characteristics. There are differences in age, gender, origin or course of study as well as
grades. For professors and the admissions office, this multitude of profiles is difficult to
keep track of and complicates the admissions process. There are also groups of students
who do not achieve internal goals of the faculty in terms of grades and duration of
study. In order to solve these problems, the application of artificial intelligence in the
admissions process will now be investigated. However, we will mainly work with decision
trees, as they are easy to understand and only support the selection committee in its
decision making. For comparison, other machine learning methods such as random
forests and gradient boosting are also considered. For these models, possibilities are
also presented that allow a better understanding of their decisions. The main steps of a
machine learning project will be worked out.

1.2. Process Model

In applied machine learning and data science, various process models have been es-
tablished for projects. However, most of them differ only in nuances. In principle,
the essential steps which are listed in the data science lifecycle of Microsoft Azure
are processed here [54]. The lifecycle is depicted in figure 1.1. An important step in
any machine learning project is business understanding. This involves developing a
sound understanding of the underlying problem. In this project, the problem is that the
admission of students to the master programme at Saarland University is not optimal.
Some students do not achieve the internal goals of the computer science faculty. Machine
learning methods will now be used to solve this problem. In order to solve this problem
by means of machine learning, it is important to become familiar with the application
process of the university and to clearly define internal requirements. Only in this way
such a project can succeed. It is also determined what data is needed to carry out
such a project. This also leads to the next elementary step in the lifecycle of any data
science and machine learning project, the data acquisition and understanding. In this
project, anonymised data were obtained by the study coordination. This includes all
data collected during the application process and during the study. An essential step
is now to thoroughly understand these data. This includes the essential steps such as
data cleaning and data analysis. The data analysis especially gives us the possibility
to understand the data, to discover special features like outliers and null values and
to prepare the data set for the actual machine learning. In general, there are also
other things, such as pipelining the data, which must be considered in this step [54, 62].
However, these are not necessary in this project, because there is only one CSV file
with a manageable size. After the data is available, cleaned and analysed, the actual
modelling can begin in a machine learning project. The elementary steps in modelling

2

1.3. ORGANISATION OF THE THESIS

Figure 1.1.: Data science lifecycle from Microsoft Azure. Reprinted from [54].

are feature engineering, model selection and the evaluation of the selected models. In
feature engineering, new features are extracted from the existing data. These can lead to
a considerable improvement in performance [54]. In model training, the selected models
are trained on the data. Depending on the data, this can be unsupervised, supervised
or based on reinforcement learning. In this project we only work with methods that
are based on decision trees (also random forests). Afterwards the trained model must
also be evaluated. Metrics such as accuracy, precision and recall are suitable for this.
In order to ensure a high level of security with regard to these values, the results can
be cross-validated. A visualisation of the results is also part of this step. Confusion
matrices, for example, can be used to visualise the performance well [26, 54]. Ultimately,
this is how the best model is selected, i.e. the model to be used in the future. The last
step is the deployment. The modelling is finished and the model is ready for deployment.
The performance of the model is monitored to ensure correctness. If it works well, the
tool is left to the customer as much as possible and the project is finished [54].

1.3. Organisation of the Thesis

This thesis examines whether decision trees and random forests can be used to opti-
mise the application process for the master program in computer science at Saarland
University. Chapter 2 introduces and defines basic concepts and provides algorithms
for decision trees and random forests. Also, techniques to improve explainability are

3

CHAPTER 1. INTRODUCTION

presented. In addition, techniques for working with unbalanced data and metrics for
evaluating the models are defined. In the following chapters, all relevant steps of a
practical machine learning project are covered. In chapter 3 the data set is presented,
cleaned and analysed. Chapter 4 deals with modelling. New features are created and the
data is labelled. In the subsequent chapter models are trained, optimised and evaluated.
In chapter 6 approaches to explain the decision of the model are presented and in
chapter 7 the results of the thesis are summarised. Furthermore, recommendations for
the improvement of the application tool are given and an outlook is given.

4

2. Preliminaries

This chapter introduces the basics needed to understand the thesis. First, general terms
about machine learning and explainable artificial intelligence are defined. Afterwards,
decision trees and the techniques based on them are introduced. These constructs are
mainly used in the modelling part. Additionally, techniques for tuning decision trees,
feature selection and evaluation are introduced.

2.1. Artificial Intelligence and Machine Learning

Artificial intelligence is an increasingly important field of research in computer science
that deals with the automation of intelligent behaviour and machine learning. In
machine learning we try to find similarities and patterns in the available data. Machine
learning is divided into the areas of supervised learning, unsupervised learning and
reinforcement learning. In supervised learning, learning takes place from a data set
for which the results, i.e. the output to be learned, are already known. This includes
regressions and classification problems. In unsupervised learning, however, no target
values are known which could be used for learning. In particular, this includes clustering
algorithms. Typical problems in machine learning are the recognition of handwritten
numbers or spam detection [8, 13, 78].

2.2. Explainable AI

Explainable AI (XAI) includes machine learning models that enable people to understand
the decisions that are made. In general, an XAI tool is designed to ask how a certain
outcome was achieved and why no other outcome was achieved. It must be clear which
parameters influence the output most. Also, it is important to know in which cases the
result is trustworthy and in which not, and what can be done to correct a possible error.
These are all questions that are answered by an XAI model. Figure 2.1 illustrates the
difference between a normal machine learning tool and an XAI tool [15, 40, 73].

2.3. Classification

Classification is an area from machine learning and belongs to the supervised learning
methods. It is about the assignment of a new observation to a class. This is done
by an algorithm which has been trained on data for which the classes are already
known. A classification algorithm detects patterns in the data during this training,
on the basis of which it tries to make assignments for observations with unknown
classes. Mathematically a classifier can be described as function f , which receives an
observation x as an input and outputs the corresponding class y, i.e., f(x) = y. A

5

CHAPTER 2. PRELIMINARIES

Figure 2.1.: Concept of XAI. The states with and without explanatory components for
AI technologies are presented. Reprinted from [15].

typical classification problem is spam email filtering in which we try to classify new
emails into the categories spam or not spam [13, 46, 78].

2.4. Decision Trees

Decision trees belong to the supervised learning methods and are used for classification
and regression [66]. In this project, however, decision trees are only used as classifiers,
since applicants are either accepted or rejected. Decision trees are based on the idea
of extracting simple rules inferred from a data set and its features to predict a target
variable. These rules are arranged hierarchically in a tree structure and are the internal
nodes of the tree. The leaf nodes of the tree stand for different classes, to which we
want to assign new observations. A basic decision tree algorithm is listed in algorithm 1.
The algorithm initially receives the training data. Based on the training data, it selects
the best attribute to divide the data set into subsets that have a higher purity with
respect to their labels. For these subsets, the above procedure is repeated until the
subsets are pure, no attributes are left or another condition, such as maximum depth, is
met. There are different methods for the decision process regarding the attribute. For
example, information gain and entropy can be used to select the best attribute [66, 77].
Figure 2.2 shows a decision tree. It shows an example of how students are classified in
terms of acceptance or rejection at a university. Students who have previously studied
at Oxford are always accepted, whereas students from Aachen need a very good grade
point average to be accepted.

There are various algorithms for generating such a decision tree. Some of the best known

6

2.4. DECISION TREES

Algorithm 1 Basic Decision Tree Algorithm (ID3). Reprinted and adapted from
[47, 77].
Split(Node,Data)
A = best attribute for splitting
Decision attribute for node = A
for values in A do

Create new child node
Split Data to child nodes
for each child node/subset do
if subset is pure then
Stop

else
Split(child node,subset)

end if
end for

end for

University

GPA

Accept
90-100%

Reject

80-90%

RWTH

Accept
Oxford

English

Accept
C1-C2

Reject
B1-B2

TUM

Figure 2.2.: Example of a decision tree. The decision tree visualises the decision process
for the admission of students with different qualifications.

7

CHAPTER 2. PRELIMINARIES

algorithms are called ID3, C4.5, C5.0 or CART. The ID3 algorithm is a basic greedy
algorithm, which has been further developed to C4.5 or C5. The CART algorithm
is similar to C4.5. Also, it generates only binary trees and uses information gain to
determine the nodes. In this project decision trees are built by the CART algorithm. In
general, decision trees have advantages but also disadvantages. One of the main advan-
tages of decision trees is that they are very understandable and they are interpretable
as long as they are not too deep. Furthermore, one can visualise decision trees. Another
advantage is that decision trees require very little data preparation compared to other
techniques, for example, the data does not need to be normalised. In addition, decision
trees can handle both numeric and categorical attributes well. This is particularly
important because both are used in the data set used. Also, the cost of using the tree is
low. The costs are logarithmic in the number of data points used to train the decision
tree. Moreover, decision trees generally perform very well. However, there are some
disadvantages too. Decision trees can become too complex and not generalise the data,
resulting in overfitting. Indeed, there are techniques like pruning to solve this problem.
In addition, the decision trees can be unstable, since small variations in the data set
can lead to very different trees. This problem can also be solved by using the trees in
an ensemble. This technique can also help to fix the problem that a decision tree is
greedy and therefore not necessarily optimal. Furthermore, decision trees cannot handle
unbalanced data sets so well, i.e., when there are significantly more of one class than of
another class in a data set. In such cases, the decision tree could be biased and decide
in favour of the class that occurs most often. Balancing the data set by methods like
undersampling or oversampling can mitigate this problem [28, 48, 57, 66].

When a decision tree is created, different features are used differently. In addition,
some features help more to preserve pure subsets than others. It is therefore interesting
to know which features are particularly important, as this also plays a role in the
interpretation of the tree. One measure used for this is the feature importance. This
feature importance is calculated as a normalized, total reduction of the used measure
(such as gini impurity) which is brought by the feature [48, 71].

One way to optimise the performance of decision trees is pruning. If a decision tree
is created based on data, it may be overfitted, as mentioned above. One method, for
example, is cost-complexity pruning. The decision tree is first allowed to grow completely
and is then pruned. Pruning is performed by recursively searching for nodes with a
weak link. These are defined using a cost-complexity criterion. Finally, a balance is
sought between the goodness of fit and the complexity of the decision tree [33, 69].

2.5. Ensemble Methods

Another possibility to get better results with decision trees is the use of so-called
ensemble methods. In these methods several models are combined with each other. In
general one distinguishes between ensemble methods that combine similar models, such
as decision trees, and methods that combine different machine learning methods. When

8

2.5. ENSEMBLE METHODS

combining models that are very similar, one can further distinguish between bagging
and boosting [79].

2.5.1. Bagging

In bagging or bootstrap aggregation, different versions of a predictor are combined
to an aggregated predictor. If this new predictor is to classify an observation, all the
predictors which it consists of classify the observation. The predictor then returns the
class that was classified most frequently. The versions of a model are created by training
the models on bootstrap samples of the data set. Bagging can reduce the variance of an
estimated prediction function and is very useful for decision trees. Furthermore, the
accuracy is often improved [10, 79].

Random Forests

Random forests belong to the ensemble learning techniques. Random forests are a
combination of multiple decision trees which are generated on bootstrap samples of the
data set. In principle, for each tree a sample of the data and a subset of attributes
are randomly selected. The individual decision trees are created based on this data
and are not pruned. To classify a new datapoint, each decision tree predicts the class.
The class that occurs most frequently is then returned. The class of the object to
be classified is therefore determined with a majority vote. In general, random forests
are a powerful machine learning technique, which have a better performance than
decision trees. Random forests are much more stable than decision trees. Adding a
new data point to the data set may affect individual trees, but not the whole set. Also,
overfitting is avoided by the combination of a large number of different decision trees.
A disadvantage compared to decision trees is that random forests with an increasing
number of decision trees have a higher complexity and it takes longer to train the
classifier [9, 34]. The random forest pseudocode is provided in algorithm 2.

Algorithm 2 Random Forests for Classification. Reprinted from [35].
1: Random Forests(Training Data)
2: for b = 1 to B do
3: Draw a bootstrap sample Z of size N from the training data.
4: Grow a random forest tree Tb to the bootstrapped data, by recursively repeating
5: the following steps for each terminal node of the tree, until the maximum node

size nmin is reached.
6: i) Select m variables at random from the p variables.
7: ii) Pick the best variable/split-point among the m.
8: iii) Split the node into two daughter nodes.
9: end for

10: Output the ensemble of trees {Tb}B1

9

CHAPTER 2. PRELIMINARIES

2.5.2. Boosting

Boosting is one of the most important learning ideas in recent years and is based like
bagging on the use of several models. However, there are significant differences between
the two methods. Boosting is one of the most powerful methods to optimise weak
learners and achieves a high performance. These weak classifiers often take into account
only a few features of the objects and do not provide good predictions regarding the
classification of observations. In boosting, these classifiers are now combined and each
one is given a weight. These weights are optimised to take greater account of classifiers
who can better contribute to the correct classification of observations. Classifiers who
can contribute little to the classification will be given a very low weight. To classify an
observation, all classifiers predict the class and these predictions are combined into a
final class based on the weights. AdaBoost, one of the best known boosting methods, is
presented in detail below [36].

Algorithm 3 AdaBoost Algorithm. Reprinted from [37].
1: AdaBoost(Training Data)
2: Initialise the observation weights wi = 1

N , i = 1, 2, ..., N
3: for m = 1 to M do
4: Fit a classifier Gm(x) to the training data using weights wi
5: Compute errm =

∑N

i=1 wi·I(yi 6=Gm(xi))∑N

t=1 wi

6: Compute αm = log(1−errm
errm

)
7: Set wi ← wi · exp[αm · I(yi 6= Gm(xi))], i = 1, 2, ...N
8: end for
9: return G(x) = sign[

∑M
m=1 αmGm(x)]

AdaBoost

A well-known boosting algorithm is AdaBoost which is the abbreviation for adaptive
boosting. This works as follows: Suppose we have a weak classifier - a classifier that is
only slightly better than random. Now this classifier sequential is applied to slightly
modified versions of the existing data. A sequence of classifiers is generated. These
classifiers classify a new data point and with a weighted majority vote of all predictions
the corresponding class is returned. Classifiers which were more accurate in training,
obtain more influence. This is made possible by a factor α, which is multiplied by
the predicted class. If this factor is higher, the influence on the average weighted
class is obviously higher. There are also observation weights. These weights exist for
the training data and are all initially worth 1

N , where N is the size of the data set.
These weights are adjusted in an iterative process. The models classify the data as
described above. Training observations that have been incorrectly classified receive a
greater observation weight, while those that have been correctly classified are reduced.
Permanently wrongly classified features get more and more influence after some time.
Each classifier focuses on the corresponding data to classify it correctly. Algorithm 3

10

2.6. FEATURE SELECTION

specifies the pseudo code for AdaBoost. M is the number of iterations in the algorithm,
I is the loss function and (xi, yi) are the training observations. In addition to AdaBoost,
other boosting techniques have also become widespread [36].

Gradient Boosting

Another well-known boosting method is gradient boosting. As with the techniques
presented above, several weak models, usually decision trees, are combined to form a
strong model. It belongs to the ensemble learning methods and is based on additive
modelling. In gradient boosting an objective function is defined, which consists of a
training loss and regularisation part. This indicates how well the model is fitted to the
training data. The regularisation part serves to manage the complexity of the model
and to avoid overfitting. In an additive process, decision trees are added to the model
to optimise the objective function. This creates a model that delivers very good results
in practice [14, 38]. In this thesis gradient boosting is used to compare the performance
of decision trees and random forests with a stronger model.

2.6. Feature Selection

The amount of data collected has increased considerably in recent years. These data
sets often have a variety of attributes. In these high-dimensional data sets, however, not
all attributes are equally important. Some are irrelevant and affect the performance of
machine learning algorithms. Feature selection solves the problem of high-dimensional
data by selecting the most important attributes, that is, those that provide the most
information. Features that hardly contain any information, or are even misleading,
are removed by feature selection. In addition, feature selection also protects against
overfitting if there are relatively many features to few observations. Instead of working
with the whole data set, only the most important attributes are used. In the following
paragraphs different feature selection methods are introduced. Another way to reduce
the dimensions of a data set is feature extraction. This possibility is not considered in
this thesis, because it would mean the loss of attributes which would therefore have a
significant negative impact on the explainability of the tool [31, 63].

2.6.1. Recursive Feature Elimination

Recursive feature elimination is one of the backward feature elimination methods. Here
a classifier is trained on the training data. Afterwards the features are ranked according
to their importance to successfully classify the data. The least important feature is
removed and the process is repeated with the remaining features. If there is a large
amount of features and data, it may make sense to remove several features at once.
In these cases the subsets of the features are ranked and the subset that has the least
importance is removed. In the end, the combination of features is selected from which
the model has performed best. The pseudocode for recursive feature elimination is

11

CHAPTER 2. PRELIMINARIES

provided in algorithm 4 [31]. In the algorithm n is the number of features of the data.

Algorithm 4 Recursive Feature Elimination [31]
RFE(Data)
for i = n to 1 do

Train the classifier on the given features
Report the accuracy of the classifier
Rank the features according to their importance
Remove least important feature, continue with the new subset

end for
return best subset

2.6.2. Feature Selection with Chi-Square Tests

Another way to select relevant features is to use the chi-square test. In general the
chi-square test is a statistical test to determine the independence between 2 events. In
the feature selection features should be found which have a dependency to the target
variable. Here the chi-square test is very practical. A high dependence is also associated
with a high chi-suare value. With this method features with a high dependency on
the target variable can be selected for a better learning process. However, it should be
noted that the chi-square test makes less sense for categorical features [29].

2.7. Data Sampling Methods

Data sets in which one class occurs significantly more frequently than the other class
are called unbalanced data sets. The class that occurs most often is called majority
class, while the other class is called minority class. For classification problems, equally
distributed classes in a data set are optimal for the learning process. However, it often
happens that the data is unbalanced. Unbalanced data can have a considerable impact
on the model, since the minority class could be considered as noisy data. In this case the
machine learning model could discriminate against the minority class and in the worst
case only predict the majority class. To solve this problem, the record must be balanced,
i.e. the minority class must be given a higher weight. There are several methods to
correct this imbalance between classes. The following section introduces methods that
undersample or oversample the data in order to balance the data set [28, 76].

2.7.1. Undersampling

In undersampling, large parts of the majority class in the data set are deleted so that
both classes occur equally often. One problem associated with this method is that
information is lost when data is deleted. An advantage is that the data set is balanced

12

2.7. DATA SAMPLING METHODS

and the time required to train a model is reduced because the data set is smaller
[28, 76].

Random Undersampling

In random undersampling observations are randomly removed from the majority class
until the ratios of the two classes are equal. A drawback of this sampling method is
that the data is removed randomly, and important information may be removed while
redundant information remains in the data set. There are approaches such as condensed
nearest neighbours that solve this problem [28, 76].

Condensed Nearest Neighbours

Instead of randomly selecting the observations from the majority class to be removed,
instances for which several very similar observations exist in the data set can be removed
first. Such an approach is implemented by the method condensed nearest neighbours.
First, all observations belonging to the minority class are determined. Then, elements
with similar properties from the majority class are added step by step to the training
set, which initially consists only of the elements from the minority class. In general,
this is a sampling method intended for k-nearest neighbours [28, 32].

2.7.2. Oversampling

In oversampling, new instances belonging to the minority class are added to the data
set to balance it. In contrast to undersampling, an advantage of oversampling is that
no information is lost. The disadvantage is that no new information is added to the
data set regarding the minority class. This can lead to an overfit of the model. Also, it
takes longer to train the model [28, 76].

Random Oversampling

In random oversampling, observations are randomly selected from the minority class
and added to the data set. This removes the imbalance between the classes. However,
the model can overfit because no new information is added to the data set by this type
of oversampling [28, 76].

Synthetic Minority Oversampling Technique

Another well-known oversampling method is the Synthetic Minority Oversampling
Technique (SMOTE). In this method, synthetic data of the minority class is generated
and added to the data set in order to balance it. These are generated using the clustering
algorithm k-nearest neighbours. For a randomly selected observation from the minority
class, the k-nearest neighbours are determined and a new observation is generated, which
lies between the selected observation and one of its neighbours. In practice, SMOTE is
a widely used method, which is usually better than random oversampling [28, 76].

13

CHAPTER 2. PRELIMINARIES

2.8. Evaluation

In general, if a machine learning model is to be trained, the data set available for this is
divided into training data and test data. The model is trained on the training data and
evaluated on the previously unknown test data. Splitting the data into training and
test data is done to ensure that the model actually performs well and not because it
has seen the data before. Often a validation set is also created to have another instance
to test the performance. This is especially useful when tuning parameters, as one might
choose some that work well on the test data by chance. The test data should ensure
that if the model performed well on the validation set, this is not purely random. If
the model is too adapted to the training data, it performs poorly on the test data and
we speak of overfitting. However, there are methods with which performance can be
estimated with even greater certainty [39, 67].

2.8.1. Cross-Validation

In the procedure described above, the data is broken down into up to three data sets -
training data, validation data and test data. However, this leads to the problem that
considerably less data is available for the actual learning process, which in turn can
have a negative effect on the performance of the model. This problem can be solved
with the cross-validation procedure. Here the data is split into training data and test
data, while the validation data is no longer needed. The training data is now divided
into k equal subsets. The model is then trained on k-1 of these subsets and evaluated
on one. This is repeated k times, so each subset was once test data and k-1 times
part of the training data. Finally, the average performance over all so-called folds is
considered. the test data can then be used for the final test. The schematic process of
cross-validation for k=5 is shown in figure 2.3. However, there are other cross-validation
methods. For example, it can be determined that each class occurs equally often in
each subset [39, 67].

2.8.2. Confusion Matrix

A confusion matrix is a matrix that visualises the performance of a classifier. One
axis is labelled with the actual classes and the other axis with the predicted classes.
This results in four fields to which the observations are assigned corresponding to the
classification [26].

• True positive: The actual and the predicted class are positive.
• False positive: The actual class is negative but positive was predicted.
• False negatives: The actual class is positive but negative was predicted.
• True negative: The actual and the predicted class are negative.

An example of a confusion matrix of a classifier to accept and reject applicants is given
in figure 2.4 [26].

14

2.8. EVALUATION

Figure 2.3.: Visualisation of cross-validation. Reprinted from [67].

True Admission
Accept Reject

Admission Classifier Accept True Positive False Positive
Reject False Negative True Negative

Figure 2.4.: Example Confusion Matrix

2.8.3. Accuracy, Precision, Recall and F1 Score

In the previous paragraphs we have often talked about the performance of a machine
learning model. However, this has yet to be defined. To evaluate the performance
of a machine learning model, there are different metrics. The most used metrics are
accuracy, precision and recall. The accuracy is the fraction of correct predictions of
a model, i.e., the proportion of true positives and true negatives. A high accuracy
is therefore desirable. However, accuracy is not always a useful metric for evaluating
the performance of a model. For highly unbalanced data sets, high accuracy does
not say much about the model. A simple model that always predicts the class that
occurs most often could also achieve high accuracy in this way. Therefore, in practice,
precision-recall metric is often used to evaluate classifiers. Precision is the number
of true positives over the number of true positives and false negatives, and the recall
is the number of true positives over the number of true positives and false negatives.
The precision indicates how exactly the model predicts the positively labelled class.
One can easily see if many of the other classes are predicted incorrectly. In practice
this can be relevant, for example when predicting spam in emails. If many emails
that are not spam are classified as spam, important emails could be lost. Therefore, a
high precision is desirable. The recall, on the other hand, indicates how many of the
positively labelled ones have actually been predicted as positive. The recall is therefore
particularly important if false negative values are to be avoided. Often we also want
to have a balance between precision and recall. To achieve a balance between the two

15

CHAPTER 2. PRELIMINARIES

values, the F1 score is used. The F1 score is the double product of precision and recall
divided by the sum of precision and recall. The optimal F1 score is 1 and is also called
harmonic mean. Also, the precision corresponds to the positive predicted value (PPV)
and the recall to the true positive rate (TPR). The negative predicted value (NPV)
and the true negative rate (TNR) are basically precision and recall for the negative
class. These metrics help us to analyse and evaluate the performance of the models.
Definition 2.8.1 gives the formulas of the metrics introduced above [26, 75, 70].

Definition 2.8.1. Accuracy, Precision and Recall: Let TP , FP , TN and FN be the
terms for true positive, false positive, true negative and false negative.

i) Accuracy := TP+FP
TP+TN+FP+FN

ii) Precision (PPV) := TP
TP+FP

iii) Recall (TPR) := TP
TP+FN

iv) NPV := TN
TN+FN

v) TNR := TN
TN+FP

vi) F1 := 2 · Precision·RecallPrecision+Recall

[26]

2.8.4. Wilson Score

In the previous section, various machine learning models based on decision trees were
introduced. Metrics to evaluate their performance were also introduced. However,
it would also be interesting to know the confidence intervals for these. A possible
confidence interval can be given by the so-called Wilson score interval. This assumes a
binomial distribution. Thus, only two possible outcomes are expected, such as a coin
toss or correct classification of a student [53, 55, 84].

Definition 2.8.2. Wilson Score: The interval below is called Wilson score interval.
Here, p is the quotient of the number of positive observations that occurred and the total
number of observations, which are called n. zα/2 describes the quantile of the standard
normal distribution. Also, the sum is called upper (w−) bound and the difference lower
bound (w+). If p is equals to 0 then w− = 0 and if p is equals to 1 then w+ = 1.

w+ = (p+
z2
α/2
2n + zα/2

√
[p(1− p) + z2

α/2/4n]/n)/(1 + z2
α/2/n)

w− = (p+
z2
α/2
2n − zα/2

√
[p(1− p) + z2

α/2/4n]/n)/(1 + z2
α/2/n)

For example, the Wilson lower bound score and the upper bound score can be used to
specify a confidence interval that indicates accuracy with 95% probability. Thus, the
Wilson score provides further information to evaluate the performance and reliability of
our model [53, 55, 84].

16

2.9. EXPLAINABILITY METHODS

2.9. Explainability Methods

In this section the Shapley values are introduced. These allow a better explainability
for complex models.

2.9.1. Shapley Values

Not all models are as easy to interpret as a decision tree. Bagging and boosting methods
are much more difficult to interpret. The possibility to calculate the feature importances
of the different models has already been mentioned. However, there are ways to better
analyse the importance of the features, for example using the Shapley values, a well-
known concept in game theory [23]. In game theory Shapley values are used to solve
distribution problems that result from the cooperation of unequal players and additional
profits. This problem can be transferred to the importance of a variable as follows.
Individual variables, such as the GPA or the nationality of an applicant, can have a
certain impact on the prediction of the model. However, several features combined
can have a greater influence on the prediction than if the influence of the features is
considered individually. The Shapley values assign the features their actual effect on a
prediction [6, 23]. Formally, the problem can be described as follows. Given is a model
f() and p ordered variables {1, ..., p}, which are called permutation J . In the following
formulas, we denote the set of variables which are placed before the j-th variable in J as
π(J, j). Furthermore x∗ is a concrete instance of interest. The Shapley value is defined
as follows:

ϕ(x∗, j) = 1
p!

∑
J

∆j|π(J,j)(x∗),

where ∆j|π(J,j)(x∗) is the variable importance and p! all possible permutations, i.e.
orderings, of the explanatory variables. The importance of a variable can depend on
the order of the previously considered features. The variables are considered one after
the other to determine their impact on the final prediction. Therefore it makes sense to
consider all permutations. Basically, ϕ(x∗, j) is the average of the variable-importance
across all possible variable orderings. The Shapley values preserve some important
features. For example, local accuracy is guaranteed. This means that the sum of
the Shapley values is equal to the model prediction. Another important property is
consistency, which means that if one feature is more important in one model than
another, the importance is higher regardless of the other features present. In addition,
variables that do not contribute to the prediction are assigned Shapley value 0. Shapley
values belong to the model-agnostic methods and are useful to determine the influence
of different features of a prediction [4, 5, 6, 23, 58]. Shapley values have the advantage
of fairly dividing the contribution of features to the prediction. In scikit-learn, feature
importances are based on the fraction of samples a feature contributes to and the
decrease in impurity of the splits. For example, features with many different values
are considered more important than those with less different values. Furthermore,
the feature importances in scikit-learn are based on the training data. The feature

17

CHAPTER 2. PRELIMINARIES

importances do not have to apply to unknown data. This makes the Shapley values
more interesting for determining feature importance [68].

18

3. Data Acquisition and Understanding

This section briefly introduces the data set we are working with. This makes it clear
which problems with the data are to be solved in the further course. Furthermore, data
cleaning is performed and the data is analysed. For the analysis of the data the python
packages in table A.1 were used.

3.1. Data Acquisition and Data Set

The available applicant data was collected by Saarland University based on a web-based
information system. The data contains information from the application form which
students have to fill in to apply for the master programme in computer science at
Saarland University. A section of this application form is shown in figure 3.1. In
addition, some information about the performance of the students who finally studied
at Saarland University is available. In total, the data set contains 11853 applications
and 25 different features. The features are listed in table 3.1. Also new feature names
are introduced and a short description is provided. The features that were recorded
about the performance at Saarland University are marked with the prefix UDS. Overall,
there are 16 features from the application form and 9 features which are recorded by
Saarland University. The existing data has been made as anonymous as possible in
order not to violate data protection regulations. Therefore, some features have been
coded and the names removed, which make it impossible to identify an applicant. In
addition, the age of applicants is given in age brackets, so the exact age at the time of
application is unknown. This is a further anonymisation.

The following features are encoded:

• GENDER
• MARITAL _STATUS
• STUDY _PROG _LAST _DEG_1
• STUDY _PROG _LAST _DEG_2
• NATIONALITY

Figure 3.2 shows the completeness of the data. Black means that the data are available,
white means that the corresponding data are not available. It is noticeable that no
student has all the data. There are several reasons for this. On the one hand, many
of the fields that provide information about the performers at Saarland University are
not filled in, which suggests that most of them have not been accepted. However, there
are also gaps in some columns which are listed in the application form. For example,
some students do not indicate their GPA. However, this value is an essential part of the
application process. The combinations of missing values in the data set are visualised
in more detail in the figure 3.3. The order of the features in the figure is the same as

19

CHAPTER 3. DATA ACQUISITION AND UNDERSTANDING

in table 3.1. For example, this shows that most applicants have specified everything
except DEGREE and STUDY_PROG_LAST_DEG_2.

The next step is to check if the available data is clean and how to proceed with the null
values.

Old Feature Name New Feature Name Short Description
Age AGE Age of the applicant
Gender GENDER Gender of the applicant
MaritalStatus MARITAL_STATUS Marital status of the applicant
Nat_coded NATIONALITY Nationality of the applicant
Uni_coded INST_LAST_DEG_1 Last university attended
Uni2_coded INST_LAST_DEG_1 Other university attended
Degree DEGREE Degree, e.g. BSc
LastDegree LAST_DEG Last Degree, e.g. BSc
YearDegreeObtained YEAR_OF_LAST_DEG Year of graduation
Subject STUDY_PROG_LAST_DEG_1 Study programme
Subject.1 STUDY_PROG_LAST_DEG_2 Minor or second study programme
GradePointAverage GPA Grade Point Average of DEGREE
Test TEST Language Test, e.g. TOEFL
Score TEST_SCORE Score in TEST
Choice1 STUDY_PROG_CHOICE_1 First choice study programme
Choice2 STUDY_PROG_CHOICE_2 Second choice study programme
OI UDS_OVERALL_IMPRESSION Impression of the candidates at UdS
Abgesagt UDS_OFFER_ACCEPTED Accepted offer to study at UdS
Note_Stamm UDS_GPA_CORE Average grade in core lectures
CP_Stamm UDS_CP_CORE Credit points in core lectures
Note UDS_GPA Actual average grade at UdS
CP UDS_CP Achieved credit points
vollend_Semester UDS_SEM_COMPLETED Number of semesters completed
Abschluss UDS_GPA_FINAL Final average grade at UdS
vorzeitig_Exmat UDS_PRE_EXMA Dropped the study programme

Table 3.1.: Original and new names of the features with short description.

3.2. Data Cleaning

One of the most important steps in a machine learning project is data cleaning, or data
preparation. Data cleaning is so important because the success of learning depends
enormously on the quality of the data. It is much easier to learn from good quality data
than from poor quality data. In this step, the data is cleaned and prepared for analysis
and modelling. This includes correcting erroneous values, finding outliers and defining
a strategy for dealing with null values [54, 62, 80]. However, data cleaning is also one
of the most time consuming steps in practical machine learning projects. Often up to
60% of the time in a data science project is spent on data cleaning [12]. After a first
inspection and an initial analysis of the data, some problems were found in the data
set. Some features require data cleaning. In this project no special preprocessing of the
data is required, because decision trees are used. The following lists the corresponding

20

3.2. DATA CLEANING

Figure 3.1.: Extract from the application form for masters in computer science at
Saarland University. Reprinted and adapted from [82].

21

CHAPTER 3. DATA ACQUISITION AND UNDERSTANDING

Figure 3.2.: Completeness of the data set provided by the study coordination.

Figure 3.3.: Combinations of null values in the data set provided by the study coordina-
tion. Due to technical reasons feature names are abbreviated. This plot
was created with the R package VIM [45].

22

3.2. DATA CLEANING

Input University Name True University Name
Anna University Anna University
ANNA University Anna University
Anna University, Chennai, India Anna University
anna university Anna University
anna University Anna University
ANNA UNIVERSITY Anna University
Aligarh Muslim University Aligarh Muslim University
ALIGARH MUSLIM UNIVERSITY Aligarh Muslim University
Aligarh Muslim University , Aligarh Aligarh Muslim University
AIOU Allama Iqbal Open University
AIOU ISLAMABAD PAKISTAN Allama Iqbal Open University
GUC German University in Cairo

Table 3.2.: Examples for university which were entered by applicants.

features and describes the data cleaning for them. In addition, the handling of null
values is defined.

3.2.1. Universities

A feature that requires data cleaning is the universities. In the data set 4810 different
university names are listed. In fact, there are significantly fewer universities, because
applicants have to enter their university name manually and make spelling mistakes. In
addition, some universities have names in several languages, which also appear in the
data set. Often in these cases the English and local spelling can be found. For example,
Saarland University is also a valid name for Universität des Saarlandes. Furthermore,
some applicants only enter the abbreviation of their university in the application form
(etc. UdS). There are also applicants who enter the faculty or similar information in
addition to their university. It is extremely important to standardise the university
names, i.e. to change the student’s entry in the official name if it differs from the official
name. If the data were not cleaned up, this would interfere with the learning process,
as the algorithm might think that students are from different universities, although this
is not the case. The data cleaning process for the universities should be automated to
avoid manual cleaning in the future. Therefore two different approaches were tested.

String Comparison

One way to correct the spelling mistakes is to compare the entered university names
with correct university names. The university that is most similar to the university
which was entered should then replace it. To evaluate the similarity there are different
metrics, which for example find the longest contiguous matching sub-sequence in a
string or check to what extent similar sub-strings occur in the string. To be able to
make such comparisons, we need a comprehensive database with all universities. There

23

CHAPTER 3. DATA ACQUISITION AND UNDERSTANDING

are numerous databases on the internet, but most of them are not complete. Therefore
a database was constructed for this project using Wikidata [43]. With SPARQL queries,
all universities listed in Wikipedia were extracted and stored in a csv-file. This database
was then used to perform the string comparisons mentioned above. To perform the
string comparisons the SequenceMatcher from the python package difflib was used,
which contains a modified "gestalt pattern matching" by Ratcliff and Obershelp [27].
This method worked relatively well for university entries which contained only minor
errors and little information. However, some students have given abbreviations for the
university or additional information such as a city, faculty or subject. In such cases,
methods based on string comparison could almost never provide the correct university.
The same applies to spelling mistakes. Overall, this was very time-consuming, but only
partially successful. The number of incorrect entries could only be reduced slightly.
In the next paragraph an approach is presented which solves the problems mentioned
above as far as possible.

Microsoft Azure Cognitive Services Bing API and Wikipedia API

Since the data cleaning of the universities using the string comparisons did not work
well, a completely different approach was tried. Microsoft Azure Cognitive Services
provides users with various services. These include a Bing API that allows users to
search for words, images, etc. [2]. In this approach, using this API, Bing is used to
automatically search for student input. If the input does not contain the word university,
it will be added to the input. This is to ensure that if an applicant has only entered
an abbreviation as university, it will be found. In addition, the word Wikipedia is also
added to the search term to get the Wikipedia page of the corresponding university.
The links of the top five Wikipedia pages for the search term will be considered for
further processing. All links are checked to see if they contain the word "uni". The first
link that matches this is selected for further processing. If none of the links contain
the word university, the first link returned will be continued. Using a Wikipedia API
[30], the title of the Wikipedia entry to which the link refers is extracted. This title is
written as the correct university name in the record. In addition, the corresponding link
is added to the Wikipedia entry, which can provide the selection committee with a quick
overview of a university. Overall, this method worked very well. With this procedure it
is possible to assign the official name of the university to entries with spelling mistakes,
in other languages, with additional information and abbreviations. However, there are
also problems. For example, there are entries from applicants that contain far too much
information, unknown abbreviations or spelling mistakes that make it impossible to
assign the correct name. A similar problem exists if the university has no English or
German Wikipedia page. With the problems listed above, sometimes a wrong university
is assigned, which is sometimes much better known. In other cases nothing is assigned.
Through other small experiments, such as adding the country, we tried to minimise
these problems, but they had a negative effect on the final result. Overall, however, this
approach is convincing, especially because it works much better than the one above.
Table 3.2 shows some examples of the inputs and the corrected university name.

24

3.2. DATA CLEANING

3.2.2. Study Programmes

In our database are 2340 distinct values for study programmes. Examples for the input
of the study programmes are in the table 3.3. Many students made spelling mistakes or
did not respect upper and lower case. As a consequence one has to correct them in order
to work as well as possible with our data. Also, many students attended very specialised
programmes like "Management and Processing of Informations". These programmes
were matched with their nearest common study programme. Data cleaning was done
manually with Excel since many inputs were not appropriate for an automatic solution.
After data cleaning 124 programmes are left.

3.2.3. Language Test

One of the prerequisites for studying Computer Science at Saarland University is proof
of English language skills at level C1. Students have to submit one of the common
language certificates such as TOEFL or IELTS, which test reading, writing, speaking
and listening comprehension skills and evaluate them with a score. There are other
certificates which are also recognised. However, there are several problems with the
available data concerning the language test.

Problems:

1. Spelling mistakes or too much information

2. Many different tests and therefore different scales

3. Invalid language certificates

4. NA values

5. Database not up-to-date

There are 946 different values for language tests in the database. An extract from the
database is shown in Table 3.4. As with universities, one of the main problems is that
applicants make spelling mistakes when entering or provide additional information. This
requires data cleaning, as otherwise the algorithm of the 946 entries would interpret
them as different tests, although there are significantly fewer, as most of them are just
variations of common language tests. However, there are also a large number of entries
that refer to a reference, experience or university certificate that is supposed to confirm
English proficiency. Such certificates are not recognised. In addition, there are many
students who do not have an English certificate or have written that they will submit
a certificate later. Whether or not this has happened has never been updated in the
database. All this makes it extremely difficult to work with the data. Therefore, it was
decided not to consider the language certificates for learning.

25

CHAPTER 3. DATA ACQUISITION AND UNDERSTANDING

Input Study Programme
Bachelor en informatique (professionnel)
Bachelor of Computer Science (hons)
Bachelor Of Technology(Computer Science)
Bachelors in Computer Science
C,C ++,English,Math,CN,SE,IT
Compter Science
computer
Computer Ccience
Computer Sciencce
Computer Science
COMPUTER SCIENCE
Computer Science (Informatik)
Computer Science A.I
COMPUTER SCIENCE OR RELATED SUBJECT
Computer Science, AI Specialization
Computer Science, BSc
Computer Science, Physics
Computer Science1
Computer Sciences
Computer sciense
Computer Secince
Conputer Science
European Computer Science
Fundamentals of Computer Science
Informatics
Informatik
MSc Computer Science
#38; MSc Bioinformatics
MSc informatique
MSc.Computer Science
Ph.D. in Computer Science

Table 3.3.: Examples for study programmes which were entered by applicants.

26

3.2. DATA CLEANING

Input Language Certificate
Abitur
Deutsches Abitur
Englisch Grundkurs
Leistungskurs Englisch
CAE
Cambridge Advanced English
Certificate in Advanced English (CAE)
CEFR
APTIS
B1
Bogazici University Proficiency Exam
Cambridge
Bonafide College Certificate
Certficate of English Proficiency from my university
ENGLISH CIRTIFICATE
English cirtificate from university
English Proficiency Letter
English Speaking Country
English Spocken Language
ENGLISH THOUGHT
Mock IELTS
university
University Entrance Test
I can take letter from my university to show my English
IGCSE
CET
in Schottland studiert
CPE
None
i didnt have but all education i took is in english langue
GRE
Academic IELTS
I.E.L.T.S
IELTs
TOEFL(ibT)-IELTS
TOEFL
native
Not Required
PTE
I will submit IELTS score as soon as I get it.
Sorry , i don’t have any test but i can speak English clear

Table 3.4.: Examples for language certificates which were entered by applicants.

27

CHAPTER 3. DATA ACQUISITION AND UNDERSTANDING

3.2.4. Replacement of NA Equivalents

In the data set were some minor issues which had to be removed. For example, some
students had in UDS_GPA values like ’ —’ or ’0’. These values are replaced by NA
values. Also, values like ’v’, ’ ’ and ’?’ were in the database, which were removed as
well in order to obtain a clean data set.

3.2.5. Outliers

In the data set there were unrealistic values only for the points of the language certificates.
This is due to the fact that the applicants had to enter their score there manually. There
were no outliers for the other features. This is due to the fact that other numerical
features like the GPA were selected from a drop down menu. The few unrealistic scores
for the language certificates were not considered any further because the feature was
removed.

28

3.2. DATA CLEANING

3.2.6. Missing Values

Dealing with missing values is one of the major challenges in machine learning projects.
In general there are different strategies to deal with them [19, 81].

1. Delete observations
2. Replace with the summary, e.g. mean or median
3. Random replace
4. Use a predictive model, e.g. k nearest neighbours or regression
5. Replace with a specific value, e.g. 0 for all missing values

The beginning of this provides a first overview of the data. There, figure 3.2 also
visualises the completeness of the data. Obviously there are many features which have
null values for various reasons. The features that are recorded at Saarland University
obviously only have values if the applicants have studied there for at least one semester.
Since these features are obviously not needed for learning, no changes are made to
these features. Option 5 is implemented for the further procedure for the other features
with missing data. If there is no second choice for a subject, this can also be a feature.
Perhaps such students have thought about the choice of subject particularly well. In
these cases, the missing value is simply replaced by a value that is coded later. This
is done analogously for the subject, the second subject or minor, the degree, etc. It is
also possible that accidental replacement of these values, or replacement of the values
according to a distribution, could distort the data set. Similar problems arise if the
GPA is not available. Therefore, this is also replaced by a fixed value. However, option
5 allows to test the other options during the learning process. In particular, deleting
the missing values will be tried out in the modelling [19, 81].

3.2.7. Results

The data could be cleaned by the measures described above. In particular, the university
names and courses of study could be given standardised names. As a result, there
are significantly fewer different values for these features. Figure 3.4 shows the number
of distinct values before and after data cleaning. The number of different values for
universities was reduced by 53.93% and the number of different study programmes
by 94.7%. This is a significant improvement, although it must be assumed that there
are still errors in both features. Unfortunately, the language test and its score had to
be removed since there are too many distinct tests and the database is not updated.
Also, some random values (like ’?’) which were entered manually in the database
were removed. Furthermore, no outliers were found that could negatively influence
the learning process. A strategy for dealing with the missing values was also defined.
Overall, a significantly better data quality was achieved, which enables the data to be
analysed and used for machine learning.

29

CHAPTER 3. DATA ACQUISITION AND UNDERSTANDING

Figure 3.4.: Visualisation of the impact of data cleaning (n = 11853).

3.3. Data Exploration

In this section, the previously introduced data are further analysed. First statistics
on the data set and individual features and relations to other features are discussed.
This allows a good understanding and helps to optimise the modelling and interpret the
results.

The data set contains 11853 applications from which 1192 applicants got an offer and
459 accepted it. Table 3.5 shows the applications broken down by gender and marital
status. Also, the table provides exact numbers for offers, accepted offers, declined offers
and rejections. 80% of the applicants have the gender 0 and 20% have the gender 1.
About 10% of the applicants got an offer and 90% were rejected. Interestingly, only
8.84% of the applicants with gender 0 get an offer, but 14.83% of applicants with gender
1 get an offer. As result 70% of the applicants who got an offer have the gender 0
and 30% the gender 1. From the 10% who got an offer only 38.51% of the applicants
accepted their offer. 37.81% of the applicants with gender 1 and 38.8% of applicants
with gender 0 accepted their offer and are therefore equally likely to accept their offer.
Another noticeable aspect is that married applicants have much lower chances to get
an offer. Only 5.92% of married applicants get an offer. This number is especially low
since 73.37% of the applicants with gender 0 and only 4.3% of married applicants with
gender 0 were accepted while the 26.63% married applicants with gender 1 had with an
offer rate of 10.37%. In conclusion, we can see that the admission process at Saarland
University in computer science is very selective. Applicants with gender 0 and especially
married applicants with gender 0 are accepted much less often at Saarland University
than applicants with gender 1. Only 3.87% of the applicants finally study at Saarland
University.

Another interesting feature is the age of the applicants. Table 3.6 shows the age
distribution of the applicants. 77.32% of the applicants are between 22 and 27 years old.

30

3.3. DATA EXPLORATION

Criteria Applications Offer Offer Accepted Offer Declined Rejection
Overall 11853 1192 459 733 10661
Gender 0 9446 835 324 511 8611
Gender 1 2407 357 135 222 2050
Not Married 10839 1132 440 692 9707
Married 1014 60 19 41 954
Married, Gen. 0 744 32 10 22 722
Married, Gen. 1 270 28 9 19 242

Table 3.5.: Applicant statistics on gender and marital status.

Age Applications Offer Offer Accepted Offer Declined Rejection
<20 12 0 0 0 12
20/21 532 101 44 57 431
22/23 3209 533 207 326 2676
24/25 3809 397 150 247 3412
26/27 2147 103 38 65 2044
28/29 972 34 9 25 948
30/31 524 14 4 10 510
32/33 287 5 3 2 282
34/35 163 1 1 0 162
36/37 79 1 0 1 78
38/39 50 1 1 0 49
>40 70 2 2 0 68

Table 3.6.: Applicant statistics on age.

Applicants younger than 20 and older than 35 barely exist. It is noticeable that the
older applicants are extremely underrepresented in the group of applicants who got an
offer. Only 2.05% of the applicants who are 30 years or older get an offer. In contrast
to those applicants, younger applicants have much higher chances to get an offer. The
20 to 21 year old applicants have an acceptance rate of 18.98% at Saarland University,
which is the highest value for all age groups.

Detailed statistics on the applicants are provided above. Table 3.7 provides a detailed
statistic about the number of universities and nationalities from which the applicants are
from. Students from 136 countries and 2116 universities applied at Saarland University.
Applicants from 86 nations and 553 universities got an offer and finally applicants
from 61 countries and 291 universities arrived at Saarland University. The accepted
applicants are highly diverse since only 459 applicants accepted their offer and there is
a high number of different universities and nationalities. On average every university
occurs less than two times and every nation less than 5 times in the data set of accepted
applicants. However, there is not a uniform distribution of universities and nationalities
in the data set. Only 25 universities occur more than two times and only 5 universities
10 times ore more. University 1365 occurs 19 times which is the highest value and about
4.1% of all accepted applicants. 217 Universities are only one time in the data set of

31

CHAPTER 3. DATA ACQUISITION AND UNDERSTANDING

Criteria Applications Offer Offer Accepted Offer Declined Rejection
Nationalities 136 86 61 70 129
Universities 2116 553 291 384 1939

Table 3.7.: Number of universities and nationalities in the data set.

Figure 3.5.: Most common universities from which applicants who accepted an offer
come from.

applicants who accepted their offer. Figure 3.5 shows the 20 universities which occur
the most. The most common nationalities of applicants with an offer are depicted in
figure 3.6. 25.8% are from country 91, 11.3% from country 102 and 8.7% from country
67 which makes them to the three most frequent countries. 45 of the 61 nationalities
occur only three times or even less. According to the study coordination, one of the
most important features for the selection process is the applicants grade point average
(GPA). In general students should have achieved an average of at least 75% in order
to obtain an offer. Table 3.8 provides a detailed statistic about students grades and
their application details. Applicants with a very good performance have much higher
chances to obtain an offer compared to students with lower grades. 31.81% of the
applicants with a GPA of 91% − 100% obtain an offer which are more than double
so many as the ones with an GPA of 81%. The chance of being admitted decreases
continuously with the GPA. Applicants with a GPA of less than or equal to 70% have
an acceptance rate which is less than 1%. Figure 3.7 shows the GPA distribution of the
applicants which were rejected and those which were admitted. It is noticeable that
applicants with a GPA of greater than 80% are the absolute majority of those who hold
an offer. Applicants with a lower GPA barely obtain an offer. Besides the GPA, the
last degree, especially the study programme is an important feature. Applicants have
various backgrounds. The majority of applicants have a bachelor or master degree in
computer science or a computer science-related course of study. This is followed by
mathematics, engineering and physics. However, there are also applicants from study

32

3.3. DATA EXPLORATION

Figure 3.6.: Most common nationalities from which applicants who accepted an offer
come from.

GPA Applications Offer Offer Accepted Offer Declined Rejection
91%-100% 962 306 110 196 656
81%-90% 2699 423 165 258 2276
75%-80% 2853 130 53 77 2723
71%-75% 1579 29 13 16 1550
61%-70% 2257 12 4 8 2245
0%-60% 392 1 1 0 391
NA 1111 291 113 178 820

Table 3.8.: Admission statistics of all applicants grouped by the GPA of their last degree.

Figure 3.7.: GPA of applicants with and without offer.

33

CHAPTER 3. DATA ACQUISITION AND UNDERSTANDING

Figure 3.8.: Final grades of applicants who accepted their offer at Saarland University.

programmes such as business studies or humanities.
Above many admission statistics and applicants statistics are provided. But it is also
interesting and important to see how applicants performed at Saarland University.
Figure 3.8 shows the final grade distribution of those who got an offer and finished
their degree. Most students graduated with an average better than 2.0 and only 7.1%
had an average worse than 2.4. However, there are big differences regarding the time
taken and the grades in core lectures. Also, 50 students were exmatriculated before
graduation. At Saarland University about 30 credit points are scheduled per semester.
Figure 3.9 shows the amount of credit points which the 390 students who completed
at least two semesters achieved. Only 13.7% of the students were able to achieve at
least 30 CP. Some of them achieved even more than 40 CP. 12.05% achieved 25− 30
CP per semester which means that 74.25% of the students achieved less than 25 CP.
Also, 22.31% achieved less than the half of the recommended points per semester. Since
the majority of students do not achieve 30 CP the study duration is much longer than
the scheduled duration of four semesters. Figure 3.10 shows that 20.6% graduate on
time and 48.9% graduate within a delay of one to two semesters. However, 30.4% of
the students have a significant delay of three semesters or more. Some students even
require up to eleven or twelve semesters to finish their master degree. An important part
of a master degree at Saarland University are core lectures. Regular lectures provide
students with a profound knowledge of the relevant topic and are theoretically extremely
challenging. Figure 3.11 shows the GPA distribution in core lectures. Remarkably the
core lecture grades are significantly worse than the final GPA. 11.1% of the students
achieve a grade better than or equals to 1.5 and 11.1% have a grade worse than 1.5 but
better than 2.0. 17.9% of the students have a GPA of 2.0 to 2.4, 24.5% a GPA of 2.5
to 2.9, 13.8% a GPA of 3.0 to 3.4 and 11.6% a GPA between 3.5 and 4.0. On average,
9.5% of the students failed their core lectures.

34

3.3. DATA EXPLORATION

Figure 3.9.: Average credit points per semester of applicants who accepted their offer at
Saarland University.

Figure 3.10.: Study duration of applicants who accepted their offer at Saarland Univer-
sity.

35

CHAPTER 3. DATA ACQUISITION AND UNDERSTANDING

Figure 3.11.: GPA in core lectures of applicants who accepted their offer at Saarland
University.

The final grades, the grades in core lectures and the number of semesters needed to
obtain a degree are important to us to judge students performance and to label our
data. This step is done and described in section 4.2. However, it would be interesting
to see if there are correlations between features from the application form and the
students performance. Figure 3.12 shows the achievements at Saarland University of the
applicants grouped by GPA. Top results in core lectures and in the final GPA are mainly
achieved by students with a high GPA in their prior degree. Students with a GPA
of less than 75% barely achieve as high results as the other students. However, there
are still students with a high GPA (over 91%) which do not perform well. Table 3.9
provides detailed statistics which show a similar trend. In general, the students who had
a GPA of at least 91% achieve the best average final GPA at Saarland University. Also,
they achieve the second best results in core lectures and get second most credit points.
However, it is surprising that students with a GPA of 71%−74% achieve the best grades
in core lectures, have the most average credit points and do not have exmatriculations
before graduation.

In this section the most important properties of the data set were prepared and visualised.
It provides comprehensive statistics on the admission process and performance at
Saarland University. In the next step, further features will be added to the data set,
which should enable an optimal modelling.

36

3.3. DATA EXPLORATION

Figure 3.12.: Left: GPA application form versus final GPA UdS of applicants who
accepted their offer at Saarland University. Right: GPA application form
versus final GPA core lectures of applicants who accepted their offer at
Saarland University.

GPA UDS_GPA_CORE UDS_GPA UDS_GPA_FINAL UDS_PRE_EXMA UDS_AVG_CP
0%-60% 2.80 2.39 - 1.00 16.00
61%-70% 2.47 2.33 2.15 0.33 18.33
71%-75% 2.39 1.79 1.78 0.00 24.18
75%-80% 2.58 1.94 1.81 0.24 18.14
81%-90% 2.61 2.02 1.85 0.13 20.43
91%-100% 2.45 2.03 1.63 0.26 21.43

Table 3.9.: Detailed statistics about the performance of applicants who accepted their
offer at Saarland University. Applicants are grouped by their GPA of their
previous degree.

37

4. Modelling

The modelling of the data is an elementary step of every machine learning project. In
the next two sections new features are created and the data is labelled. The data is
prepared in such a way that machine learning models can be trained with this [54]. In
the following two sections the packages in table A.2 were used.

4.1. Feature Engineering

The process of creating suitable features based on the available data and its context is
called feature engineering. Feature engineering is a very important step in a machine
learning project, as the performance of the model depends largely on the input data [54].
In this project it is important to gain additional information which can help to optimise
the admission to Saarland University. In the following sections some new features are
introduced for this purpose.

4.1.1. University Rankings

A machine learning model does not know how good universities really are. Until now
universities are a categorical feature and the judgement would be based on experiences
with accepted students. This leads to several problems. For example, it is not possible
to judge the quality of a university from which a student has never been accepted and
one could discriminate universities based on one bad experience. By adding rankings
to the data set these problems can be partly solved. An algorithm could determine a
minimum ranking which a university should have based on past experiences. Thus it
could judge if an unknown, ranked university is good enough. In the following sections
the added rankings are described.

Worldwide Rankings

Two of the major worldwide rankings are the THE World University Rankings [18] and
the QS World University Rankings [50]. Both rank universities from all countries in
computer science, based on citations, academic and employer reputation, etc. The THE
World University Rankings includes 749 universities and QS World University Rankings
ranks 500 universities. The QS ranking could be downloaded as a csv-file. THE ranking
was extracted as a csv-file from the website using Octoparse [42]. However, there were
similar problems with the university names as with the application form. The rankings
sometimes used other names than Wikipedia, and also Octoparse sometimes made small
mistakes. Therefore the university names were adjusted with the same tool as in Data
Cleaning. To guarantee maximum correctness, all university names were checked and
adjusted manually once again. Both rankings were inserted automatically in the data set

39

CHAPTER 4. MODELLING

via a join on the university name. All applicants who have attended a ranked university
have a rank as an additional feature now. From lower positions in the ranking only
a range is given. For example, Saarland University is listed among the top 101− 150
universities in the QS ranking. In order for the decision tree to work better with the
ranks, the average value of a range was assigned to the corresponding universities.
Saarland University was thus assigned rank 125. The rankings should provide an initial
orientation. Two rankings have been added because universities are ranked differently
in each. For example, the QS ranking places Cornell University in 25th place worldwide,
while THE ranking places it in 14th place. These differences become even greater in the
lower rankings. Another problem is that most of the universities are not listed because
there are of course significantly more than 500 and 750 universities worldwide. In
particular, universities from Africa and Asia are not yet as well established. According
to the study coordination, however, numerous students apply, especially from Asia.
A local ranking for Asia and Africa would help to remedy this problem somewhat.
However, it was possible to assign 1327 applicants a rank from the QS ranking and
1442 applicants a rank from the THE ranking which are 11.2% respectively 12.17% of
all applicants. A more detailed analysis of the available data also shows that students
who have studied at a university listed in the rankings are more likely to obtain an
admission. At Saarland University, 1192 applicants received an offer. Of these, 233
applicants attended a university listed in the QS ranking and 209 applicants attended a
university listed in THE ranking. That is 19.55% and 17.53% of all applicants who have
received an offer. Furthermore, the universities of applicants who receive an offer are
ranked higher than the universities of the other applicants. Universities of applicants
with an offer and QS ranking are on average at position 316, while the average for all
universities in the data with QS ranking is 341. If only the applicants without offers are
considered, universities are ranked on average in 346th place. The same phenomenon
can also be observed for applicants who have studied at a university listed in THE
ranking. On average, universities in the data are ranked in 429th place, universities
of an applicant with an offer in 386th place and universities of applicants without an
offer are ranked in 436th place. This shows that the ranking, i.e. the reputation of
the university, already plays a role, at least in the admission process. The question
now is whether these students actually perform as well as those who did not attend
a ranked university, or whether there is a correlation between rankings and students’
performance at Saarland University. Basically, it can be said that the students who
were at a university in the QS rankings have on average better grades than the other
students. Students who studied at a university with a QS rank graduate with 1.62 on
average. Also, their average in core lectures is 2.64. Students who do not belong to this
group have a final grade of 1.74 and an average grade of 2.74 which means that they are
less good. Students who were at a university with a THE rank before have a final grade
of 1.74 and an average grade of 2.63 in core lectures while other students have a final
grade of 1.72 and an average grade of 2.74 in core lectures. This means that students
who have studied at THE ranked university do slightly worse. This is probably due
to the thesis, since the core lectures and the current average of the enrolled students
is higher than the others. In addition, there is a slight correlation for both rankings
between the placement in the ranking and the achieved grade in core lectures. Both

40

4.1. FEATURE ENGINEERING

rankings are slightly negatively correlated with the number of CP per semester. In
other words, students with a higher ranking tend to achieve more CP per semester. All
in all, it can be said that the inclusion of rankings in the data set makes sense and that
an expansion of the data set with local rankings can bring further opportunities for
optimal decisions.

Regional Rankings

Asian and especially African universities are significantly underrepresented in the two
worldwide rankings introduced above. However, many of the applicants at Saarland
University come from Asia and some from Africa. Missing rankings in those regions
leads to uncertainty about the university quality of many applicants. Therefore regional
THE rankings for Asia and Africa were added to rank as many students as possible
[16, 17]. THE Asia Ranking includes 417 universities and THE Africa Ranking 56
universities. Unfortunately, these are not in specifically for computer science, but may
offer a first orientation. Altogether 1779 applicants have applied from a university
(INST_LAST_DEG_1) which is listed in the Asia ranking. On average the university
of the applicants was in place 228. Applicants who have received an offer come from
a university which is on average in place 195 while the other applicants are from
universities which are on average in place 231. A similar phenomenon can be observed
for students attending a university listed in the Africa ranking. Students who have
been accepted have attended a university ranked 23rd, while the others and the average
have attended a university ranked 26th. It can also be observed that students who have
attended universities listed in the two rankings have lower admission rates than the
other students. This also makes sense, as the quality in the breadth of universities is
not as good as in western leading industrial countries. This is particularly reflected in
the international rankings.

4.1.2. IT- and STEM-related Study Programmes

The data set contains a large number of study programmes. These have already been
reduced to significantly fewer study programmes. The data set also includes a number
of non-subject related study programmes, which have little to do with computer science.
For this reason, the feature "Computer Science-Related" was added, which indicates
whether the student has studied something in the field of computer science or not in one
of his degrees. Also, students with computer science as a minor subject are positively
labelled. The same was done for STEM-related programmes. This allows students
studying a mathematical or technical subject to be placed in a group. Students who
have 2 degrees will be positively labelled if one is related to computer science or STEM-
related. The advantage is that applicants who have studied non-technical subjects can
be rejected more easily by a decision tree. The decision tree does not have to be so
deep. In addition, study programmes that have not previously been recorded in the
database can be better assigned to a already known group. Figure 4.1 shows how many
applicants studied an IT-related subject. 80.1% attended an IT-related programme,
17.9% studied something different and about 1.9% it is not possible to say if they did

41

CHAPTER 4. MODELLING

or did not. Computer science related also includes subjects such as mathematics and
physics with minors in computer science. For about 8.6% of the applicants it is not
possible the say what they studied since they did not enter anything or they entered
irrelevant data. Figure 4.1 also shows if applicants studied a STEM-related programme.
96.0% studied something STEM-related (biology and chemistry excluded) and only 2.0%
studied something not STEM-related. Figure 4.2 shows whether the applicants studied
something computer science related or STEM-related respectively and their offer status.
One can see that most students who obtained an offer studied computer science. Also,
the absolute majority of those who did not study computer science and obtained an
offer studied something STEM-related. Some of the students that one does not know if
they studied something computer science related got an admission too. Probably, most
of them studied computer science and achieved good results.

4.1.3. Spelling of the Study Programme in the Application Form

Numerous spelling mistakes were found during the data cleaning. Spelling mistakes
indicate that the student did not invest much effort in the application and therefore
may not necessarily want to study at Saarland University. That is why a system is
introduced which evaluates the spelling when entering the course of study. If students
who have spelling mistakes in their applications’ would be accepted less often, and if
they would perform worse in their studies, then there would be another feature for a
machine learning model. In the system, spelling mistakes are rated with points from 1
to 3.

1: The study programme was entered without any mistakes.

2: Upper and lower case letters were ignored.

3: A spelling error, an abbreviation or nothing was entered.

As applicants specify up to 2 study programmes, both were evaluated and the maximum
value was assigned according to the points allocation. It is ensured that only applicants
who did not specify a study programme in both fields were assigned 3 points for nothing
entered. Basically, the lower the points the better the spelling. The allocation of the
points was done manually. Table 4.1 shows some study programme inputs and their
corresponding rating. Figures 4.3 and 4.4 provide information about the spelling
abilities of the applicants and of those who were rejected, admitted and accepted their
offer. 80.1% of the applicants were able to spell their study programme correctly, 13.3%
ignored upper and lower case and 6.5% made spelling errors, used abbreviations or
did not enter a study programme. It is clear that applicants who are accepted make
serious spelling mistakes almost half as often as applicants who have been rejected.
Also, successful applicants paid more attention to upper and lower case. While 14.1%
of rejected applicants disregard rules on upper and lower case, only 6.6% of accepted
applicants have done so. The numbers of applicants who accepted their offer are very
similar to those who were admitted. It is therefore clear that there is a correlation
between spelling and admission, so this feature is a useful addition to the others.

42

4.1. FEATURE ENGINEERING

Figure 4.1.: Left: Applicants who studied an IT-related programme. Right: Applicants
who studied a STEM-related programme.

Input University Study Programme Spelling
Aerosapce Engineering 3
Applied Computer Science 1
Automation and management 2
biochemistry 2
CSE 3
Computer Systems 1
Liberal Arts and Sciences 1
MBA 3
Electrical Telecommunication Engineering 1
Electrical Telecommunication engineering 2

Table 4.1.: Study Programme Input Examples

4.1.4. Summary

Feature engineering has now been completed and various features have been added.
Global and regional rankings have been added and the study programmes have been
divided into the categories computer science related and STEM-related. In addition, the
spelling of the students was evaluated based on their entries of their study programmes.
Overall, a total of 11 new features were added. These are listed in table 4.2. These
features provide additional information and can help to optimise the decision trees. In
particular, they also help to better evaluate study programmes or universities for which
no observations are available. In the next step the data is labelled.

43

CHAPTER 4. MODELLING

Figure 4.2.: In both figures the connection between academic background and admission
is visualised. The figure on the left distinguishes between CS-related study
programmes and other degrees. The figure on the right shows the same,
but for STEM-related study programmes.

Figure 4.3.: Left: Quality of spelling of the applicants overall. Right: Quality of spelling
of rejected applicants.

44

4.1. FEATURE ENGINEERING

Figure 4.4.: Left: Quality of spelling of the applicants with an offer. Right: Quality of
spelling of applicants with an accepted offer.

New Features
D_QS_RANK_INST_LAST_DEG_1
D_QS_RANK_INST_LAST_DEG_2
D_THE_RANK_INST_LAST_DEG_1
D_THE_RANK_INST_LAST_DEG_2
D_THEASIA_RANK_INST_LAST_DEG_1
D_THEASIA_RANK_INST_LAST_DEG_2
D_THEAFRICA_RANK_INST_LAST_DEG_1
D_THEAFRICA_RANK_INST_LAST_DEG_2
D_STEM_STUDY_PROG
D_CS_STUDY_PROG
D_SPELLING

Table 4.2.: The names of the new features introduced by feature engineering. For each
ranking 2 features were introduced, because applicants are allowed to enter
up to two universities.

45

CHAPTER 4. MODELLING

Accept Reject No Label
UdS Offer Accepted 195 235 29
Other Applicants 0 0 11394
Total 195 235 11423

Table 4.3.: Summary of the strong labelling.

4.2. Data Labelling

Since the following section mainly works with decision trees, which are among the
supervised learning methods, the data must be labelled. The labelling of the data is a
very important step because it tells the machine learning model which students should
be re-accepted and which ones should be rejected. In the following sections, different
labels are introduced, which are tested in the modelling chapter.

4.2.1. Data Labelling based on Performance at Saarland University

After consultation with the computer science faculty, it was decided to label the data
twice. It turned out that under the original internal requirements, too few of the
students who had studied at Saarland University would be re-admitted. Therefore, a
labelling system was introduced which met these high requirements, and another one
was also introduced which had slightly lower requirements. In the following sections the
labellings are defined and statistics are provided. In this labelling only students whose
performance is known are labelled. In the next section the two labellings are extended
with students who did not show up at Saarland University.

Strong Labelling

The strong labelling requires students to have at least 20 CP per semester and an
average grade better than or equal to 3.0. Figure 4.5 shows the labelling decision
diagram. Overall, 459 students who accepted their offer are considered. However, it is
not possible to label 29 of these students since they accepted their offer recently and
hence grades are not available. 200 of these students did not achieve 20 CP per semester
and 129 students did not achieve an average of 3.0 in core lectures. 94 students neither
achieved 20 CP per semester nor an average of at least 3.0 in core lectures. 195 students
in the data met the requirements, 5 of whom were exmatriculated before graduation.
This means that only 45.12 achieved the internal targets at Saarland University and
54.88% would not obtain an offer anymore. As this is very selective, an additional
labelling is introduced below. It allows all experiments to be performed in parallel and
has lower requirements. A total of 430 applicants were labelled. A brief summary of
these statistics is provided in table 4.3.

46

4.2. DATA LABELLING

≥ 20 CP per
Semester

Reject
GPA of 3.0 or
better in core

lectures

RejectAccept

Yes
No

Yes
No

Figure 4.5.: Decision process for strong labelling of data. Only students for whom grades
are available at Saarland University are considered.

Accept Reject No Label
UdS Offer Confirmed 283 147 29
Other Applicants 0 0 11394
Total 283 147 11423

Table 4.4.: Summary of the weak labelling.

Weak Labelling

The weak labelling requires students to have at least 15 CP per semester and an average
grade better than or equal to 3.3. Figure 4.6 shows the labelling decision diagram. As
stated above, 459 students who accepted their offer are considered and we can only
label 430 students since for the other 29 students grades are not available yet. 104 of
those students did not achieve 15 CP per semester and 94 students did not achieve an
average of 3.3 in core lectures. 51 of those students neither achieved 15 CP per semester
nor an average of at least 3.3 in core lectures. 283 students met the requirements, 11 of
whom were exmatriculated before graduation. This means that only 65.81% achieved
these targets and 34.19% would not obtain an offer anymore according to this labelling.
This is significantly less selective than the strong labelling. A total of 430 applicants
were labelled. A brief summary of these statistics is provided in table 4.4.

47

CHAPTER 4. MODELLING

≥ 15 CP per
Semester

Reject
GPA of 3.3 or
better in core

lectures

RejectAccept

Yes
No

Yes
No

Figure 4.6.: Decision process for weak labelling of data. Only students for whom grades
are available at Saarland University are considered.

4.2.2. Data Labelling for Applicants with unknown Performance

The two labellings introduced above are only based on the students performance at
Saarland University. However, based on this information it is possible to draw conclusions
about other applicants who have not been at Saarland University. So far three applicant
groups have not been labelled yet. There is no information about the applicants who
were rejected, who did not accept their offer and about those who accepted their offer
but have not completed a semester yet. The applicants who were rejected by Saarland
University are most likely weaker than those who were accepted. For instance, students
with a certain GPA could be labelled negatively. According to application requirements,
applicants should have a GPA of at least 75%. Only in exceptional cases, for example
if the applicant has studied a particularly difficult subject at a very good university,
applicants with a lower GPA are considered. In addition, one could label students
who have not studied a STEM-based subject negatively because they do not have the
necessary mathematical and technical knowledge. In practice, this group has hardly ever
been admitted to studies in computer science. One further possibility is to negatively
label applicants from universities from which students have done particularly badly at
Saarland University from a certain grade point average. Also, one could try to label
students who have declined their offer positively or negatively. This could be done by
considering their university and their grades. Applicants who come from the group
of rejected applicants cannot be labelled positively. The reason for the rejection of
applicants is unclear, if the applicant had a good academic background. It is conceivable,
for example, that the applicant’s knowledge of English was insufficient. It was barely
possible to reconstruct this since the database was not maintained. In the following

48

4.2. DATA LABELLING

Accept Reject No Label
UdS Offer Confirmed 195 235 29
Other Applicants 0 1358 10036
Total 195 1593 10065

Table 4.5.: Summary of the strong labelling. Some applicants with unknown performance
are also labelled negatively. The size of the new labelled data set is 1788.

two paragraphs three labellings are introduced which implement the ideas above. First,
only the new negatively labelled ones are added to the data and then the same is done
for the new positively labelled ones. Finally, the combination of both is tested.

Adding negative labelling from applicants with unknown performance

As mentioned above, the negative labels for applicants who did not obtain an offer
are added in order to have a bigger data set to learn from. The labelling process is
shown in Figure 4.7. In principle, all applicants who have not completed a scientific
or technical degree are rejected. In addition, students with a GPA of less than 60%
are automatically rejected. Students who come from universities from which none or
only one student has ever studied at Saarland University are not labelled. The same
applies for students who come from a university where less than 70% of the students
have not met the requirements (according to the weak or strong labelling). The others
are labelled negatively. This guideline ensures that the students would not actually
meet the requirements of Saarland University. A brief summary of the corresponding
statistics of the strong labelling is provided in table 4.6 and of the weak labelling in
table 4.6.

Adding positive labelling from applicants with unknown performance

A similar procedure is now applied to applicants who have received an offer but declined
it. The system checks whether students from the same university have performed well
(according to the weak or strong labelling) and positively labels all applicants who
have at least the GPA of a student from the same university with the label "Accept".
Applicants who come from universities from which no students have ever studied at
Saarland University are not labelled. Students who have a worse grade than the worst
grade of the positively graded university will not be graded either. The labelling process
is shown in Figure 4.8. A brief summary of the corresponding statistics of the strong
labelling is provided in table 4.7 and of the weak labelling in table 4.8.

Adding positive and negative Labelling from Applicants with unknown
performance

In this labelling all labels for applicants who have never attended to Saarland University
are simply added to the record. In principle, both procedures, which are listed above,
are combined and help to obtain significantly more labelled data.

49

CHAPTER 4. MODELLING

STEM-related
Programme

RejectGPA > 60%

Reject

≥ 2 Students
from the

university are
known

No Label≥ 70% of
students failed

No Label

GPA < Lowest
GPA of Student

with label
Accept

No LabelReject

Yes
No

Yes
No

No

Yes

No
Yes

No

Yes

Figure 4.7.: Decision process for negative labelling of applicants with unknown perfor-
mance at Saarland University.

50

4.2. DATA LABELLING

Accept Reject No Label
UdS Offer Confirmed 283 147 29
Other Applicants 0 698 10696
Total 283 845 10725

Table 4.6.: Summary of the weak labelling. Some applicants with unknown performance
are also labelled negatively. The size of the new labelled data set is 1128.

Obtained Offer
but did not

accept

No Label

≥ 2 Students
from the

university are
known

No Label≥ 70% of
students passed

No Label

GPA ≥ Lowest
GPA of student

with label
Accept

No LabelAccept

No
Yes

No

Yes

No
Yes

No

Yes

Figure 4.8.: Decision process for positive labelling of applicants with unknown perfor-
mance at Saarland University.

51

CHAPTER 4. MODELLING

Accept Reject No Label
UdS Offer Confirmed 195 235 29
Other Applicants 21 0 11373
Total 216 235 11402

Table 4.7.: Summary of the strong labelling. Some applicants with unknown performance
are also labelled positively. The size of the new labelled data set is 451.

Accept Reject No Label
UdS Offer Confirmed 283 147 29
Other Applicants 328 0 11066
Total 611 147 11095

Table 4.8.: Summary of the weak labelling. Some applicants with unknown performance
are also labelled positively. The size of the new labelled data set is 758.

52

5. Model Training and Evaluation

As already mentioned in the introduction, the focus of this thesis is on decision trees.
In the following paragraphs, these are trained on the data set with the previously
introduced labels. Performance is optimised by using different data preprocessing,
different algorithms and parameters. First of all, the data set is considered which only
contains the students who were at Saarland University and whose performance is known.
Both, strong and weak labelling are considered. Table 5.1 shows the 24 features with
which the models are trained. For the model training and the evaluation of the data,
the python packages in table A.3 were used.

5.1. Training with Applicants with known Performance

The decision tree is trained on the record with the students from whom we know the
performance. All steps are performed in parallel for both labels. The data set contains
430 applicants, of which 195 students would be re-admitted according to the strong
labelling and 283 students would be re-admitted according to the weak labelling. A
total of 24 features are available, which are gained from the application form and feature
engineering. The features which have been recorded at Saarland University during the
studies of the accepted applicants cannot be used for the training. The features which
are considered to create the decision tree are listed in table 5.1. First a decision tree is
trained without restrictions and parameters on the data. The data was divided into
training data and test data. 80% of the data was used for training and 20% of the data
for testing. This division is maintained in all subsequent experiments. An accuracy of
about 59% is achieved with strong labelling and weak labelling. However, there are some
differences. It is noticeable that in the case of labelling with high requirements, the
students who will be rejected can be better identified than those who will be accepted.
For the data based on the weak labelling, the exact opposite is the case. Students to
be accepted are more likely to be predicted than those to be rejected. This also makes
sense, since the data sets are correspondingly unbalanced. But overall the performance
is rather weak, because a classifier, which would always predict the class that occurs
most, would achieve an accuracy of 54.65% or 65.8%. This low accuracy illustrates
that further effort must be put into the decision trees and data. In several experiments,
different algorithms and techniques are considered and finally combined.

Decision Tree Modelling

As stated in the above paragraph, the performance of a simple decision tree is not very
good. This is partly due to the fact that the data records are unbalanced and not all
features are always needed. There are also several parameters that can be optimised.
In the following experiments, the different feature elimination techniques are combined
with sampling methods. The abbreviations listed in table 5.2 apply to the following

53

CHAPTER 5. MODEL TRAINING AND EVALUATION

Feature Name
AGE
GENDER
MARITAL_STATUS
NATIONALITY
STUDY_PROG_LAST_DEG_1
STUDY_PROG_LAST_DEG_2
DEGREE
LAST_DEG
GPA
STUDY_PROG_CHOICE_1
STUDY_PROG_CHOICE_2
INST_LAST_DEG_1
INST_LAST_DEG_2
D_QS_RANK_INST_LAST_DEG_1
D_QS_RANK_INST_LAST_DEG_2
D_THE_RANK_INST_LAST_DEG_1
D_THE_RANK_INST_LAST_DEG_2
D_THEASIA_RANK_INST_LAST_DEG_1
D_THEASIA_RANK_INST_LAST_DEG_2
D_THEAFRICA_RANK_INST_LAST_DEG_1
D_THEAFRICA_RANK_INST_LAST_DEG_2
D_STEM_STUDY_PROG
D_CS_STUDY_PROG
D_SPELLING

Table 5.1.: Features for Model Training

54

5.1. TRAINING WITH APPLICANTS WITH KNOWN PERFORMANCE

sections. Table 5.3 and table 5.4 show the performance of the decision trees for the
strong and the weak labelling. For each experiment the accuracy, precision, recall and
the F1 score is given. The precision corresponds to the positive predicted value (PPV)
and the recall to the true positive rate (TPR). The positive class are the applicants with
the label "Accept". Also, the negative predicted value (NPV) and the true negative rate
(TNR) are provided. Only the best combinations of the individual methods are listed
in the table. If a decision tree gives the best results for training data with the best 10
features according to recursive feature elimination, the results for the other possibilities
(e.g. 9 features) are not provided.

Evaluation

No major improvements were achieved in terms of accuracy. In the strong labelling, the
maximum value is achieved using the best 18 features according to recursive feature
elimination in combination with random oversampling. The accuracy of this combination
is 0.605, which is only marginally better than a decision tree on unprocessed data. With
this combination the best F1 score was also achieved. The lowest accuracy and the
lowest F1 score is achieved with decision trees that have been trained on data, that
have been undersampled and that have been selected with the best 7 features according
to chi-square tests. The accuracy here is 0.558 and the F1 score 0.345. Overall, it is
noticeable that the precision is less than the NPV in each experiment. With the recall
and TNR scores, the same can be observed in almost all experiments.

Similar observations can be made for the data with weak labelling. The maximum
accuracy and the maximum F1 score are achieved with decision trees, which are based
on data balanced with oversampling and reduced to their 12 most important features by
recursive feature elimination. The accuracy is 0.616 and the F1 score is 0.697. The worst
performing decision trees are those trained on data balanced by undersampling. It is
noticeable that the precision is always higher than the NPV. This is also true for recall
and TNR, except for the experiments where the data is balanced with undersampling.

In terms of accuracy, the performance of the decision trees in the experiments is very
poor. Simple classifiers, which always return only the class that occurs most often,
achieve a similar or even better accuracy. The performance is mainly due to the limited
data. This is also shown by the fact that when the data is balanced by undersampling,
the accuracy decreases significantly. Often the most important features of the better
models are grades, study programmes, former universities or nationalities. However,
since each university appears only a few times in the data set, this makes the learning
process more difficult. There are also some coded null values for the grades. In the next
step, these are removed and the performance is checked again.

The same experiments were carried out again, but now the applicants who did not
indicate grades or subjects were removed. This reduced the number of applicants in the
data set from 430 to 319. In the data set with the strong labelling, 64% of the applicants
were rejected and 36% of the applicants were accepted. In the data set with weak
labelling, 54.7% of the applicants were accepted and 45.3% were rejected. The results of
the weak labelling have not changed significantly in terms of metrics such as accuracy.

55

CHAPTER 5. MODEL TRAINING AND EVALUATION

K best features with recursive feature elimination KBest RFE
K features with highest chi-square score KBest Chi2
Random oversampling OS
Random undersampling US
Synthetic minority oversampling technique SMOTE

Table 5.2.: Abbreviations of Methods

Model & Methods Accuracy Precision Recall NPV TNR F1 Score
- 0.581 0.523 0.605 0.643 0.563 0.561
9Best Chi2 0.581 0.545 0.316 0.594 0.792 0.4
12Best RFE 0.593 0.538 0.553 0.638 0.625 0.545
22Best Chi2, OS 0.581 0.524 0.579 0.636 0.583 0.550
7Best Chi2, US 0.558 0.5 0.263 0.576 0.792 0.345
7Best Chi2, SMOTE 0.558 0.500 0.316 0.581 0.750 0.387
18Best RFE, OS 0.605 0.548 0.605 0.659 0.604 0.575
2Best RFE, US 0.570 0.512 0.579 0.628 0.562 0.543
20Best RFE, SMOTE 0.593 0.545 0.474 0.623 0.687 0.507

Table 5.3.: Performance of decision trees on strong labelled data.

It should be noted, however, that these have been obtained on a more balanced data
set with less data. The data set with the strong labelling is less balanced than before.
In most of the experiments, similar results were obtained like above. However, for the
6 features with the highest six chi-square values a higher accuracy (0.672) could be
achieved. Indeed, the F1 score is only 0.488 due to the low precision and low recall.

Random Forests

The experiments were also carried out for random forests. These performed slightly
better than the decision trees. In the data set with strong labelling an accuracy of 0.616
was achieved using the 12 best features determined by recursive feature selection. The
F1 score is 0.571, mainly due to the lower recall and precision for positively labelled
applicants. In the data set with the strong labelling and without null values an accuracy
of 0.639 and an F1 score of 0.537 was achieved. The random forests were trained to
data that were over-sampled using SMOTE. In addition, only the 12 most important
features identified with recursive feature elimination were considered. A maximum
accuracy of 0.639 is also achieved for data with weak labelling. The F1 score of 0.73 is
significantly higher, but this is due to the high precision and recall and the unbalanced
data set. This was only achieved with random forests and the 20 features with the
highest chi-square values. In the data set without null values the accuracy could be
increased to 0.656. The F1 score is 0.73. This was achieved using random forests and
data over-sampled with SMOTE and the 9 features with the highest chi-square values.
Table 5.5 shows once again the exact values for the best experiments.

56

5.2. ADDING NEGATIVELY LABELLED APPLICANTS WITH UNKNOWN
PERFORMANCE

Model & Methods Accuracy Precision Recall NPV TNR F1 Score
- 0.593 0.711 0.649 0.412 0.483 0.679
20Best Chi2 0.605 0.725 0.649 0.428 0.517 0.685
10Best RFE 0.616 0.74 0.649 0.444 0.552 0.692
22Best Chi2, OS 0.581 0.706 0.632 0.4 0.483 0.667
20Best Chi2, US 0.535 0.757 0.439 0.396 0.724 0.535
22Best Chi2, SMOTE 0.581 0.733 0.579 0.415 0.586 0.647
12Best RFE, OS 0.616 0.731 0.667 0.441 0.517 0.697
22Best RFE, US 0.535 0.774 0.421 0.400 0.759 0.545
13Best RFE, SMOTE 0.605 0.735 0.632 0.432 0.552 0.679

Table 5.4.: Performance of decision trees on weak labelled data.

Dataset Accuracy Precision Recall NPV TNR F1 Score
Strong Labelling 0.616 0.564 0.579 0.660 0.646 0.571
Strong Labelling NA 0.639 0.621 0.474 0.649 0.771 0.537
Weak Labelling 0.639 0.724 0.736 0.464 0.448 0.730
Weak Labelling NA 0.656 0.667 0.743 0.640 0.552 0.703

Table 5.5.: Performance of the best random forest models.

5.2. Adding negatively labelled Applicants with unknown
Performance

In section 4.2.2, a labelling system was introduced which gives negative labels to
applicants who have never studied at Saarland University. The labelling is shown in
figure 4.7. In the following section, these applicants are added and the above experiments
are carried out analogously. Also, the applicants who did not indicate a GPA were
removed in the following experiments. It has been shown that despite the loss of
information, this adds value to performance.

Strong Labelling

The data set with the strong labelling is thus increased to 1675 students. However,
the data set is now extremely unbalanced. 91.18% of applicants are labelled negatively
and 8.82% positively. As described above, different combinations of feature selection
and sampling methods were tried. The best results are shown in table 5.6. Accuracy
has been significantly improved and is over 80% in all cases and over 90% in some
cases. However, it should be noted that the classes are extremely unbalanced and a
classifier that would only reject applicants would receive an accuracy greater than 90%.
It is interesting that the addition of negatively labelled applicants increased the recall
of positively labelled applicants in some experiments. When the training data was
balanced with undersampling, a decison tree trained on the 14 best features according
to chi-square scores resulted in a recall of 0.829. This is significantly better than in all
previous experiments. However, this is accompanied by a lower accuracy and precision,

57

CHAPTER 5. MODEL TRAINING AND EVALUATION

as more negatively labelled applicants are classified as positive. Nevertheless, a model
with an accuracy, recall and TNR of about 80% is a very solid model. In other listed
experiments a higher accuracy was achieved, but the recall is always less than or equal to
50%. This is too low for a model that is supposed to support the application process.

Weak Labelling

As for the data with strong labelling, the negatively labelled applicants are now also
added to the data with weak labelling. The new data set includes 1013 applicants of
which 79.8% would be accepted and 20.2% would be rejected. Table 5.7 shows the best
results for the various combinations. The accuracy in all experiments is over 80%, which
is better than a classifier that would always reject an applicant. As in the experiments
listed above, by adding negatively labelled applicants, the recall could be increased
significantly. In some experiments, the recall is above 0.8 and the precision is also
higher, which is also due to more positively labelled applicants in the data set. Overall,
significantly better classifiers than before could be trained. The best model was trained
on the 16 features with the highest chi-square score on a data set that was undersampled.
The accuracy in this model is 0.847, the recall is 0.814 and the TNR is 0.856. Another
good model could be trained on the three best features according to recursive feature
elimination on an oversampled training data with SMOTE. The three features are GPA,
nationality and the university that was visited before. The accuracy is 0.867 and the F1
score is 0.703. It is questionable whether such a model is practical, as it only uses three
features. There are other models in the list that use more features and also achieve very
good results.

Comparison with Random Forests

The same experiments were also conducted with random forests. The results of data with
the strong labelling that random forests provide are comparable to the decision trees.
With undersampling and feature selection, random forests also achieve an accuracy and
recall of about 0.85. In some cases the accuracy is slightly higher, but in these cases
the minority class is discriminated against. In the data set with the weak labelling,
random forests performed very similar to decision trees. Random forests trained on the
17 best features according to recursive feature selection and on an undersampled data
set achieved an accuracy of 0.847. The recall is 0.907 and the TNR is 0.831. The F1
score and the precision are therefore also very similar.

Summary

Overall, adding negatively labelled applicants has improved the performance of the
decision trees enormously. Without additional information from positive-labelled ap-
plicants, the recall could be increased significantly. This is mainly due to the use of
feature selection and sampling methods. In most cases, random undersampling was the
best sampling method. Interestingly, the undersampling method, condensed nearest
neighbour, used on the dataset brought less added value than random undersampling.

58

5.3. ADDING POSITIVELY LABELLED APPLICANTS WITH UNKNOWN
PERFORMANCE

Model & Methods Accuracy Precision Recall NPV TNR F1 Score
12Best Chi2, OS 0.919 0.682 0.429 0.936 0.977 0.526
14Best Chi2, US 0.821 0.349 0.829 0.976 0.820 0.491
9Best Chi2, SMOTE 0.872 0.395 0.429 0.933 0.923 0.411
7Best RFE, OS 0.904 0.571 0.343 0.927 0.970 0.489
7Best RFE, US 0.848 0.389 0.800 0.973 0.853 0.523
16Best RFE, SMOTE 0.869 0.385 0.429 0.932 0.920 0.405

Table 5.6.: Performance of decision trees on strong labelled data. The data includes
negatively labelled applicants with unknown performance.

Model & Methods Accuracy Precision Recall NPV TNR F1 Score
15Best Chi2, OS 0.852 0.651 0.651 0.906 0.906 0.651
16Best Chi2, US 0.847 0.603 0.814 0.945 0.856 0.693
17Best Chi2, SMOTE 0.828 0.577 0.697 0.914 0.863 0.632
8Best RFE, OS 0.842 0.628 0.628 0.900 0.900 0.628
3Best RFE, US 0.842 0.590 0.837 0.951 0.844 0.692
3Best RFE, SMOTE 0.867 0.667 0.744 0.929 0.900 0.703

Table 5.7.: Performance of decision trees on weak labelled data. The data includes
negatively labelled applicants with unknown performance.

The next step is to see if the model can be improved by adding positively labelled
students.

5.3. Adding positively labelled Applicants with unknown
Performance

The same experiments were performed analogously for the data set with additional
positively labelled students. Again, applicants who did not give any grades or study
programme were removed. The data set with strong labelling includes 367 students,
of whom 43.3% would be accepted again. The data set with the weak labelling was
increased to 674 applicants, of whom 79.3% were positively and 20.7% negatively labelled.
As before, all possible combinations were tried out. However, the performance of the
models could only be slightly improved if the decision trees were trained on balanced
data. In most cases, the accuracy was around 60%, while recall and TNR scores were
very similar. In cases where accuracy was higher, the majority class was preferred and
most of the minority class was assigned to it. As this method did not add any value to
our models, the results are not presented here. The combination of both labellings is
also not considered.

59

CHAPTER 5. MODEL TRAINING AND EVALUATION

5.4. Model Tuning

In this section, work will continue with the data set containing the additional negatively
labelled students. The successful models discussed above are now being optimised using
various parameters. These parameters are systematically tested with a grid-search. All
different combinations of feature selection, resampling and decision trees are tested on
the training data and the parameters are selected. Finally, the final model is tested on
the test data.

Some parameters of decision trees in scikit-learn are (parameter names and descriptions
are reprinted and adapted from [72]):

• criterion: The function to measure the quality of a split - Gini impurity or
Information gain.

• max_depth: The maximum depth of a tree.

• min_samples_split: The minimum number of samples required to split an internal
node.

• min_samples_leaf: The minimum number of samples required to be at a leaf
node.

• max_leaf_nodes: The maximum number of leaf nodes. [72]

For these parameters different values have now been defined and tested. For example,
the depth was set to be at least two, but not more than six. Information gain and
gini impurity were also tried. For min samples split, values from two to 40 were tried,
considering the data size. Mathematically, only 64 leaf nodes in a binary tree with a
depth of six are possible. Therefore different values were tried up to 60.

Model trained on strong labelled Data

With the strong labelling a decision tree could be constructed, which achieves an
accuracy of 0.884 on the test data. The F1 score is 0.598 and the recall and TNR are
well over 0.8. Table 5.8 shows the exact values and figure 5.1 the confusion matrix of
the decision tree. The model was trained on randomly over sampled data on the seven
features with the highest chi2 value. These seven features are:

• GPA

• INST_LAST_DEG_1

• NATIONALITY

• D_QS_RANK_INST_LAST_DEG_1

• D_QS_RANK_INST_LAST_DEG_2

• D_THE_RANK_INST_LAST_DEG_1

• D_THE_RANK_INST_LAST_DEG_2

60

5.4. MODEL TUNING

Model & Methods Accuracy Precision Recall NPV TNR F1 Score
7Best Chi2, OS 0.884 0.467 0.829 0.978 0.890 0.598

Table 5.8.: Performance of a decision tree after parameter tuning on strong labelled
data. The data includes applicants with unknown performance.

Figure 5.1.: Confusion matrix of the best model after parameter tuning on strong
labelled data. The data includes applicants with unknown performance.

It is noticeable that all features refer to the academic achievements and the university and
country of study. In particular, the feature engineering could provide more information
for the decision tree with the rankings. Another positive aspect is that the decision tree
does not make decisions based on gender, age or marital status, which means that at least
in this form it makes very neutral decisions based on the academic background. However,
this decision tree raises the question whether, despite the very good performance, it
is a good decision tree for the admission process. The fact that the decision tree does
not take the study programme into account already speaks against it. This decision
tree would admit students who have not studied natural sciences and are therefore not
suitable for a study of computer science at all.

In this model the decision tree is trained on data that have been balanced with random
oversampling. In addition, the 8 most important features were selected according to
recursive feature selection. The decision tree achieves an accuracy of 0.857 and the
recall and TNR are at least 0.8. However, the precision of 0.406 is relatively low, which
is related to the unbalanced data set on which the tests were performed. The results
are summarised in table 5.9.

It was also examined whether the decision tree could be improved with cost-complexity
pruning. Figure 5.2 shows that removing sub-trees does not improve the accuracy of

61

CHAPTER 5. MODEL TRAINING AND EVALUATION

the decision tree. With increasing alpha the accuracy decreases steadily.

Figure 5.2.: Accuracy of the decision tree with increasing alpha. The decision tree was
fitted on data with the strong labelling. The data includes applicants with
unknown performance.

Model & Methods Accuracy Precision Recall NPV TNR F1 Score
8Best RFE, OS 0.857 0.406 0.800 0.974 0.863 0.538

Table 5.9.: Performance of a decision tree after parameter tuning on strong labelled data.
The data includes applicants with unknown performance. This decision tree
considers the study programme.

Model trained on weak labelled Data

As for the strong labelling, an attempt was also made to increase the performance of
the weak labelling by parameter tuning. The decision tree trained on weak labelled
data achieves an accuracy of 0.847, with a depth of 5, on the best 14 features, according
to recursive feature elimination, and on data balanced by oversampling. The number of
leaf nodes was limited to 20 and there must be at least 4 samples per split. The recall
and TNR are clearly above 80. The detailed statistics are provided in table 5.10. It was
also investigated whether cost-complexity pruning leads to an improvement in accuracy
[69]. It is only possible to reduce the complexity of the tree while maintaining accuracy.
Figure 5.3 shows the accuracy with increasing alpha. However, the pruned decision tree
would lead to a lower TNR. Since the actual decision tree has a limited complexity due
to its limited depth, we continued to work with it. In this model the features GPA and
nationality are very important. The sum of their feature importance is over 0.9. Asia
rankings, university and other features are also important, but these have a very small
share in the classification.

Random Forests

The same experiments were also conducted for random forests. These have the parame-
ters of the decision trees and a parameter that indicates the number of estimators.

62

5.4. MODEL TUNING

Model & Methods Accuracy Precision Recall NPV TNR F1 Score
14Best RFE, OS 0.847 0.600 0.837 0.951 0.850 0.699

Table 5.10.: Performance of a decision tree after parameter tuning on weak labelled data.
The data includes applicants with unknown performance. This decision
tree considers the study programme.

Figure 5.3.: Accuracy of the decision tree with increasing alpha. The decision tree was
fitted on data with the strong labelling.

Strong Labelling

With the strong labelling data set, a classifier was trained on data balanced with SMOTE
and the best 9 features, achieving an accuracy of 0.866. The recall and TNR are above
0.8. The exact values are in table 5.11. The maximum tree depth is 6 and 40 estimators
were used. The main features were grades, university, nationality, age and QS rankings.
Together these make up 85% of the feature importance.

Weak Labelling

The results of random forests on the weak labelling data set are very similar to the
results of the decision tree. The 8 best features were selected according to recursive
feature elimination. Some of these are nationality, GPA, university, age and the study
programme. An accuracy of 0.847 was achieved and the recall and TNR are over 83%.
The results are summarised in table 5.12.

Model & Methods Accuracy Precision Recall NPV TNR F1 Score
9Best RFE, SMOTE 0.866 0.424 0.800 0.974 0.873 0.554

Table 5.11.: Performance of random forests with parameter tuning on strong labelled
data. The data includes applicants with unknown performance.

63

CHAPTER 5. MODEL TRAINING AND EVALUATION

Model & Methods Accuracy Precision Recall NPV TNR F1 Score
8Best RFE, OS 0.847 0.594 0.884 0.964 0.837 0.710

Table 5.12.: Performance of random forests with parameter tuning on weak labelled
data. The data includes applicants with unknown performance.

5.5. Comparison with Boosting Methods

One way to achieve a better performance with decision trees, besides bagging, is also
boosting. Since boosting generally gives very good results, the different boosting
algorithms are tried out for comparison with the decision trees mentioned above.

AdaBoost

As in the previous sections, the model was trained on the data with the strong and
the weak model. In both models the data sets were balanced with undersampling and
the most important features were selected with recursive feature elimination. With
the AdaBoost an accuracy of over 86% was achieved on the data set with the strong
labelling. The recall and TNR are above 0.85. An accuracy of about 87% was achieved
on the data set with the weak labelling. The values for the recall are also similar to
the model on the strong labelling. Overall, the performance of both models is very
solid. AdaBoost will not be discussed further, as significantly better results have been
achieved with gradient boosting.

Gradient Boosting

In the following section, models are created for both data sets using extreme gradient
boosting. This algorithm performs very well in practical applications. Gradient boosting
is therefore mainly used for comparison with the other models, since decision trees, for
example, have a lower performance than more complex models.

On the data set with the strong labelling a model could be trained, which performed
significantly better than those seen before. The data was oversampled and the classifier
was trained on the 20 most important features according to recursive feature elimination.
13 estimators were used in the model. An accuracy of over 90% is achieved and the
recall and TNR are over 80%. Table 5.13 summarises the values again and in figure 5.4
the confusion matrix is depicted. However, the use of such a model also results in less
explainability compared to decision trees. The five most important features are:

• GPA
• NATIONALITY
• INST_LAST_DEG_1
• D_THE_RANK_INST_LAST_DEG_1
• GENDER

64

5.6. WILSON LOWER BOUND SCORE

Model & Methods Accuracy Precision Recall NPV TNR F1 Score
XGBoost, 20Best RFE, OS 0.901 0.518 0.800 0.975 0.913 0.629

Table 5.13.: Performance of XGBoost on strong labelled data.

Model & Methods Accuracy Precision Recall NPV TNR F1 Score
XGBoost, 17Best RFE, US 0.867 0.625 0.930 0.978 0.850 0.748

Table 5.14.: Performance of XGBoost on weak labelled data.

These features are very similar to the other models. But the asia rankings, age, spelling
and whether a student has a science degree are also important.

On the data set with the weak labelling, XGBoost [11] was used to train a classifier
with an accuracy of 0.867, which is better than the other classifiers on the same data
set. The classifier was trained on the best 17 features according to recursive selection.
Furthermore, the data was balanced with undersampling. The recall and TNR are at
least 85%, for those applicants to be accepted, even over 90%. Table 5.14 summarises
the values again and in figure 5.5 the confusion matrix is depicted. The main features
are similar to those listed above. However, there are differences in feature importance
and order. The five most important features are:

• GPA
• NATIONALITY
• AGE
• GENDER
• D_QS_RANK_INST_LAST_DEG_1

In summary, one can say that the boosting methods perform better than individual
decision trees or random forests. However, there is the disadvantage that decisions made
by boosted classifiers are much more difficult to explain.

5.6. Wilson Lower Bound Score

So far we have looked at performance using various metrics, such as accuracy. However,
it would also be very interesting to know how many of the applicants are at least
correctly classified. The Wilson lower bound score is a good choice for this. The Wilson
lower bound score helps us to compute how many students are correctly classified with
at least 95% probability. The score is given for the best models. The results are shown
in table 5.15. According to the test data, most models achieve about 80% as their lower
bound score. This means that at least 80% of the applicants are correctly classified. The
XGBoost model, which was trained on the strong labelled data, achieves the highest
value with 86.5%. The evaluation means that the trained models are very reliable.

65

CHAPTER 5. MODEL TRAINING AND EVALUATION

Figure 5.4.: Confusion matrix for a XGBoost model trained on strong labelled data.

Model Wilson Lower Bound Score
Decision Tree, strong labelled data, 8Best RFE, OS 0.8151
Random Forests, strong labelled data, 9Best RFE, SMOTE 0.8249
XGBoost, strong labelled data, 20Best RFE, OS 0.8649
Decision Tree, weak labelled data, 14Best RFE, OS 0.7914
Random Forests, weak labelled data, 8Best RFE, OS 0.8134
XGBoost, weak labelled data, 17Best RFE, US 0.7914

Table 5.15.: Wilson lower bound scores for the best models.

Figure 5.5.: Confusion matrix for a XGBoost model trained on weak labelled data.

66

6. Approaches for Explainability

An important objective in this thesis is to explain the decisions of the models. In the
following chapter, different approaches are discussed to explain the previously presented
models. In this chapter the python packages in table A.4 were used.

6.1. Decision Trees

The interpretability of a decision tree is usually very simple. We start at the root of the
tree and go to the next node according to the splits until we reach a leaf node. At the
end the rules, such as GPA<4 are linked together and we get the reason for the decision
of the tree [57]. An important step is therefore the visualisation of the tree and creating
the sequence of the corresponding splits. In the following paragraphs, the decision trees
are visualised. The decision tree for the strong labelling is shown in figure 6.1. One can
see that certain features like grades are especially important. It is also noticeable that
some leaf nodes are relatively impure in terms of their classes. This results from the
limited depth. The decision tree for the weak labelling is shown in figure 6.2.

Figure 6.3 shows an example of how the decision is made for an applicant whose profile is
listed in table 6.1. For this example, the decision tree with the weak labelling was used.
Since the applicant’s GPA is worse than 2.5 (2 corresponds to 75− 79%, 5 corresponds
to 0− 60%), only the right sub-tree is considered. If the applicant’s GPA is also worse
than 3.5, it is rejected.

In figure 6.4 and figure 6.5 we can see the feature importances of the two decision trees.
These give us information which features are especially important for the classification.
Therefore, this is important additional information that contributes to the understanding
of the model. In both models the GPA is by far the most important feature. In the
decision tree trained on strong labelled data, the next most important feature is
the university, while in the other model it is the nationality. Nationality also plays
an important role in strong labelling. The other features have less influence on the
features.

The decision of the tree is easy for a human to understand. It is also possible to
have these decisions outputted textually. With the feature importances we also have
a possibility to estimate which features are especially important in the decision tree.
By tracing the path in the decision tree, it is easy to understand which features are
responsible for a concrete decision. However, this is not that easy for all models. In the
following sections, we explore ways to analyse predictions of the other models, which
are rather black-box models.

67

CHAPTER 6. APPROACHES FOR EXPLAINABILITY

Figure 6.1.: Final decision tree trained on the best 8 features according to recursive
feature elimination on strong labelled data. The data includes applicants
with unknown performance and was oversampled.68

6.1. DECISION TREES

Figure 6.2.: Final decision tree trained on the best 14 features according to recursive
feature elimination on weak labelled data. The data includes applicants
with unknown performance and was oversampled. 69

CHAPTER 6. APPROACHES FOR EXPLAINABILITY

Figure 6.3.: Example: Classification of an applicant. By following the corresponding
nodes it is easy to understand why an applicant should get an admission or
should be declined.

Feature Value
STUDY_PROG_CHOICE2 3
GENDER 0
GPA 5
AGE 4
INST_LAST_DEG_1 1898
INST_LAST_DEG_2 1414
NATIONALITY 91
D_THEASIA_RANK_INST_LAST_DEG_1 354
D_THEAFRICA_RANK_INST_LAST_DEG_1 0
D_THEAFRICA_RANK_INST_LAST_DEG_2 0
STUDY_PROG_LAST_DEG_1 0
STUDY_PROG_LAST_DEG_2 1
D_SPELLING 2
D_STEM_STUDY_PROG 1

Table 6.1.: Example: Applicant for the master programme in computer science at
Saarland University. The corresponding decision is shown in figure 6.3.

70

6.1. DECISION TREES

Figure 6.4.: Feature importance of the decision tree trained on strong labelled data.

Figure 6.5.: Feature importance of the decision tree trained on weak labelled data.

71

CHAPTER 6. APPROACHES FOR EXPLAINABILITY

6.2. Random Forests

Random forests are more complex and difficult to interpret than a decision tree because
they consist of numerous decision trees. One way to learn which features are important
in the decision of random forests is feature importance. Figure 6.6 shows the feature
importances for the strong labelling and figure 6.7 for the weak labelling. In both models
the GPA is the most important feature. In addition, nationality and the university at
which the student has previously studied play an important role. The feature importance
provides a first overview which features are important in the prediction process of the
model. However, a better method to identify the most important features are the
so-called Shapley values [6, 23]. These allow an evaluation of the importance of the
features for the whole model, but also for an individual applicant. In figure 6.8 are the
Shapley values for the random forest model trained on the data set with the strong
labelling. These are visualised in more detail with values in figure 6.9. In terms of
importance, these are similar to feature importance. Various influences on the prediction
are visualised. For example, a poor GPA or a high age has a very negative effect on
the prediction. The same visualisations were made for the model for data with weak
labelling. In figure 6.10 it becomes clear that for the prediction the most important
features are the GPA, the age and the nationality. Figure 6.11 visualises the effect of the
values of the different features on the predictions. It can be seen that a low GPA has a
positive effect on the acceptance of the applicant and that a high age has a negative
effect. For the rankings, it should be noted that all universities that are not ranked
have a value of 0. In the figure, it seems as if good rankings are penalised. However,
that is because most universities are not listed in the THE Asia rankings and therefore
have a ranking of 0. In general, it seems a ranked university, i.e., where the ranking is
greater than 0, has a very positive impact on the admission.

6.3. Gradient Boosting

Gradient Boosting is a black-box model and explanations for the classifications are
much more difficult than in decision trees. But it is possible to explain the predictions
of an XGBoost model.

The most important features for the model trained on the strong labelling data are
located in figure 6.12. Here it is considered how often a feature is used to split in the
individual trees. The most important features are the university of first degree and
the study programme. Furthermore, the second preference for a study programme
at Saarland University plays a major role. The gender of an applicant and whether
the applicant has studied a STEM-related study programme are the least important.
However, the feature importances are very inconsistent and offer only a first orientation.
The so-called Shapley values are better [51]. These are consistent and indicate which
values are most important. In figure 6.13 are the average Shapley values for the data set.
Most important is the university where the first degree was obtained, the final grade
and the nationality. The Shapley values can also be analysed in more detail. Figure 6.14
shows which features have which effect on prediction at high or low values. While this

72

6.3. GRADIENT BOOSTING

Figure 6.6.: Feature importance of random forests trained on strong labelled data.

Figure 6.7.: Feature importance of random forests trained on weak labelled data.

73

CHAPTER 6. APPROACHES FOR EXPLAINABILITY

Figure 6.8.: Shapley values of random forests trained on strong labelled data.

Figure 6.9.: Impact of feature values on Shapley values of random forests trained on
strong labelled data.

Figure 6.10.: Shapley values of random forests trained on weak labelled data.

74

6.3. GRADIENT BOOSTING

Figure 6.11.: Impact of feature values on Shapley values of random forests trained on
weak labelled data.

makes little sense for features like university, as they are categorical, there are clear
tendencies for features like age. A high age has a negative influence on the admission of
the applicant. Interestingly, the model also seems to slightly favour the gender 1. The
Shapley values can also be displayed for individual applicants. This allows to see which
features are important and have been crucial in the prediction of the model. In addition,
ceteris paribus analyses could be used to determine which effect the change in a single
feature would have on the prediction [3]. This can also provide further information
about the prediction.

The most important features for the model trained on the strong labelling data are
located in figure 6.15. The most important features are the university of first degree,
the study programme and the nationality. The average Shapley values for XGBoost on
the data with the weak labelling are in figure 6.16. The most important features are
similar to the other XGBoost classifier, although there are differences. For example,
here the GPA is the most important feature. In figure 6.17 the features are displayed
by values and their effect on the prediction. It is noticeable that a bad GPA has a
very negative influence on the approval. The model also seems to favour women who
have the value 1 over men. At first glance, it also appears that a low value in the QS
rankings is a disadvantage. However, this is not the case, as all universities that are not
listed in the rankings are given the value 0. Therefore, slightly higher values are much
better, as this means that the students are listed in the rankings. As mentioned above,
the Shapley values can also be determined for a single applicant.

In the previous sections we have seen different approaches to better understand decisions
of machine learning. For humans, decision trees are the easiest to understand, while
other models are black-box models. For them there are methods, for example Shapley
values, to make their decisions more understandable.

75

CHAPTER 6. APPROACHES FOR EXPLAINABILITY

Figure 6.12.: Feature importance of XGBoost trained on strong labelled data.

Figure 6.13.: Shapley Values of XGBoost model trained on strong labelled data.

76

6.3. GRADIENT BOOSTING

Figure 6.14.: Impact of feature values on the decision. Impact is computed with Shapley
values. The XGBoost model was trained on strong labelled data.

Figure 6.15.: Feature importance of XGBoost trained on weak labelled data.

77

CHAPTER 6. APPROACHES FOR EXPLAINABILITY

Figure 6.16.: Shapley Values of XGBoost model trained on weak labelled data.

Figure 6.17.: Impact of feature values on the decision. Impact is computed with Shapley
values. The XGBoost model was trained on weak labelled data.

78

7. Conclusion and Future Work

In this thesis all essential steps of a practical machine learning project were processed.
The applicant data set was cleaned, analysed and labelled in agreement with the study
coordination. In addition, further features were added to the data set, such as rankings
or spelling. Finally, models based on decision trees were trained on the processed
data and explanatory approaches were developed for their predictions. The models for
decision trees, random forests and gradient boosting achieved very good results on the
training and test data. All models achieved an accuracy of over 80% and XGBoost an
accuracy of over 90%. This is very impressive considering the small amount of data
with different characteristics. In most cases, however, grades, university and nationality
were most important. However, this also leads to problems, because the decision tree
cannot make a reliable prediction for applicants who, for example, have attended a
university unknown to the decision tree. This will be analysed in more detail below. In
addition, the explainability will be evaluated in more detail and possible improvements
regarding the current system will be given, as well as an outlook on how this thesis can
be expanded and used meaningfully in the future.

7.1. Quality of the Model

To determine the quality of the models we have trained for the various labelled data, we
looked at metrics such as accuracy, precision and recall, but also whether the models
are explainable. In the next paragraphs the results of the modelling are discussed and
summarised.

7.1.1. Modelling

In the chapter on modelling we have already seen the values for the metrics accuracy,
precision, recall and F1 score. The decision trees as well as the models for random forests
and gradient boosting achieve high values and clearly exceed the previously defined
target of 80%. This is especially due to the addition of negatively labelled students from
the data set who never studied at Saarland University. This has significantly improved
the prediction for acceptance, but also for rejection. Despite the improvements that
labelling has brought about, it must also be viewed critically. For example, if two out of
every two students at a university have done poorly at Saarland University, all others
will also be labelled negatively, which can have a negative effect on the acceptance of
future applicants in the trained models. In order to make such decisions, larger amounts
of data should actually be available. However, a larger threshold was not feasible due to
the given amount of data. Also, the Wilson lower bound score was used to check how
many students are at least correctly classified with a probability of 95%. Good results
were also achieved here. The effect of nationality must also be viewed critically. Even

79

CHAPTER 7. CONCLUSION AND FUTURE WORK

Model Acceptance Rate
Decision Tree, strong labelled data, 8Best RFE, OS 4871/11853
Random Forests, strong labelled data, 9Best RFE, SMOTE 3154/11853
XGBoost, strong labelled data, 20Best RFE, OS 3675/11853
Decision Tree, weak labelled data, 14Best RFE, OS 5495/11853
Random Forests, weak labelled data, 8Best RFE, OS 5412/11853
XGBoost, weak labelled data, 17Best RFE, US 5668/11853

Table 7.1.: Acceptance rates of the best models on the complete data set.

if some countries have lower educational standards than Germany, only the university
should be considered. However, more data would also have to be available for this. In
most models, gender is not considered. This ensures that there is no discrimination. In
the models that consider gender, any disadvantage due to gender must be taken into
account. In several smaller experiments, the omission of nationality and gender was
tested. Good results were also achieved with this. The models were slightly worse than
the presented ones. However, in these cases the nationality is missing as additional
information if the university is unknown. There are also other problems. Since the
training data sets are very small and some features are missing, the models cannot
reliably predict acceptance for some applicants. If essential information is missing, such
as the university, subject, grades or nationality, it is almost impossible to predict the
admission. Also, even if a previously unknown university is listed in the rankings, a
prediction might not be reasonable. In these cases, one should at least point out that
the decision of the decision tree should be taken with caution. The models were also
applied to the data which included all applications, i.e., the data which were not labelled
too. It turned out that all models would accept significantly more applicants than
the commission of Saarland University. Detailed statistics can be found in table 7.1.
The problems mentioned above also explain the deviation of the values in the table
from the Wilson lower bound score to the commission. Since the data that has been
added is sometimes very different from the data on which the models have been tested,
the Wilson lower bound score is no longer completely valid for these models. Also, it
must also be considered that due to the anonymisation of data in the thesis it is more
difficult to analyse the models completely. For example, it is not possible to check which
university exactly has a negative influence on a decision because it is encrypted.

7.1.2. Explainability

The decision trees offer the possibility to easily follow the decisions regarding the
admission. In particular, the limited depth and the possibility to visualise the decision
trees makes this easy. The decision trees trained in this thesis only use the most
important features chosen by feature selection. In addition, the feature importance
and the Shapley values were specified for more complex models. The Shapley values
are more reliable than the feature importance, and indicate the importance of the
different features. The visualisations, which show which values have a positive or

80

7.2. DEPLOYMENT RECOMMENDATION

negative influence on the Shapley values, make it easier to understand the acceptance
or rejection.

7.1.3. Other

The thesis developed an interesting method to standardise the university names, es-
pecially in the field of data cleaning. This was a prerequisite to use the data for the
further steps in the machine learning project. In particular, the use of a Wikipedia will
enable the commission in the future to have quick access to general information of the
university. Through feature engineering, further interesting features such as rankings
and spelling could be introduced. These have also improved the quality of the model to
a certain extent. However, the Asia and Africa rankings are also subject to criticism.
Since these do not focus on computer science, but on the university as a whole, it is
assumed that a good university also has a good computer science faculty. It would make
sense to work with computer science rankings for these regions in the future.

7.2. Deployment Recommendation

In this thesis some things have come to light which should generally be improved. These
mainly concern the application process and the maintenance of the information system.
These are listed below as recommendations for action.

7.2.1. Adaptation of the Application Form

Probably the most important recommendation for action is to improve the application
form. The application form has very few drop-down menus. This leads to unclean
data. For example, the university, the subject or the language test should be selected
from such a menu. This would ensure that students enter the same names for the same
university or subject. Thereby, the extremely time-consuming data cleaning would be
omitted in the future. In addition, it should only be possible to send the application
form if it is completely filled out - mandatory fields should therefore be introduced.
With this restriction null values would be avoided. This would make sense especially for
the language tests. One could ensure that only common tests and the corresponding
scores can be uploaded. These steps would result in a complete and clean data set and
would allow for better work with this data in the future.

7.2.2. Maintenance of the Database

It is very important that the databases are handled correctly and maintained accordingly.
Database providers often offer the possibility to create maintenance plans to optimise
and secure the database and to detect possible inconsistencies [56]. Such a maintenance
plan should definitely be created, and triggers could be built in to maintain consistency.
There are some inconsistencies in the database in which the applicant data is stored.

81

CHAPTER 7. CONCLUSION AND FUTURE WORK

Furthermore, data is not updated regularly. For example, many applicants write in
the application form that their language certificate is not yet available. However, this
status is no longer updated in the database. Actually, all students who submit their
certificate should have it entered in the database and all others should be assigned a
uniform value indicating the absence of the certificate.

7.3. Future Work

The models presented in this thesis provide good results for applicants whose university,
nationality and subject is known. However, if some features have not been included
in the training data set before, the models do not perform very well. Especially when
considering the acceptance rate of the trained models on the entire applicant data set,
it is very high compared to reality. It is unlikely that the selection committee, is so
wrong. The problem is much more likely that the trained models do not know the
universities, for example, and therefore make the decision based on other features. The
rankings are of limited help here. In the future one could try to reduce the acceptance
rate and thus make it more realistic. To do so, one would have to increase the training
data set, among other things. One approach would be to label all students who have
been rejected negatively. However, this would lead to students who were rejected by
the selection committee but could have passed the course being classified incorrectly. In
such a case only the decision of the commission would be trained. However, this would
not solve the problem. In addition, one should also try to remove the nationality and
the gender from the training data in future to avoid discrimination against applicants.
Regarding the explainability, we have good possibilities to justify the decisions of the
models by visualisations and by Shapley values. The decision trees in particular meet
our requirements for explainable AI. The decisions are easy to understand and can also
be understood by persons not familiar with computer science. If the future models
that are not based on decision trees are to be used, further explanatory approaches
can be considered. For example, a ceteris paribus analysis could be used to see how a
value would have to change in order to change the decision if all other values remained
the same [3]. Also, one should check the use of neural networks. Neural networks
show a very good performance in practice, but they are black box models. It would be
conceivable to combine decision trees and neural networks. This has been proven in
practice and could lead to a better performance [74]. It is certainly useful to use a tool
that displays similar students with their performance for applicants. This would already
help to get a first overview and be able to initially judge applicants better. In general,
the topic still offers a lot of scope for new ideas and corresponding opportunities for
further optimisation.

82

Bibliography

[1] Alexander Armbruster. Computer bringt sich selbst Go bei – und wird Weltk-
lasse. https://www.faz.net/aktuell/wirtschaft/kuenstliche-intelligenz/
computer-bringt-sich-selbst-go-bei-und-wird-weltklasse-15253783.
html, 2017. Accessed: 22.08.2020.

[2] Microsoft Azure. Bing Websuche. https://azure.microsoft.com/de-de/
services/cognitive-services/bing-web-search-api/. Accessed: 12.04.2020.

[3] Hubert Baniecki and Przemyslaw Biecek. The Grammar of Interactive Explanatory
Model Analysis. Preprint, https://arxiv.org/abs/2005.00497, 2020.

[4] Przemyslaw Biecek and Tomasz Burzykowsk. 7 Break-down Plots for Additive At-
tributions. https://pbiecek.github.io/ema/breakDown.html. Accessed: 11.05.2020.

[5] Przemyslaw Biecek and Tomasz Burzykowsk. 8 Break-down Plots for Interactions
(iBreak-down Plots). https://pbiecek.github.io/ema/iBreakDown.html. Accessed:
11.05.2020.

[6] Przemyslaw Biecek and Tomasz Burzykowsk. Explanatory Model Analysis,
9 Shapley Additive Explanations (SHAP) and Average Variable Attributions.
https://pbiecek.github.io/ema/shapley.html. Accessed: 11.05.2020.

[7] Aleksey Bilogur. Missingno: a missing data visualization suite. Journal of Open
Source Software, 3(22):547, 2018. DOI: https://doi.org/10.21105/joss.00547.

[8] L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, L. D. Jackel, Y. LeCun,
U. A. Muller, E. Sackinger, P. Simard, and V. Vapnik. Comparison of classifier
methods: a case study in handwritten digit recognition. In Proceedings of the 12th
IAPR International Conference on Pattern Recognition, Vol. 3 - Conference C:
Signal Processing (Cat. No.94CH3440-5), volume 2, pages 77–82 vol.2, 1994.

[9] Leo Breiman. Random Forests. In Machine Learning, volume 45, pages 5–32, 2001.
doi: https://doi.org/10.1023/A:1010933404324.

[10] Leo Breimann. Bagging Predictors. In Machine Learning, volume 24, pages 123–140,
1996. DOI: https://doi.org/10.1007/BF00058655.

[11] Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System.
In Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu Aggarwal,
Dou Shen, and Rajeev Rastogi, editors, KDD, pages 785–794. ACM, 2016. DOI:
http://doi.acm.org/10.1145/2939672.2939785.

[12] CrowdFlower. 2016 Data Science Report. https://visit.figure-eight.com/rs/
416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf. Accessed:
12.06.2020.

83

https://www.faz.net/aktuell/wirtschaft/kuenstliche-intelligenz/computer-bringt-sich-selbst-go-bei-und-wird-weltklasse-15253783.html
https://www.faz.net/aktuell/wirtschaft/kuenstliche-intelligenz/computer-bringt-sich-selbst-go-bei-und-wird-weltklasse-15253783.html
https://www.faz.net/aktuell/wirtschaft/kuenstliche-intelligenz/computer-bringt-sich-selbst-go-bei-und-wird-weltklasse-15253783.html
https://azure.microsoft.com/de-de/services/cognitive-services/bing-web-search-api/
https://azure.microsoft.com/de-de/services/cognitive-services/bing-web-search-api/
https://arxiv.org/abs/2005.00497
https://doi.org/10.21105/joss.00547
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/BF00058655
http://doi.acm.org/10.1145/2939672.2939785
https://visit.figure-eight.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf
https://visit.figure-eight.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf

Bibliography

[13] Rodrigo Fernandes de Mello and Moacir Antonelli Ponti. Machine learning. pages
1–10. Springer International Publishing AG, part of Springer Nature, 2018. DOI:
https://doi.org/10.1007/978-3-319-94989-5_1.

[14] XGBoost Developers. Introduction to Boosted Trees. https://xgboost.
readthedocs.io/en/latest/tutorials/model.html. Accessed: 17.08.2020.

[15] Defense Advanced Research Projects Agency (DARPA) Dr. Matt Turek.
Explainable Artificial Intelligence (xai). https://www.darpa.mil/program/
explainable-artificial-intelligence. Accessed: 12.04.2020.

[16] Times Higher Education. THE Africa University Rankings 2019.
https://www.timeshighereducation.com/student/best-universities/
best-universities-africa. Accessed: 12.12.2019.

[17] Times Higher Education. THE Asia University Rankings 2019.
https://www.timeshighereducation.com/world-university-rankings/
2019/regional-ranking#!/page/0/length/25/sort_by/rank/sort_order/
asc/cols/stats. Accessed: 12.12.2019.

[18] Times Higher Education. THE World University Rankings by Sub-
ject: Computer Science. https://www.timeshighereducation.com/
world-university-rankings/2020/subject-ranking/computer-science#
!/page/0/length/25/sort_by/rank/sort_order/asc/cols/stats. Accessed:
12.12.2019.

[19] Omar Elgabry. The ultimate Guide to Data
Cleaning. https://towardsdatascience.com/
the-ultimate-guide-to-data-cleaning-3969843991d4. Accessed: 15.04.2020.

[20] Dr. Dirk Hecker et al. Zunkunftsmarkt Künstliche Intelligenz Potenziale und An-
wendungen. http://publica.fraunhofer.de/dokumente/N-497661.html, 2018.
Accessed: 22.08.2020.

[21] Michael Waskom et al. seaborn, (Python Library), Version 0.9.0. https://seaborn.
pydata.org/. Accessed: 19.12.2019.

[22] Pauli Virtanen et al. Scipy, (Python Library), Version 1.4.1. https://www.scipy.
org/. Accessed: 20.12.2019.

[23] Scott M Lundberg et al. Explainable machine-learning predictions for the prevention
of hypoxaemia during surgery. Nat Biomed Eng 2, page 749–760, 2018. DOI:
https://doi.org/10.1038/s41551-018-0304-0.

[24] Sebastian Bank et al. Graphviz, (Python Library),Version 0.13.2. https://pypi.
org/project/graphviz/. Accessed: 13.04.2020.

[25] Tom Augsburger et al. pandas, Version: 1.0.3. https://pandas.pydata.org/
about/team.html. Accessed: 11.04.2020.

[26] Tom Fawcett. Introduction to ROC analysis. Pattern Recognition Letters, 27:861–
874, 06 2006. DOI: https://doi.org/10.1016/j.patrec.2005.10.010.

84

https://doi.org/10.1007/978-3-319-94989-5_1
https://xgboost.readthedocs.io/en/latest/tutorials/model.html
https://xgboost.readthedocs.io/en/latest/tutorials/model.html
https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.timeshighereducation.com/student/best-universities/best-universities-africa
https://www.timeshighereducation.com/student/best-universities/best-universities-africa
https://www.timeshighereducation.com/world-university-rankings/2019/regional-ranking#!/page/0/length/25/sort_by/rank/sort_order/asc/cols/stats
https://www.timeshighereducation.com/world-university-rankings/2019/regional-ranking#!/page/0/length/25/sort_by/rank/sort_order/asc/cols/stats
https://www.timeshighereducation.com/world-university-rankings/2019/regional-ranking#!/page/0/length/25/sort_by/rank/sort_order/asc/cols/stats
https://www.timeshighereducation.com/world-university-rankings/2020/subject-ranking/computer-science#!/page/0/length/25/sort_by/rank/sort_order/asc/cols/stats
https://www.timeshighereducation.com/world-university-rankings/2020/subject-ranking/computer-science#!/page/0/length/25/sort_by/rank/sort_order/asc/cols/stats
https://www.timeshighereducation.com/world-university-rankings/2020/subject-ranking/computer-science#!/page/0/length/25/sort_by/rank/sort_order/asc/cols/stats
https://towardsdatascience.com/the-ultimate-guide-to-data-cleaning-3969843991d4
https://towardsdatascience.com/the-ultimate-guide-to-data-cleaning-3969843991d4
http://publica.fraunhofer.de/dokumente/N-497661.html
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://www.scipy.org/
https://www.scipy.org/
https://doi.org/10.1038/s41551-018-0304-0
https://pypi.org/project/graphviz/
https://pypi.org/project/graphviz/
https://pandas.pydata.org/about/team.html
https://pandas.pydata.org/about/team.html
https://doi.org/10.1016/j.patrec.2005.10.010

Bibliography

[27] Python Software Foundation. 7.4. difflib — Helpers for computing deltas. Preprint,
https://docs.python.org/2/library/difflib.html#module-difflib. Ac-
cessed: 14.08.2020.

[28] D. Oliveira G. Lemaitre, F. Nogueira and C. Aridas. User Guide, Imbalanced-
learn. https://imbalanced-learn.readthedocs.io/en/stable/user_guide.
html. Accessed: 17.08.2020.

[29] Sampath Kumar Gajawada. Chi-Square Test for Feature Selec-
tion in Machine Learning. https://towardsdatascience.com/
chi-square-test-for-feature-selection-in-machine-learning-206b1f0b8223.
Accessed: 13.04.2020.

[30] Jonathan Goldsmith. Wikipedia, (Python Library), Version 1.4.0. https://pypi.
org/project/wikipedia/. Accessed: 12.12.2019.

[31] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene
Selection for Cancer Classification Using Support Vector Machines. Machine
Learning, 46:389–422, 01 2002. DOI: 10.1023/A:1012487302797.

[32] P. Hart. The condensed nearest neighbor rule (corresp.). IEEE Transactions on
Information Theory, 14(3):515–516, 1968.

[33] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning, chapter 9.2 Tree Based Methods, pages 307–317. Springer, 2017. DOI:
10.1007/b94608.

[34] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning, chapter 15. Random Forests, pages 587–604. Springer, 2017.

[35] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning, chapter 15. Random Forests, pages 587–589. Springer, 2017.

[36] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning, chapter 10. Boosting and Additive Trees, pages 337–358. Springer, 2017.
DOI: 10.1007/b94608.

[37] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning, chapter 10. Boosting and Additive Trees, pages 338–340. Springer, 2017.
DOI: 10.1007/b94608.

[38] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning, chapter 10. Boosting and Additive Trees, pages 353–369. Springer, 2017.
DOI: 10.1007/b94608.

[39] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning, chapter 7.10 Cross-Validation, pages 241–249. Springer, 2017. DOI:
10.1007/b94608.

[40] Andreas Holzinger. Explainable ai (ex-ai). Informatik Spektrum, 41(2):138–143,
2018. DOI: 10.1007/s00287-018-1102-5.

85

https://docs.python.org/2/library/difflib.html#module-difflib
https://imbalanced-learn.readthedocs.io/en/stable/user_guide.html
https://imbalanced-learn.readthedocs.io/en/stable/user_guide.html
https://towardsdatascience.com/chi-square-test-for-feature-selection-in-machine-learning-206b1f0b8223
https://towardsdatascience.com/chi-square-test-for-feature-selection-in-machine-learning-206b1f0b8223
https://pypi.org/project/wikipedia/
https://pypi.org/project/wikipedia/

Bibliography

[41] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science &
Engineering, 9(3):90–95, 2007. DOI: 10.1109/MCSE.2007.55.

[42] Octopus Data Inc. Octoparse. https://www.octoparse.com/. Accessed:
12.12.2019.

[43] Wikimedia Foundation Inc. Wikidata. https://www.wikidata.org/wiki/
Wikidata:Main_Page. Accessed: 15.08.2020.

[44] Sebastian Kalinowski. pydot, (Python Library),Version 1.4.1. https://pypi.org/
project/pydot/. Accessed: 13.04.2020.

[45] Alexander Kowarik and Matthias Templ. Imputation with the R package VIM.
Journal of Statistical Software, 74(7):1–16, 2016. DOI: 10.18637/jss.v074.i07.

[46] Victor Lavrenko and Dr Nigel Goddard. Lecture Slides Introductory Applied
Machine Learning, chapter Thinking about Data, pages 1–12. School of In-
formatics, The University of Edinburgh, 2018. Youtube playlist of previous
lectures: https://www.youtube.com/c/VictorLavrenko/playlists?view=50&
sort=dd&shelf_id=10, Accessed: 11.05.2020.

[47] Victor Lavrenko and Dr Nigel Goddard. Lecture Slides Introductory Ap-
plied Machine Learning, chapter Decision Trees, pages 7–10. School of In-
formatics, The University of Edinburgh, 2018. Youtube playlist of previous
lectures: https://www.youtube.com/c/VictorLavrenko/playlists?view=50&
sort=dd&shelf_id=10, Accessed: 11.05.2020.

[48] Victor Lavrenko and Dr Nigel Goddard. Lecture Slides Introductory Ap-
plied Machine Learning, chapter Decision Trees, pages 1–20. School of In-
formatics, The University of Edinburgh, 2018. Youtube playlist of previous
lectures: https://www.youtube.com/c/VictorLavrenko/playlists?view=50&
sort=dd&shelf_id=10, Accessed: 11.05.2020.

[49] Guillaume Lemaître, Fernando Nogueira, and Christos K. Aridas. Imbalanced-learn:
A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning.
Journal of Machine Learning Research, 18(17):1–5, 2017.

[50] QS Quacquarelli Symonds Limited. QS World University Rankings by Subject:
Computer Science. https://www.topuniversities.com/subject-rankings/
2019. Accessed: 12.12.2019.

[51] Scott Lundberg. Interpretable Machine Learning
with XGBoost. https://towardsdatascience.com/
interpretable-machine-learning-with-xgboost-9ec80d148d27, 2018. Ac-
cessed: 04.05.2020.

[52] Scott M Lundberg and Su-In Lee. A Unified Approach to Interpreting Model
Predictions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems 30, pages 4765–4774. Curran Associates, Inc., 2017.

86

https://www.octoparse.com/
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://pypi.org/project/pydot/
https://pypi.org/project/pydot/
https://www.youtube.com/c/VictorLavrenko/playlists?view=50&sort=dd&shelf_id=10
https://www.youtube.com/c/VictorLavrenko/playlists?view=50&sort=dd&shelf_id=10
https://www.youtube.com/c/VictorLavrenko/playlists?view=50&sort=dd&shelf_id=10
https://www.youtube.com/c/VictorLavrenko/playlists?view=50&sort=dd&shelf_id=10
https://www.youtube.com/c/VictorLavrenko/playlists?view=50&sort=dd&shelf_id=10
https://www.youtube.com/c/VictorLavrenko/playlists?view=50&sort=dd&shelf_id=10
https://www.topuniversities.com/subject-rankings/2019
https://www.topuniversities.com/subject-rankings/2019
https://towardsdatascience.com/interpretable-machine-learning-with-xgboost-9ec80d148d27
https://towardsdatascience.com/interpretable-machine-learning-with-xgboost-9ec80d148d27

Bibliography

[53] Aditya Kumar Medium.com. Wilson Lower bound Score and Bayesian
Approximation for K star scale rating to Rate products. https://medium.com/tech-
that-works/wilson-lower-bound-score-and-bayesian-approximation-for-k-star-
scale-rating-to-rate-products-c67ec6e30060. Accessed: 14.07.2020.

[54] Microsoft. The Team Data Science Process lifecycle. https://docs.microsoft.
com/en-us/azure/machine-learning/team-data-science-process/
lifecycle. Accessed: 05.04.2020.

[55] Bartosz Mikulski. Wilson score in Python - example.
https://www.mikulskibartosz.name/wilson-score-in-python-example/. Accessed:
17.08.2020.

[56] Mircosoft. Maintenance Plans. https://docs.microsoft.com/de-de/sql/
relational-databases/maintenance-plans/maintenance-plans?view=
sql-server-ver15. Accessed: 13.04.2020.

[57] Christoph Molnar. Interpretable Machine Learning - A Guide for Making Black
Box Models Explainable, chapter 4.4 Decision Tree. https://christophm.github.
io/interpretable-ml-book/tree.html. Accessed: 11.05.2020.

[58] Christoph Molnar. Interpretable Machine Learning - A Guide for Making Black Box
Models Explainable, chapter 5.9 Shapley Values. https://christophm.github.
io/interpretable-ml-book/shapley.html. Accessed: 11.05.2020.

[59] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

[60] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.
https://scikit-learn.org/stable/.

[61] Andrey Petrov. urllib3 (Python Library), Version 1.25.7. https://pypi.org/
project/urllib3/. Accessed: 12.12.2019.

[62] Erhard Rahm and Hong Do. Data Cleaning: Problems and Current Approaches.
IEEE Data Eng. Bull., 23:3–13, 01 2000.

[63] Muhammad Summair Raza and Usman Qamar. Understanding and Using Rough
Set Based Feature Selection: Concepts, Techniques and Applications, chapter
Introduction to Feature Selection, pages 1–25. Springer, Singapore, 2019.

[64] Kenneth Reitz. Requests, (Python Library), Version 2.22.0. https://pypi.org/
project/requests/. Accessed: 12.12.2019.

[65] Jeffrey Dastin (Thomson Reuters). Amazon scraps secret AI re-
cruiting tool that showed bias against women. https://www.reuters.
com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G. Ac-
cessed: 25.04.2020.

87

https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/lifecycle
https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/lifecycle
https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/lifecycle
https://docs.microsoft.com/de-de/sql/relational-databases/maintenance-plans/maintenance-plans?view=sql-server-ver15
https://docs.microsoft.com/de-de/sql/relational-databases/maintenance-plans/maintenance-plans?view=sql-server-ver15
https://docs.microsoft.com/de-de/sql/relational-databases/maintenance-plans/maintenance-plans?view=sql-server-ver15
https://christophm.github.io/interpretable-ml-book/tree.html
https://christophm.github.io/interpretable-ml-book/tree.html
https://christophm.github.io/interpretable-ml-book/shapley.html
https://christophm.github.io/interpretable-ml-book/shapley.html
https://scikit-learn.org/stable/
https://pypi.org/project/urllib3/
https://pypi.org/project/urllib3/
https://pypi.org/project/requests/
https://pypi.org/project/requests/
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G

Bibliography

[66] Scikit-learn. 1.10. Decision Trees. https://scikit-learn.org/stable/modules/
tree.html#tree. Accessed: 10.04.2020.

[67] Scikit-learn. 3.1. Cross-validation: evaluating estimator performance.
https://scikit-learn.org/stable/modules/cross_validation.html. Ac-
cessed: 12.04.2020.

[68] Scikit-learn. Feature importance evaluation, chapter 1.11. Ensemble
methods. https://scikit-learn.org/stable/modules/ensemble.html#
random-forest-feature-importance. Accessed: 25.08.2020.

[69] Scikit-learn. Post pruning decision trees with cost com-
plexity pruning. https://scikit-learn.org/stable/
auto_examples/tree/plot_cost_complexity_pruning.html#
sphx-glr-auto-examples-tree-plot-cost-complexity-pruning-py. Ac-
cessed: 13.04.2020.

[70] Scikit-learn. Precision-Recall. https://scikit-learn.org/stable/auto_
examples/model_selection/plot_precision_recall.html. Accessed:
13.04.2020.

[71] Scikit-learn. sklearn.tree.decisiontreeclassifier. https://scikit-learn.org/
stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#
sklearn.tree.DecisionTreeClassifier.feature_importances_. Accessed:
10.05.2020.

[72] Scikit-learn. sklearn.tree.DecisionTreeClassifier. https://scikit-learn.org/
stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#
sklearn.tree.DecisionTreeClassifier.get_depth. Accessed: 20.04.2020.

[73] Raymond Sheh and Isaac Monteath. Defining Explainable AI for Requirements
Analysis. KI - Künstliche Intelligenz, 32, 10 2018. DOI: 10.1007/s13218-018-0559-3.

[74] Eyal Shulman and Lior Wolf. Meta Decision Trees for Explainable Recommendation
Systems. pages 365–371, 02 2020. DOI: 10.1145/3375627.3375876.

[75] Koo Ping Shung. Accuracy, Precision, Recall or F1. https://towardsdatascience.
com/accuracy-precision-recall-or-f1-331fb37c5cb9. Accessed: 13.04.2020.

[76] V. S. Spelmen and R. Porkodi. A review on handling imbalanced data. In 2018
International Conference on Current Trends towards Converging Technologies
(ICCTCT), pages 1–11, 2018.

[77] Rajebhosale Supriya and Prof. Shilpa Gite. A Survey on Data Mining Based POI
Recommendation System Using Geo Tagged Images. International Journal of
Innovative Research in Computer and Communication Engineering, 3:12271–12275,
12 2015. DOI: 10.15680/IJIRCCE.2015. 0312037.

[78] Manohar Swamynathan. Mastering Machine Learning with Python in Six Steps,
chapter Step 2: Introduction to Machine Learning, pages 82–84. Apress, Berkeley,
CA, 2019. DOI: https://doi.org/10.1007/978-1-4842-4947-5.

88

https://scikit-learn.org/stable/modules/tree.html#tree
https://scikit-learn.org/stable/modules/tree.html#tree
https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/ensemble.html#random-forest-feature-importance
https://scikit-learn.org/stable/modules/ensemble.html#random-forest-feature-importance
https://scikit-learn.org/stable/auto_examples/tree/plot_cost_complexity_pruning.html#sphx-glr-auto-examples-tree-plot-cost-complexity-pruning-py
https://scikit-learn.org/stable/auto_examples/tree/plot_cost_complexity_pruning.html#sphx-glr-auto-examples-tree-plot-cost-complexity-pruning-py
https://scikit-learn.org/stable/auto_examples/tree/plot_cost_complexity_pruning.html#sphx-glr-auto-examples-tree-plot-cost-complexity-pruning-py
https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier.feature_importances_
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier.feature_importances_
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier.feature_importances_
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier.get_depth
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier.get_depth
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier.get_depth
https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9
https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9
https://doi.org/10.1007/978-1-4842-4947-5

Bibliography

[79] Manohar Swamynathan. Mastering Machine Learning with Python in Six Steps,
chapter Step 4: Model Diagnosis and Tuning, pages 279–307. Apress, Berkeley,
CA, 2019. DOI: https://doi.org/10.1007/978-1-4842-4947-5.

[80] Manohar Swamynathan. Mastering Machine Learning with Python in Six Steps,
chapter Step 2: Introduction to Machine Learning, page 90. Apress, Berkeley, CA,
2019. DOI: https://doi.org/10.1007/978-1-4842-4947-5.

[81] Manohar Swamynathan. Mastering Machine Learning with Python in Six Steps,
chapter Step 3: Fundamentals of Machine Learning, page 150. Apress, Berkeley,
CA, 2019. DOI: https://doi.org/10.1007/978-1-4842-4947-5.

[82] Saarland University. Online Application for Ph.D./M.Sc. Programs. https:
//oas.cs.uni-saarland.de/index.php?authorsInstructions=1. Accessed:
28.04.2020.

[83] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a
structure for efficient numerical computation. Computing in Science & Engineering,
13(2):22, 2011.

[84] Sean Wallis. Binomial Confidence Intervals and Contingency Tests: Mathematical
Fundamentals and the Evaluation of Alternative Methods. Journal of Quantitative
Linguistics, 20:178–208, 07 2013.

[85] Wes McKinney. Data Structures for Statistical Computing in Python. In Stéfan
van der Walt and Jarrod Millman, editors, Proceedings of the 9th Python in Science
Conference, pages 56 – 61, 2010. DOI: 10.25080/Majora-92bf1922-00a.

89

https://doi.org/10.1007/978-1-4842-4947-5
https://doi.org/10.1007/978-1-4842-4947-5
https://doi.org/10.1007/978-1-4842-4947-5
https://oas.cs.uni-saarland.de/index.php?authorsInstructions=1
https://oas.cs.uni-saarland.de/index.php?authorsInstructions=1

Appendices

91

A. Appendix Stuff

Package Version
NumPy [59, 83] 1.18.3
Matplotlib [41] 2.2.3
missingno [7] 0.4.2
pandas [25, 85] 1.0.3
Requests [64] 2.22.0
seaborn [21] 0.9.0
urllib3 [61] 1.25.7
wikipedia [30] 1.4.0

Table A.1.: Packages used in chapter 3

Package Version
NumPy [59, 83] 1.18.3
Matplotlib [41] 2.2.3
pandas [25, 85] 1.0.3
Requests [64] 2.22.0
seaborn [21] 0.9.0
urllib3 [61] 1.25.7
wikipedia [30] 1.4.0

Table A.2.: Packages used in chapter 4

93

APPENDIX A. APPENDIX STUFF

Package Version
imbalanced-learn [49] 0.6.2
NumPy [59, 83] 1.18.3
Matplotlib [41] 2.2.3
pandas [25, 85] 1.0.3
seaborn [21] 0.9.0
scikit-learn [60] 0.22.1
scipy [22] 1.4.1
xgboost [11] 1.0.2

Table A.3.: Packages used in chapter 5

Package Version
Graphviz [24] 0.13.2
imbalanced-learn [49] 0.6.2
NumPy [59, 83] 1.18.3
Matplotlib [41] 2.2.3
pandas [25, 85] 1.0.3
pydot [44] 1.4.1
seaborn [21] 0.9.0
shap [52] 0.35.0
scikit-learn [60] 0.22.1
scipy [22] 1.4.1
xgboost [11] 1.0.2

Table A.4.: Packages used in chapter 6

94

	Introduction
	Focus of this Work
	Process Model
	Organisation of the Thesis

	Preliminaries
	Artificial Intelligence and Machine Learning
	Explainable AI
	Classification
	Decision Trees
	Ensemble Methods
	Bagging
	Boosting

	Feature Selection
	Recursive Feature Elimination
	Feature Selection with Chi-Square Tests

	Data Sampling Methods
	Undersampling
	Oversampling

	Evaluation
	Cross-Validation
	Confusion Matrix
	Accuracy, Precision, Recall and F1 Score
	Wilson Score

	Explainability Methods
	Shapley Values

	Data Acquisition and Understanding
	Data Acquisition and Data Set
	Data Cleaning
	Universities
	Study Programmes
	Language Test
	Replacement of NA Equivalents
	Outliers
	Missing Values
	Results

	Data Exploration

	Modelling
	Feature Engineering
	University Rankings
	IT- and STEM-related Study Programmes
	Spelling of the Study Programme in the Application Form
	Summary

	Data Labelling
	Data Labelling based on Performance at Saarland University
	Data Labelling for Applicants with unknown Performance

	Model Training and Evaluation
	Training with Applicants with known Performance
	Adding negatively labelled Applicants with unknown Performance
	Adding positively labelled Applicants with unknown Performance
	Model Tuning
	Comparison with Boosting Methods
	Wilson Lower Bound Score

	Approaches for Explainability
	Decision Trees
	Random Forests
	Gradient Boosting

	Conclusion and Future Work
	Quality of the Model
	Modelling
	Explainability
	Other

	Deployment Recommendation
	Adaptation of the Application Form
	Maintenance of the Database

	Future Work

	Appendices
	Appendix Stuff

