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Abstract

The current success of deep reinforcement learning has brought forth the desire for appli-
cations in the real world. To gain more insight into the properties of an agent’s behavior,
the recent work of Deep Statistical Model Checking (DSMC) is concerned with applying
statistical model checking techniques to the deep neural networks resulting from deep
learning.

DSMC allows a learning architect to spot areas in the state-space where the agent’s be-
havior shows deficiencies that do not show up in the average return. This work introduces
Deep Statistical Model Refinement (DSMR). DSMR uses the gained information to im-
prove an agent’s policy by running a feedback loop of analyzing the agent via DSMC
and proceeding with the training process thereafter. The approaches of incorporating the
DSMC results into the subsequent training include amplified starts from the weak-spots
and a novel way of computing the priorities in a prioritized replay buffer.

Our results show that these approaches improve an agent’s policy in tasks with a hetero-
geneous state-space and make it more stable in all considered tasks.
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Chapter 1

Introduction

In recent years the interest and research efforts in deep reinforcement learning [32] have
risen significantly. Deep reinforcement learning algorithms such as DQN [24], A3C [23] or
AlphaGo [31] have shown extraordinary results and vastly exceeded human capabilities.
However, all these algorithms share the common issue that, usually, the only available
performance metric is the average reward the trained agent collects. In most tasks, this
average reward will eventually reach a constant level where it does not really change
any more. Consequently, it is hard to find termination conditions, and behavior analysis
becomes complicated.

Usually, model checking techniques would be beneficial in this case, as they are capable
of analyzing and verifying behavioral properties. However, applying model checking to a
deep reinforcement learning agent is challenging due to its complex nature. With Deep
Statistical Model Checking (DSMC) Gros et al. [16] developed a method to solve this
issue. DSMC is a technique that applies statistical model checking [35, 20] to verify
the properties of a trained agent statistically. These properties can be visualized with
heatmaps, which indicate the areas of the state space where the agent’s behavior leaves a
lot to be desired, but also areas in which the agent performs properly. These results can
be used by a learning engineer to improve the learning process manually.

In this work, we will introduce Deep Statistical Model Refinement. DSMR automates
the process of training, analyzing the resulting agent with DSMC, and then using its
results to proceed with the training in a more sophisticated manner. We will explore
several options of incorporating the DSMC results to overcome the issues associated with
the flattening learning curve. The ultimate goal is to increase the probability of reach-
ing the goal by improving the agent’s performance in the poor areas while keeping the
performance in the good ones intact.
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Chapter 2

Background

2.1 Reinforcement Learning

In reinforcement learning, one always tries to train a certain agent to perform some kind of
task. A basic model of the training process can be observed in Figure 2.1. The agent will
choose an action he thinks is suitable, given his current situation. This action will then
influence the environment and thus change its state. To close the loop, the environment
will send its new state and some form of reward back to the agent. By constantly repeating
this loop, the agent will eventually learn which actions lead to a high reward in the current
state.

Agent Environment

action

state & reward

Figure 2.1: Reinforcement loop [32]

2.1.1 The Racetrack Domain

In this work, we will consider the racetrack domain, which is originally a pen and paper
game [10] but has recently been used in reinforcement learning tasks [17, 32]. The states
of a map are defined by their position p = (x, y) and the agents velocity v = (vx, vy). A
state can either be empty, a starting state, a goal state, or a wall. The general objective
is to traverse a map starting from one of the starting states until a goal state is reached,
which is considered a success. An agent can crash by either hitting a wall state or reaching
a position outside of the map, which is considered a loss.

In each state, except for the terminal wall and goal states, the agent chooses an
acceleration (ax, ay) ∈ {−1, 0, 1}2 which is used to compute the new velocity (v′x, v

′
y) as

follows: v′x = vx+ax and v′y = vy+ay. Then the new position (x′, y′) is given by x′ = x+v′x
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and y′ = y + v′y. So, the agent can accelerate into one of nine directions by a single unit,
and the position will be updated according to the resulting velocity. This implies that once
the agent goes in a certain direction with a high velocity, it might be unable to “break”
fast enough to avoid a crash. Therefore, racetrack requires foresighted planning. We will
consider the noisy version of racetrack where each time the agent chooses an action, it can
fail with probability p, where “fail” is defined as (ax, ay) = (0, 0). Intuitively, the noise
can be seen as a wet road where the agent can lose control over its actions. Figure 2.2
illustrates a number of example tracks for the benchmark domain introduced by Barto et
al. [3]. The starting states are marked green, the goal states red, and the wall states are
indicated via the x symbol.

Due to the notion of velocity, it is important to define how an agent travels from one
state to another, as it is possible to go through a wall if it is located between (x, y) and
(x′, y′). Gros et al. [17] thus use a discretization similar to the one of Bonet & Geffner [5].
Driving from (x, y) to (x′, y′) results in the following sequence of visited positions

T = 〈(x, y), (x1, y2), . . . , (xn−1, yn−1), (x
′, y′)〉,

such that

T =



〈(x, y)〉 if v′x = 0 ∧ v′y = 0

〈(x, y), (x+ σx, y), (x+ 2 · σx, y), . . . , (x′, y′)〉 if v′x 6= 0 ∧ v′y = 0

〈(x, y), (x, y + σy), (x, y + 2 · σy), . . . , (x′, y′)〉 if v′x = 0 ∧ v′y 6= 0

〈(x, y), (x+ σx, by +mye), (x+ 2 · σx, by + 2 ·mye), . . . , (x′, y′)〉 if v′x 6= 0 ∧ v′y 6= 0
∧|v′x| ≥ |v′y|

〈(x, y), (bx+mxe, y + σy), (bx+ 2 ·mxe, y + 2 · σy), . . . , (x′, y′)〉 if v′x 6= 0 ∧ v′y 6= 0
∧|v′x| < |v′y|

where σx = sgn(v′x), σy = sgn(v′y) and mx = v′x
|v′y |
,my =

v′y
|v′x|

. This states that if

the agent moves either only horizontally or only vertically, every point between (x, y)
and (x′, y′) is visited. If the agent moves diagonally, T consists of n points on the linear
interpolation between (x, y) and (x′, y′) where each point is rounded to the closest position
on the map. Here, n is given by max(|v′x|, |v′y|). Bonet & Geffner used n = |v′x| which
will produce counterintuitive results if |v′x| < |v′y|. Using T , it is now possible to define a
crash and a success. If any position p ∈ T is a wall state or outside of the map, the crash
condition is fulfilled, and if any position p ∈ T is a goal state, the success condition is
fulfilled. Should T fulfill both conditions, only the one to be fulfilled first holds, i.e., if an
agent drives through a wall before reaching a goal state, it will be considered a loss and
vice versa.

The Simple Racetrack Domain

For the sake of introducing reinforcement learning, we will consider a simplified version
of the racetrack domain. Namely, we make the following adjustments:

(i) The velocity is reset to (0, 0) after a position change.
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Fig. 1. The maps of our Racetrack benchmarks: Barto-small (left top), Barto-big (left
bottom), Ring (right).

3 Neural Networks as MDP Action Policies

Connecting MDP and Action Oracle. Racetrack is a simple instance of many further
examples representing real-world phenomena that involve randomness and decision
making. This is the natural scenario where NNs are taking over ever more duties. In
essence, their role is very close to that of an action policy: Decide in each situation
what options to pick next. If we consider the “situations” (the inputs I) as the
states S of a given MDP, and the “options” (outputs O) as actions A, then the NN
is a function π : S → A. We call such a function an action oracle. Indeed this is
what the reinforcement learning process in Q-learning and other approaches delivers
naturally.

Observe that an action oracle can be cast into an action policy except for a
subtle problem. Action policies only pick actions (from A(s), thus) applicable at
the current state s, while action oracles may not. A better fitting definition would
constrain oracles to always return an applicable action. Yet it is not clear how to
guarantee this for NNs – it is easy to see that, even for linear multi-classification,
the hard constraints required to guarantee action applicability lead to non-convex
optimization problems. An easy fix would use the highest-ranked applicable action
instead of the NN classifier output itself. For our purposes however, where we want
to analyze the quality of the NN oracle, it makes sense to explicitly distinguish
inapplicable actions as a form of low quality.

If an oracle returns an inapplicable action, then no valid behavior is prescribed
and in that sense the system can be considered stalled.

Definition 4 (Action Oracle Stalling). Let M = 〈S,A, T , s0〉 be an MDP, and
π : S 7→ A be an action oracle. We say that s ∈ S is stalled under π if π(s) /∈ A(s).

To accommodate for stalling, we augment the MDP upfront with a fresh action
† available at every state, this action is chosen upon stalling, leading to a fresh
state ‡ with only that action to continue. So M = 〈S,A, T , s0〉 is transformed into
M‡ = 〈S ∪ {†},A∪{‡}, T ′, s0〉 where for each state s, T ′(s, †) = δ(‡) and otherwise
T ′(s, a) = T (s, a) wherever the latter is defined.

Figure 2.2: Example racetrack maps [16]

X X X X X XX

X

X

X

X

X

X

G

S

Figure 2.3: 6× 6 racetrack map

(ii) The actionset is reduced to {(1, 0), (0, 1), (−1, 0), (0,−1)}. We will use the notation
{→, ↑,←, ↓} to represent this set in the following sections.

(iii) The noise is redefined such that with probability p instead of executing the chosen
action, another random one is executed. We will use the map illustrated in Figure 2.3
in the following sections.

2.1.2 Markov Decision Processes

The underlying model of the environment shown in Figure 2.1 are Markov Decision Pro-
cesses (MDPs) [27]. For any nonempty set S we let D(S) denote the set of probability
distributions over S.

Definition 1 (Markov Decision Process [16]). A Markov Decision Process (MDP) is a
tuple M = 〈S,A, T , s0,R〉 consisting of a finite set of states S, a finite set of actions A,
a partial transition probability function T : S × A → D(S), an initial state s0 ∈ S and
a reward function R : S ×A× S → R. We say that action a ∈ A is applicable in state
s ∈ S if T (s, a) is defined. We denote by A(s) ⊆ A the set of actions applicable in s. We
assume that A(s) is nonempty for each s (which is no restriction).
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←
. . .
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Figure 2.4: Excerpt from Markov Decision Process

Note that the transition probability function T depends on the current state only. Past
states do not influence the current situation. This is called the Markov property [27]. As
stated before, changing a state, i.e., performing a transition in an MDP, is associated with
some kind of reward in reinforcement learning. For this, we use the reward function R
which assigns a numerical reward to a tuple of a state s, an action a and a successor state
s′. Like Gros et al. [17] we use a reward function that yields a reward of 100 whenever s′

is a goal state, −50 whenever s′ is a wall, and 0 otherwise. Figure 2.4 illustrates a small
excerpt from the MDP of the example described in Section 2.1.1. The agent’s position
is represented by the large A. Starting from the state on the right, there is a probability
distribution over potential successor states for every possible action as the ↓ action shows
by way of example. This example also shows the rewards associated with reaching the
different states, i.e., successfully performing the ↓ action yields a reward of 100 because
we reach a goal state. In contrast, the wall cases yield a reward of −50, and the remaining
case yields a reward of 0.

2.1.3 Policies and Value Functions

The process of “playing the game of racetrack” results in a sequence of rewards R0, R1, . . . .
For the sequence of rewards received after time step t the return is defined as

Gt = Rt+1 +Rt+2 + . . .+RT (2.1)

where T is the final time step. This definition makes sense in episodic tasks with a clear
final time step, like racetrack. However, many tasks require the introduction of a so-called
discount factor resulting in the discounted return

Gt = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞∑
k=0

γkrt+k+1. (2.2)

For γ = 1, the discounted return equals the standard return, and for γ < 1, the rewards
that are received in the future are worth less than the ones received immediately. This
discount is mandatory in continuous tasks without a final time step. However, it is also

10



often useful in episodic tasks like racetrack because it motivates the agent to reach the
goal faster. Obviously, the sequence of rewards depends on the actions taken. Therefore,
we define a function that maps states to actions, a so-called policy. A policy may further
depend on a history of states, and it may be probabilistic. Nevertheless, we will only
consider history independent, deterministic policies.

Definition 2 (Action Policy). A (deterministic, history independent) action policy is a
function π : S → A such that ∀s ∈ S : π(s) ∈ A(s).

The main goal of reinforcement learning is to find the policy that maximizes the
expected return Eπ[Gt]. That is, for every state, the agent tries to find an action such
that the expected sum of all future rewards is maximized. We call this the optimal policy
π∗.

The so-called value-based approaches aim to find π∗ by computing certain value func-
tions. Those functions assign a numeric value to a state, or a state-action pair, which
tells us the reward we can expect to receive from the time step of the given state (or the
given state-action pair). First, we take a look at a function that evaluates states.

Definition 3 (State Value Function). A state value function is a function vπ : S → R
such that vπ(s) = Eπ[Gt|St = s], for all s ∈ S.

So vπ(s), given a policy π, maps a state s to the expected return when starting from
s and then following π. Intuitively, vπ(s) = x tells us that if we start a game from s and
follow the policy π we will receive an average return of x. As mentioned before, we can
define functions that evaluate state-action pairs in a similar way.

Definition 4 (Action Value Function). An action value function is a function qπ : S ×
A → R such that qπ(s, a) = Eπ[Gt|St = s, At = a], for all s ∈ S.

We also call the resulting values Q-values. In addition to the state, the Q-values also
fix the first action that is chosen before π is followed. Thus, qπ(s, a) = x intuitively means
that if we are in state s then perform action a and subsequently follow π, the expected
sum of future rewards is x. Both v and q fulfill the Bellman equations [4], which are
recursive definitions as follows

vπ(s) =
∑
s′∈S

P (s, π(s), s′) · (r(s, π(s), s′) + vπ(s′)) (2.3)

qπ(s, a) =
∑
s′∈S

P (s, a, s′) · (r(s, a, s′) + vπ(s′)) (2.4)

(2.5)

Of course, it would be interesting to know the optimal values of both of those functions.
Following the optimal policy π∗ we obtain those resulting in the notion of v∗

v∗(s) = max
π

vπ(s), (2.6)

for all s ∈ S and q∗

q∗(s, a) = max
π

qπ(s, a), (2.7)
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Figure 2.5: Example episode of simple racetrack

for all s ∈ S and a ∈ A respectively. We call v∗ the optimal state value function and q∗
the optimal action value function. These fulfill the Bellman optimality equations [4]:

v∗(s) = max
a

∑
s′∈S

P (s, a, s′) · (r(s, a, s′) + v∗(s
′)) (2.8)

q∗(s, a) =
∑
s′∈S

P (s, a, s′) · (r(s, a, s′) + max
a′

q∗(s
′, a′)) (2.9)

2.1.4 Q-learning

Q-learning [32] is a value-based reinforcement learning algorithm that aims to find π∗.
The idea is that if we can estimate the optimal Q-values deriving the optimal policy is
trivial by always choosing the action with the highest Q-value. Q-learning is a dynamic
programming algorithm that stores the learned Q-values in a so-called Q-table. The table
has an entry for every possible state-action pair. So, in our example case, it has a size of
23 (nonterminal states) ×4 (available actions) = 92 entries. Each entry is initialized with
0. There are several approaches to filling the table; however, we focus on the Monte Carlo
approach. More precisely, we generate a so-called episode by playing the game once, i.e.,
we start at our starting point S and follow our policy π until we reach a terminal state.
When the episode is finished, we have a number of state-action pairs that occurred during
our playthrough. For each of these, we apply the Q-learning update rule

q̂(s, a) = q̂(s, a) + α(G− q̂(s, a)) (2.10)

Where q̂(s, a) is our current entry for (s, a) in the Q-table, G is the return, with γ = 1, of
the episode (100 if we reached a goal state, −50 otherwise) and α is the so-called learning
rate. We need α to be a positive value close to 0 because otherwise, a single update would
have too much of an impact, especially considering the randomness of a single episode.

To give an example, we assume an initial Q-table, a learning rate of 0.001, and the
episode illustrated in Figure 2.5. There are a couple of interesting observations to be made
here. First, π chose the ↓ and ← actions. This is because, as stated before, π depends
on the Q-table. It simply chooses the action with the highest value, and as all values are
equal at the start, it does not matter which action is chosen, so we assume a random one
is taken. Second, although we chose to go left in the second step, we actually went down.
This is because of the simple racetrack domain’s random noise, which activated in our
sample episode. Now that we computed the episode, we have to apply the update rule to
all appearing state action pairs

q̂(s, a) = q̂(s, a) + α(G− q̂(s, a))

= 0 + 0.001 · (100− 0) = 0.1

The resulting Q-table is displayed in Table 2.1.
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Table 2.1: Q-table after first update
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Figure 2.6: Potential policy learned via Q-learning

We can now either continue to generate episodes and update the Q-values until we
reach a fixpoint or until we performed a certain amount of iterations. So far, though,
we always exploited our current knowledge, i.e., π strictly followed the Q-table. This is
problematic because it implies that once we found a good option in a certain state, we
will never try to find a better one. In the beginning, especially, the result and generation
of the episodes have a large random factor, and it is very likely that the first successful
action is not optimal. To solve this, we need to not only exploit our current knowledge
but also explore the state-action space. In other words, we need to evaluate our different
options before we can repeatedly do what worked. The tradeoff between exploitation
and exploration is common in reinforcement learning tasks [32]. In order to explore, we
introduce an ε-greedy policy, which, for a given ε ≤ 1, chooses the action with the highest
Q-value with probability (1− ε) and a completely random action otherwise. Note that it
can still choose the action with the highest Q-value in the random case. Often ε is fixed
throughout the whole process; however, it is also possible to let it decay over time. If
ε should decay, we start the learning process with ε close to one, as we want to explore
almost exclusively since there is no knowledge to exploit yet. Over time ε can decay to
allow for heavier exploitation of the gained knowledge. Figure 2.6 shows a potential policy
learned via Q-learning, and Table 2.2 illustrates an excerpt of the corresponding Q-table.

2.1.5 Deep Q-learning

The major problem with Q-tables is their size, as the size of the state-action space explodes
when using larger racetrack maps. It is often completely unfeasible to store the whole table
in memory, and as a result, Q-learning fails. Historically, researchers have used function
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← → ↑ ↓

X

X

X

G

X

A

-40.32 71.43 65.76 77.49

X

X

X

G

XA -39.51 -41.63 75.38 81.37

Table 2.2: Excerpt from the Q-tables of the policies shown in Figure 2.6

approximators, such as linear functions, to replace the Q-table. These approximated
functions map a state to the corresponding Q-values. In deep reinforcement learning
(deep), neural networks are used for this purpose [32]. We will not cover the details
of neural networks here as it is sufficient to imagine them as a function approximator.
Neural networks use the weight vector θ to estimate the Q-value function Q(s, a; θ) as a
deep Q-network (DQN) [24]. Without a full Q-table, it is impossible to use the standard
Q-learning update rule from Section 2.1.4. Instead, the Q-value estimates are used to
compute the target

y(s, a; θ) = E[Rt+1 + γ ·max
a′

Q(St+1, a
′, θ)|St = s, At = a] (2.11)

which is then used to optimize the loss function in iteration i

L(θi) = E[(y(St, At; θ
−)−Q(St, At; θi))

2] (2.12)

by approximating ∇L(θi) and then using stochastic gradient descent [25]. The idea of
using deep neural networks is not new; however, using them has long been highly unsta-
ble, preventing strong results. Mnih et al. [25] solved this with the introduction of mainly
two optimizations to the algorithm. First, they used a fixed target y(St, At; θ

−) in their
loss function where θ− are the weights from some previous iteration. Thus, the target
does not depend on weights from the current iteration. After a fixed amount of steps
θ− gets updated to the current weights θ− = θi. Second, they used a so-called experi-
ence replay buffer [25]. Stochastic gradient descent requires independent and identically
distributed samples, which is not the case when learning from episodes as we did so far.
To solve this, the experiences gained during an episode are stored in a buffer as tuples
et = (st, at, rt+1, st+1). When computing the target y(St, At; θ

−), random experiences are
drawn from the replay buffer to estimate the expectation.

2.2 Deep statistical model checking

Deep statistical model checking (DSMC) [16] is a method which applies model checking
techniques to a learned reinforcement agent. Usually, the performance evaluation of such
an agent heavily relies on its average return. The graph on the right of Figure 2.7 shows
a so-called learning curve of a deep reinforcement learning agent. The curve shows the
progress of the average return during the learning process. These racetrack settings were
p = 0.2, i.e., 20% noise, and a reward structure of +100 if the agent reached the goal
and −50 if it crashed. The discount factor was γ = 0.99. The basic appearance of
most learning curves is similar to the one in the given graph in a way that it starts
slow, then explodes for a short period of time, and then calms down again to reach the
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Fig. 3. Goal probability of NN oracle on the Barto-big benchmark trained and executed
with 20% noise vs. stress-test executed with 50% noise using the same NN (middle) vs.
optimal policies obtained by probabilistic model checking with 50% noise (right).

how the analysis results can be visualized for the human analysts. Similar color
schemes will be used in all plots below.

From the displayed DSMC results, quality assurance analysts can directly con-
clude that the NN oracles are fairly safe in Barto-small (left top), with crash proba-
bilities mostly below 0.1; but not on Barto-large (left bottom) and Ring (right) where
crash probabilities are above 0.5 on significant parts of the map. Generally, crash
probability increases with distance to the goal line. Some interesting subtleties are
also visible, for example that crash probabilities are relatively high in the left-turn
before the goal in Barto-small.

Our next results, in Figure 3, illustrate the quality-assurance versatility afforded
by DSMC, through an analysis quite different from the previous one. The human
analysts here decide to evaluate goal probability (a quality stronger than not crashing
because the latter may be achieved by idling). Apart from the original setting, they
consider a stress-test scenario where the road is significantly more slippery than
during NN training, namely 50% instead of 20%. They finally decide to compare with
optimal goal probabilities, computable via the probabilistic model checker mcsta,
so that they can see whether any deficiencies are due to the NN, or are unavoidable
given the high amount of noise.

The figure shows the outcome for Barto-large. One of the deficiencies is imme-
diately apparent, the NN policy does not pass the stress test. Its goal probability
matches the optimal values only near the goal line, and exhibits significant deficien-
cies elsewhere. Based on these insights, the quality analysts can now decide whether
to relax the stress-test (after all, even optimal behavior here does not reach the goal
with certainty), or whether to reject these NN polices and request re-training.

5.2 Learning Pipeline Analysis and Revision

More generally, DSMC can yield important insights not only for quality assurance,
but also for the engineers designing the NN learning pipeline in the first place. There
are two distinct scenarios:

(i) The engineers run the same success tests as in quality assurance, and re-train
if a test is not passed.

(ii) The engineers assess different properties of interest to the learning process
itself (e.g. expected length of policy runs), or assess the impact of different
hyperparameter settings.
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Fig. 4. Goal probabilities on the Barto-big benchmark (color coding as in Fig. 3), for NN
oracles learnt over n = 70000 (left) and n = 90000 (middle) training episodes, together
with Q-learning curve (right).

In both scenarios, the DSMC analysis results point to specific state-space regions
that require improvement. This can be directly operationalized to revise the learning
pipeline, by starting more training runs from states in the critical regions.

Figures 2 and 3 above have already demonstrated (i). Next we demonstrate (ii)
through two case studies analyzing different hyperparameter settings.

Our first case study, in Figure 4, analyzes the number n of training episodes, as
a central hyperparameter of the learning pipeline. The only information available
in deep Q-learning for the choice of this hyperparameter is the learning curve, i.e.,
the expected reward as a function of n, depicted on the right. Yet, as our DSMC
analysis here shows, this information is insufficient to obtain reliable policies. In
Barto-big, the highest reward is obtained after n = 90000 episodes. From n = 70000
to n = 90000, the reward slightly increases. Yet we see in Figure 4 that the additional
20000 training episodes, while increasing overall goal probability, lead to highly
deficient behavior in an area near the start of the map, where goal probability drops
below 0.25. If provided with that information, the engineers can focus additional
training on that area, for instance.

In our next case study, we assume that the NN engineers decide to analyze
the impact of starting training runs on (a) the starting line vs. (b) random points
anywhere on the map. Figure 5 shows the results for the Ring map, where they are
most striking. In variant (a), the top part of the race track was completely ignored by
the learning process. Looking into this issue, one finds that, during training, the first
solution happens to be found via the bottom route. From there on, the reinforcement
learning process has a strong bias to that route, preventing any further exploration
of other routes.

Phenomena like this are highly detrimental if the learnt policy needs to be broadly
robust, across most of the environment. The deficiency is obvious given the DSMC
analysis results, and these results make it obvious how the problem can be fixed.
But neither can be seen in the learning curves.

5.3 Computational Effort for the Analysis

As discussed, it can be highly demanding or infeasible to verify the input/output
behavior of even a single NN decision episode, and that complexity is potentially

Figure 2.7: DSMC racetrack heatmaps (left) and an agents learning curve (right) [16]

aforementioned constant level. In these cases, training beyond the explosion is slow, and
it is often unclear how and if at all, the agent is still improving. Due to the lack of further
evaluation methods, it is frequently unclear when to stop training and, if further training
is necessary, how to proceed exactly.

DSMC allows us to analyze the performance in a more sophisticated way as it checks
certain properties of the agent’s behavior, which can indicate its deficiencies. More pre-
cisely, the probability of fulfilling the CTL formulas ♦crashed (“eventually crashed”) and
¬crashed U goal (“not crashed until goal”) is estimated for each position on the map.
This is done by simulating a number of racetrack runs starting from this position with
velocity 0. Gros et al. [16] achieve an error bound of P (error > ε) < κ, where ε = 0.01
and κ = 0.05, i.e., a confidence of 95 % that the estimation error is smaller than 0.01.

Figure 2.7 shows the visualization of these properties in the form of heatmaps. A
yellow region denotes a > 75% probability to reach the goal before a crash occurs if the
agent starts from this point with velocity 0. The legend on the left characterizes the
different colors. The two heatmaps correspond to the points in time during the learning
process indicated by the two blue dotted lines in the learning curve graph, i.e., the left
heatmap was computed after 70.000 episodes, and the right heatmap was computed after
90.000 episodes. As we can see, the average return was about equal at both points in
time. However, the heatmaps display highly deficient behavior in certain areas after
90.000 episodes. This knowledge can be used to improve further training, e.g., by starting
a few training runs from the black area.

2.3 Safe Reinforcement Learning

While it is sufficient to optimize the long term expected return in many instances, some
use cases require the additional notion of risk. For example, in autonomous driving, it is
crucial to avoid catastrophic events at almost all costs, even if it comes at the expense of
optimality. Safe Reinforcement Learning algorithms try to incorporate some form of risk
in order in order to prevent damage to the agent or its surroundings. Garcia et al. [9]
categorize two SafeRL approaches: Changing the optimization criterion and manipulating
the exploration process.

The optimization criterion can be subcategorized into four groups:

(i) The worst-case criterion, which tries to find the policy with the best worst-case. In
racetrack, this policy would be standing still, as the worst-case would be a return
of 0.
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(ii) The risk-sensitive criterion, which tries to balance the maximization of the expected
return and the minimization of risk. How exactly risk is defined depends on the
approach and requires a risk metric. A common metric is the variance of the return
[6, 11, 19]. Geibel et al. [13] define the risk as the probability of reaching an error
state, and in a recent approach, Wen et al. [34] learn a risk function during their
training.

(iii) The constrained criterion, which limits the set of possible policies. These approaches
search for the policy that offers the maximum expected return while complying with
certain constraints.

(iv) Other optimization criteria. These approaches use criteria from the area of financial
engineering, such as r-squared, value-at-risk [21] or the density of the return [26].

Modifying the exploration process can be divided into two groups:

(i) Incorporating external knowledge. The ways of integrating this knowledge range
from providing initial knowledge, eliminating the need of random exploration at the
beginning, over deriving a policy from a finite set of demonstrations to providing
teaching advice. The teacher can be an algorithm or even a human. The approaches
differ in the way the help is initiated. While the agent may ask for advice when it
feels insecure [7, 8] the teacher can also intervene and provide an action whenever
necessary [33, 28]. Recently, Mohammed et al. [2] synthesize a shield which verifies
every action from the agent and provides a safe one whenever necessary.

(ii) Risk directed exploration, which uses a risk metric to guide the exploration. Gehring
et al. [12] use the risk metric of controllability and guide their agent to controllable
regions of the state space.

Note that the second category includes the first, as modifying the optimization crite-
rion will also modify the exploration process. Most work in this field is not only concerned
with the safety of the final result but also with avoiding critical states during the explo-
ration process. While this is important for online learning agents (i.e., agents that are
still learning while already performing their real-life task), it is of less importance for our
approach as a crash during learning has no negative impact. Still, staying safe during ex-
ploration has the added benefit of ignoring irrelevant parts of the state space, accelerating
the learning process.
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Chapter 3

Training Approaches

In this chapter, we will describe the different approaches of incorporating the DSMC
results into the training. First, we will discuss the DSMC analysis itself and then continue
by presenting the different algorithms we used for the training.

3.1 DSMC Analysis

As already described in Section 2.2, we use DSMC to estimate the probability of fulfilling
the boolean CTL formula ♦crashed ∧ ¬crashed U goal (“goal-reaching probability”)
for every valid starting position on the map (i.e., every position that is neither a wall
nor a goal). For each of these estimations, we need the probability of the error being
smaller than a certain ε to be greater than a certain confidence 1− δ. Or more formally:
P (error < ε) ≥ 1−δ. We can use the formula provided by Aichernig et al. [1] to calculate
the required number of simulations as follows:

n ≥ 1

2ε2
ln(

2

δ
) (3.1)

If not otherwise specified, we perform our analysis with a confidence of 95 % that the error
is smaller than 0.05, which means that we need to perform 738 runs starting from each
position on the map. Unfortunately, this results in much computational effort for larger
maps. However, DSMC is perfectly suited for concurrent execution as the simulations of
two different positions do not interfere with each other at all.

For this work, we not only compute the goal reaching probability for each position but
also the following values:

- average of the goal-reaching probabilities,
- variance of the goal-reaching probabilities,
- average return and
- average length of successful runs.

Figure 3.1 shows the different visualizations we produce. From left to right, it shows
the goal-reaching probability heatmap introduced by Gros et al. [16], a histogram of the
goal reaching probabilities, and a speed heatmap. For the speed heatmap, we computed
the optimal path for each position using a standard A-Star algorithm. However, these op-
timal paths are computed with 0% noise, i.e., in a deterministic environment. Obviously,
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a) Goalprobability Heatmap b) Goalprobability Histogram c) Speed Heatmap

Figure 3.1: Example DSMC heatmaps for the Barto-Big map

the optimal paths are longer when using a higher noise as the agent has to drive more
carefully. The speed heatmap displays the average length of the successful runs starting
from the corresponding position in relation to the length of the path provided by the A-
Star algorithm. The histogram, the speed heatmap, the average return, and the average
length of successful runs will not be used for our analyses in the following chapters. We
showcased them here as these values and graphs can be useful in general and were used
for our evaluations at first. We eventually emitted them after we determined our training
methods.

3.2 The Default Agent

In this work, we will consider a standard DQN algorithm similar to the one used by Gros
et al. [17]. We will refer to this approach as the default agent. This agent is trained by
using a uniformly random start, i.e., the episodes start at a random point on the map
with velocity zero. The state is encoded by providing the following state features:

- position on the map.
- current velocity.
- d1, . . . , ds: linear distance to a wall in all directions. These eight distances are

distributed equally around the car position and are given analogously to the accel-
eration, i.e., -1, 0, or 1 in both dimensions.

- dgx, dgy: distance to the nearest goal field in x and y dimension respectively.
- dg: total goal distance, i.e. |dgx|+ |dgy|.

If not otherwise specified, we will use a reward structure of 100 if a goal is reached, −50
if the agent hits a wall, and −5 if the agent does not accelerate when already standing
still. Or more formally:

R(s
(ax,ay)−−−−→ s′) =


100 if s′ is goal state

−50 if s′ is wall state

−5 s = s′

0 otherwise
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The third condition is sufficient as s = s′ is only possible if s has velocity (0, 0) and
(ax, ay) = (0, 0). In every other case, either the position or the velocity of s would change
and thus lead to some other state s′′ 6= s. The discount factor is set to 0.99, the buffer
has a size of 108 entries, and the neural network has 4 layers. The input layer has 15
entry nodes, one for each state feature, the second and third layer have 64 nodes, and the
output layer has 9 nodes, one for each action. The network is randomly initialized. As
explained in 2.1.4 we use an ε-greedy policy to balance the tradeoff between exploration
and exploitation. We start the training with ε = 0.95 and after every episode we decrease
ε exponentially with a factor λ = 0.999 until a final threshold of ε = 0.05 is reached.

3.3 General Idea and Termination

The general idea of the training is to use the default agent for a few thousand episodes until
the learning curve reaches the constant level described in Section 2.2. We call the resulting
agent the initial agent. We will then refine the initial agent by continuing the training with
the different DSMR approaches. Note that the content of the experience replay buffer is
not stored, so each approach starts with the network weights of the initial agent but with
an empty experience replay buffer. The refinement process consists of several refinement
batches, each of which consists of a DSMC analysis and 1000 subsequent episodes of
training. After the final refinement batch, one last DSMC analysis is performed. The
analyses’ results are incorporated into the training as described by the following sections
and used to determine the agent’s performance at that timepoint. During this process,
the buffer is kept intact.

As discussed in Section 2.2, it is hard to determine when to stop the training or when
the agent is performing the best. Gros et al. [17] computed the average return of every 100
training episodes and stored the network weights that achieved the best result. However,
this method is prone to favor a lucky agent, i.e., if, for example, a majority of the 100
episodes randomly started close to a goal state, the average return will be naturally high.
The frequent DSMC analysis enables a more sophisticated way of determining the best
agent. In theory, all of the values described in Section 3.1 or any combination thereof
can be used. One simple termination criterion could be that the agent achieves a goal
probability of at least 90 % from each position on the map. For this work, we use the
average goal-reaching probability to determine the best agent.

We will use the default agent as a baseline for the performance of the different ap-
proaches. For the sake of fairness, the default agent will also be trained in refinement
batches to have the same amount of analyses and thus potential best agents, although
the analysis results will not be used.

3.4 Spreaded Agent

The algorithm to train the spreaded agent is mostly identical to one of the default agent.
The difference is that instead of selecting a uniformly random starting point for each
episode, the DSMC results are used to build a random distribution. More precisely,
a weighted average over the goal-reaching probabilities is built such that any position
p′ ∈ P , with P being the set of all valid starting points, has a probability SP of being
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chosen as the starting point of

SP(p′) =
1− goalProb(p′)∑
p∈P 1− goalProb(p) (3.2)

So, in general, the lower the probability to reach the goal from a certain point, the
higher the chance to start a training run from there. These probabilities are updated
after the analysis of each refinement batch. Over the course of a training run, the agent’s
performance will fluctuate for every starting point, and so will the probability of starting
from this there. As the replay buffer is not reset during the training run, this results
in the buffer being filled with episodes in proportion to the “difficulty” of the starting
position of the episode because the more difficult positions will have a low analysis result
on average.

This approach can actually be seen as a way of manipulating the exploration process.
By using the knowledge we gained thanks to DSMC we force the agent to explore the
regions with subpar results more intensively. We still need the ε-greedy policy, though, as
the agent needs to be able to actually explore these regions and not just start from them.

3.5 Prioritized Agents

A common improvement to the DQN algorithm is a so-called prioritized replay buffer [30].
As mentioned in Section 2.1.5, an experience replay buffer is used to break correlations in
experience batches by storing samples from many episodes and sampling them randomly.
However, usually, not all samples are equally useful for the learning process, limiting
the effectiveness of a standard replay buffer. The idea of a prioritized replay buffer is to
sample according to a set of priorities. For each sample (st, at, rt, st+1) we thus need a way
to compute its priority such that the learning process is optimized. A common priority is
the magnitude of the TD error

δ = |Q(st, at)− y(at, st+1)|+ ε (3.3)

which is then raised to the power of a meta parameter α. This α is used to control the
amount of prioritization, i.e. α = 0 means no prioritization and α = 1 represents a full
prioritization. The ε is a small constant to ensure that a sample’s priority is never 0.

In this work, we want to incorporate the DSMC results into the priority formula.
We came up with two possible ways of doing this, which are described in the following
sections. What both of them have in common is that the priorities of all samples in the
buffer need to be updated after every analysis. This may take a few seconds, but it is
basically just an extension to the analysis time, which will be discussed later.

3.5.1 Position Prioritization

The first idea is to use the position of the sample itself, which is, conveniently, stored in
the state st. So, given a sample from position (x, y) its priority is computed as follows:

δ = (1− goalProb(x, y) + ε)α (3.4)

Note that this ignores the velocity of the sample. The goal probability is computed starting
from (x, y) with velocity 0. The idea is to focus on all samples from a position with bad
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performance. Unfortunately, this often results in samples being prioritized, which are not
really useful for the learning process, which is why we will not use this approach in the
following chapters.

3.5.2 Start Prioritization

The second idea is to extend the samples with the starting position of the corresponding
trajectory as follows (st, at, rt, st+1, (x0, y0)) and then compute the priorities similar to
Equation (3.4)

δ = (1− goalProb(x0, y0) + ε)α (3.5)

which prioritizes a complete trajectory based on the success probability of its starting
point. This can be helpful to improve the regions with bad performance as the agent is
forced to completely replay the trajectories from these regions more often.
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Chapter 4

Discussion of the Training
Parameters

In this chapter, we are going to discuss why we chose certain training parameters over
others and why we chose certain maps to illustrate the results of the DSMR approaches.
The runtime of the approaches will also be discussed. All of these measurements were
performed on an Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz with 12 cores, 24 threads,
and 96GB RAM, as were the results in Chapter 5.

4.1 Racetrack Maps

When choosing a racetrack map for our benchmarks, we initially tried the Barto-small
map introduced by Barto et al. [3]. The left graph of Figure 4.1 highlights this map again.
Remember that the green are the starting states, and the red are goal states.

We tried to train our different agents on this map with 50 % noise. Unfortunately, the
performance of our different DSMR agents did not differ much from the default agent.
The initial agent was trained for 10.000 episodes. We then trained the different agents
for 50 refinement batches, i.e., 50.000 episodes. This whole training process was done for
several different random seeds, and the results of the respective best agents were merged
to reduce the impact of randomness. The average over the best results from the default
agent is 92.67 % goal probability while the spreaded agent achieves a 92.83 % probability
to reach a goal. The heatmaps of both approaches also look very similar as Figure 4.2
shows.

We take account of two reasons for these results—first, the difficulty of the map. The
right graph of Figure 4.1 displays the goal probability heatmap of the optimal policy.

Figure 4.1: Barto-Small map (left) and the heatmap of the optimal policy (right)
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Figure 4.2: Heatmaps of the default agent (left) and the spreaded agent (right)

Figure 4.3: Buffer sampling heatmaps of the default agent (left) and the spreaded agent
(right)

It was computed using the Modest toolset [18]. This policy reaches an average goal
probability of 95.41 %. So, the default agent comes relatively close to the optimum already
and does not leave much room for improvement. The second reason is the nature of the
map. It consists of basically two regions: the right pillar, where the agent only has to
drive straight up, and the left region. The states in the pillar are almost identical to
one another, and the states in the left region are all at least very similar. Our method
revolves around starting more often from difficult regions. If, however, almost all points
are equally difficult, this does not help much. We also extended the replay buffer to
store how often each drawn sample came from a certain position. Figure 4.3 displays the
sampling heatmaps of the two agents. They were computed by remembering the position
of every sample, ignoring their velocity, every time we draw from the replay buffer. Note
that the scale is not linear. These graphs clearly show that when using the spreaded agent,
the more difficult regions (the top lines of the left region) get sampled more frequently, and
the easier regions (the right pillar) get sampled less frequently. However, the difference is
only a few thousand times, which is marginal as the top sampled regions were sampled
around 300.000 times. This is due to the nature of the map as every trajectory that starts
from anywhere in the left region has to go through this heavily sampled region to reach
the goal, which results in the buffer being filled disproportionately with samples from
there. As this is a common phenomenon for racetrack maps, we will call these regions
mandatory regions from now on. This also explains why the top of the right pillar is
sampled so often for both agents. So, there is a difference between the default and the
spreaded agent, but it is not much, and the results reflect that.

In order to better test the performance of DSMR we built a number of racetrack maps
to be used for our evaluations in Chapter 5. The initial idea was to offer a second, differ-
ently shaped route to the goal in order to eliminate or at least spread out the mandatory
region. This resulted in the narrow alley map displayed on the left of Figure 4.5. Another
idea behind this map is to have one long but easy to drive region (long straights) and
one short but hard to drive region. We will call this hard region the shortcut. Due to
the shortcut consisting of just a few positions and them yielding short trajectories, the
buffer will contain almost no samples from there, making it extremely unlikely to draw
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Figure 4.4: River map

Figure 4.5: Narrow alley map (left) and Maze map (right)

them. The color scheme is similar to the one chosen in Section 2.1.1, i.e., the starting
states are marked green, and the goal states are marked red. We have added “interesting
regions”, here colored in yellow, which we will need for our evaluations in Chapter 5.
Note that for all maps but the narrow alley map, the starting positions are also part
of the interesting regions. An extension of the idea with the alley was to have multiple
goals, which is implemented in the river map shown in Figure 4.4. It offers multiple goals
and requires multiple changes of direction due to its narrow frame. There is also a blind
alley where the agent has to turn around completely should it end up there. One might
argue why we are even interested in performing well in this region as it is a part of the
statespace that is completely irrelevant when starting only from the starting positions of
the map. However, we are interested in an agent that is able to drive from everywhere on
the map, including this blind alley. On the right of Figure 4.5 the maze map is shown.
It is designed to be very difficult. Obviously, the region to the left just before the goal is
mandatory. However, the map is long enough such that all other regions will be sampled
often enough as well. For the sake of comparability, we will also analyze the performance
of the different approaches on the Barto-big map and the ring map. In Figure 4.6 we
added the interesting regions for these maps.
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Figure 4.6: Barto-big map (left) and Ring map (right)

4.2 DSMC Accuracy and Refinement Batches

As discussed in Section 3.1, we performed the DSMC analyses during the training with
a confidence of 95 % and an error of 0.05, which required at least 738 runs from each
possible starting position. As the Barto-small map has a total of 233 valid starting
positions, we need to run 171.954 simulations at the start of each refinement batch. Due
to the concurrent execution, this takes roughly 30 seconds on our machine. While this
may seem fairly low, we need to consider the amount of refinement batches and the
required time for the actual training. The agents shown in Section 4.1 were trained for 50
refinement batches. The analyses took a total time of 25 minutes, while the training took
about 17 minutes. This ratio gets substantially worse for bigger or more complicated
maps such as the maze one. This map has 606 valid starting positions, which means
447.228 simulations are necessary per analysis. In addition, each simulation takes longer
as the map is harder to drive and a lot longer. Therefore, each analysis with the current
accuracy took about 230 seconds while the 1000 training episodes only took about 40
seconds. When using one of the prioritized agents as described in Section 3.5 we also
need to consider the time needed to update the buffer priorities. Currently, this is done
by iterating over the buffer and updating each priority individually. The runtime of this
heavily depends on the occupancy of the buffer. At the very end of the 100 refinement
batch cycle, it takes about 2 minutes. Admittedly, we have not optimized this at all yet,
and there is surely much room for improvement.

We chose these settings as they offer a good tradeoff between accuracy and runtime.
The runtime outlined above is still manageable while the results are accurate enough for
DSMR to work. Obviously, the computed goal probability for each position will usually
be off by a few percentage points. However, our goal is to fill the replay buffer dispro-
portionally with trajectories from the hard regions. We update the goal probabilities,
and thus the chance to start from each position, regularly, and we never clear our rather
large buffer. Hence, the inaccuracies will eventually even out, and the buffer will be filled
according to the difficulties of the positions. Another issue arises with the termination
or, in our case, with the choice of the best agent. As the learning is not linear, there
are usually multiple timepoints at which the agent is similarly good. Out of all these
potentially best agents, we choose the one with the highest analysis result with respect
to the average goal probability. Obviously, this method is prone to choosing the luckiest
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Figure 4.7: Analysis results of 4 consecutive refinement batches

of those agents, not necessarily the best one. Anyhow, this is the tradeoff that we have
to make. The differences between all those potentially best agents will simply not be
large enough to merit the runtime loss a more accurate analysis would cause. Also, if we
would really like to find the absolute best agent during our whole learning process, we
would need to analyze after every single neural network update, not only after every 1000
episodes. The point made in Section 3.3 about the choice of the best agent still stands,
though. We may not always choose the absolute best agent, but our method is still a lot
more stable than a standard approach without DSMC, i.e., only considering the average
return during training.

As for the refinement batches, we chose to train for 1000 episodes after each analysis.
This is again a tradeoff between accuracy and runtime. Obviously, the more frequently
we analyze the agent, the more accurate and up to date our current starting probabilities
will be. Over the course of the whole training process, there will be analysis results that
do not match our notion of “hard regions have low goal probabilities”. More precisely,
sometimes, a position which is actually from an easy region will have a poor analysis
result and thus an amplified starting probability. After such an analysis, our trajectories
will start from this easy position more often than we would perhaps like. However, if the
agent is currently bad at starting from this particular position, this behavior is certainly
merited. The only advantage a shorter than 1000 episode cycle would have over our
approach is that changes in the agent’s behavior would be tracked faster. This would,
however, significantly deteriorate the analysis time to training time ratio. In Figure 4.7
we can observe the analyses results of a default agent at four consecutive points in time
with 1000 episodes of training between each of them. The points in time are ordered from
the upper left to the upper right to the lower left, the lower right. The graphs show that
an agent’s behavior can change rather quickly for individual positions, so increasing the
number of episodes for our refinement batches beyond 1000 seems not ideal. It actually
does not matter much which of our agents we choose. All of them show similar behavior
in terms of how quickly they change. A spreaded agent would have started more often
from the black regions, but those additional trajectories would only be a drop in the ocean
that is our large replay buffer. As reasoned before, we are interested in filling the buffer
in proportion to the difficulty of each region, which we do, over the course of our whole
training process, but not always over the course of a few thousand episodes.

27



4.3 Reward Structure and Discount Factor

As mentioned before, the reward structure we chose is

R(s
(ax,ay)−−−−→ s′) =


100 if s′ is goal state

−50 if s′ is wall state

−5 s = s′

0 otherwise

in combination with a discount factor of 0.99 and a maximum length of a single episode
of 100. Should the agent still drive around the map after 100 steps, the episode will be
aborted, and the return of the episode will thus be 0. 100 steps are way more than enough
to reach the goal on all of our maps. Should the agent not have reached the goal by then,
we can safely assume it will not do so in the future.

The problem with this structure is that the agent will always try to maximize the
return. However, this structure, combined with the discount factor, does not represent
our actual learning goal: maximizing the goal-reaching probability. The main culprit is
actually the discount factor. Because it is smaller than 1 (the non discounted case), the
agent tries to find a tradeoff between reaching the goal as fast as possible and reaching
it at all. When only trying to reach the goal, no matter how fast, it does not make sense
at all to accelerate beyond velocity 1. Obviously, our agents will not comply with this
“constraint” as they try to maximize the discounted return.

So, what we would like to use is a reward structure of

- +1 if the agent reaches a goal
- 0 in any other case

and a discount factor of 1, i.e., no discount. We call the resulting agents binary agents.
This structure represents the goal-reaching probability. Unfortunately, it does not yield
positive learning results and usually results in a learning curve similar to the one in
Figure 4.8. This is the curve of a binary agent which was trained with 50 % noise and
obviously without a discount. We trained the initial binary agent for 10.000 episodes and,
just for the sake of illustration, used the default binary agent to train it for 20.000 more
episodes. As we can see, the agent does learn how to drive reasonably well but forgets
everything it learned over the course of a few thousand episodes. Unfortunately, the agent
is unable to relearn the task, and the DSMC results are useless in this case, as every
position has an almost equal goal-reaching probability of close to 0 %. Therefore, using
any of our other agents would not make a difference. There is a common phenomenon in
reinforcement learning called catastrophic forgetting [22, 29, 14]. But, this field of research
is concerned with training an agent in one task and then teach it another, different task.
Catastrophic forgetting describes the problem of forgetting how to do the first task when
trying to learn the second one in this setting. This is not what we are experiencing here,
as we do not have a second task.

Instead, the problem we have lies in the nature of the q-values and our policy. Without
a discount, it does not matter how close a state is to the goal. By design, the optimal
q-value, the q∗-value, of a state is equal to the goal probability. Usually, states that are
close to each other have a similar goal probability and thus very comparable q∗-values.
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Figure 4.8: Learning curve on Barto-Small for the non-discounted case

Similarly, most (or at least multiple) actions of a particular state will also have near-
identical q∗-values. It takes the agent a while to compute these values. That is why we
see the rising learning curve before the catastrophic fall. In q-learning in general, we
do not compute the exact q∗-values; we approximate them. Replacing the q-tables by
neural networks adds another layer of approximation. Always choosing the action with
the currently highest q-value as a way of determining our policy works because these
approximated q-values are sufficiently accurate. We do not need to know the exact values
as long as the action with the highest real q∗-value also has the highest approximated q-
value. Unfortunately, in our current setting, the exact q∗-values are so close to each other
that even a small approximation error leads to a suboptimal action being chosen. So, once
the values are computed, the agent does not know where to drive as all states around it
seem equally useful, and the action which happens to have the highest approximated
q-value is chosen.

In his master thesis, Gros [15] makes similar observations and additionally finds that
the q-values actually drop when coming close to the goal. It is unfortunately unclear why
this happens, but it explains the catastrophic fall. As long as the q-values in the goal
region are marginally higher than the values of the other regions, the agent will find the
goal quite consistently. However, as soon as this ratio changes, it is basically impossible
for the agent to find the goal.

The red line of Figure 4.9 shows an exemplary path our binary agent could take. This
particular path was computed using the initial agent from Figure 4.8, i.e., an agent with
an experience of 10.000 episodes. It was started from position (7, 15) with position (0, 0)
being the upper left corner. In this case, we only wanted to see the agents decisions
without the noise messing with the results, so we used a deterministic environment, i.e.,
0 % noise. Keep in mind that our agent’s action choices are also deterministic as the
q-values computed by a neural network for any state s are deterministic. We let the agent
take 30 steps. Yet, the path only covers 5 positions, which is because the agent was
always driving from left to right due to the similar q-values. In this particular case, the
agent does know that driving up or down is not a good idea because of the high noise.
Nevertheless, it cannot distinguish between the value of going left or the value of going
right. It will thus go either left or right “randomly”. Similarly, our agent will drive up
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Figure 4.9: Example paths of an agent trained without a discount.

and down when starting from position (7, 33), as the blue line of Figure 4.9 shows. We
have also included a third, green line here. It was started from position (1, 33), i.e., one
position away from the goal. In theory, a single action (one of the three “up actions”)
would have sufficed to reach a goal, yet the agent “purposefully” drove away from the
goal. This behavior can be explained with the findings of Gros [15] we have mentioned
above. The green line is actually partly covered by the red one as the path heads to the
respective positions and ends up revisiting them over and over again as well. To solve
this problem, we tried to manipulate the action choices of the agent. As we have seen, it
tends to drive back and forth, which corresponds to traversing the statespace in circles.
We tried three slightly different approaches to prevent these circles

- preventing the agent from closing the circle,
- preventing the agent from reentering the circle and
- preventing the agent from revisiting a position.

All of which require us to store all the states that were visited during the current trajectory.
The approaches are discussed in the following sections. For the sake of comparison, we
will also consider the red and the blue paths with their respective starting positions as
we have done here. We will omit the green path to increase readability. Each of the
approaches requires us to prevent the agent from taking a specific action or even multiple
actions. Should one of those forbidden actions have the highest q-value, we force the agent
to take the action with the second-highest q-value instead. Should this second action also
be forbidden, we force the agent to take the third highest-rated action and so forth. If no
action is usable, the agent simply takes a random one.

4.3.1 Never close the circle

This approach aims to prevent the agent from revisiting a state, i.e., never close a circle
in the statespace. For this to work, we need to store all visited states of a trajectory.
Every time the agent chooses an action, a check is performed if this chosen action would
lead to an already visited state, and if so, the action will be prevented as described above.
Unfortunately, this “improvement” does not help much as Figure 4.10 shows. The learning
curve looks very similar to the one in Figure 4.8. The difference is that there is a small
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Figure 4.10: Learning curve and example path when preventing to close the circle

rise after the catastrophic fall, but it does not matter much as the rise stops way before
a decent level. The right graph shows the two example paths defined above. We used
the agent with 40.000 episodes of experience and a deterministic environment to generate
those paths. Both paths are 100 steps long and overlap almost completely. We can see
that the agent is still driving back and forth, although it has to be a bit more creative
than before. The problem here simply is that racetrack offers a larger statespace than
one would initially expect when looking at the picture of the map. It is very well possible
to drive back and forth for extended periods without visiting a state twice. Going in one
direction and then going back can be done without revisiting a state as the velocity will be
contrary. It is also possible to visit a position multiple times, going in the same direction.
For example, once with velocity (1, 0) and once with velocity (2, 0). This explains why
we almost do not see the red line in Figure 4.10. After a few steps, the blue agent will
reach a state that the red agent also visited. It will proceed to drive the same path the
red agent took due to the deterministic environment and action choices. It will not follow
the complete path as it started from further away, which is why we see the single red line
in the middle.

We could increase the number of steps the agent can take, but even if it does reach the
goal, it would be more of a random event than a real achievement. Additionally, if the
agent takes a trajectory like the one we see in Figure 4.10 and then, by chance, eventually
reach a goal, it would increase the q-values of every action it took during this long and
senseless trajectory without discounting them at all.

4.3.2 Never reenter the circle

The idea behind this second approach is similar to the one above. We want to prevent
the agent from traversing the statespace in circles. One problem of forbidding the agent
to close the circle is that we may force it to drive into a region that it does know nothing
about. Here we allow to agent to reenter a state, but we prevent it from taking the action
it chose the last time, i.e., we do not let it reenter the circle. The behavior of the agent
unfortunately, does not change much. The difference is that it visits fewer positions as
Figure 4.11 shows. This is because we now allow to agent to stand still once per position.
More precisely, in the first approach, when the agent enters a position (x, y) and breaks to
velocity 0, which means it enters the state (x, y, 0, 0), we forbid the standstill action as it
would lead to (x, y, 0, 0) again. In this second approach, we only forbid an action if it was
already taken in a particular state. So, if the agent enters (x, y, 0, 0) and then chooses the
standstill action next, we allow it to do so. Due to the nature of our noise (which would
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Figure 4.11: Learning curve and example path when preventing to reenter the circle

Figure 4.12: Learning curve and example path when preventing to revisit a position

also choose the standstill action), the agent would always end up in (x, y, 0, 0) again after
choosing the standstill action. Because of the deterministic action choice, it would choose
the same action again, which we then prohibit as it has already been chosen in this state.

4.3.3 Never revisit a position

The final method is by far the most restrictive one. At first, we thought that it is, in fact,
way too strict, but for the sake of a complete comparison, we will consider it nevertheless.
The idea here is to completely forbid the agent to visit a position twice, regardless of
the velocity. Unfortunately, this is not always possible to do as we would also forbid the
agent to break down to velocity 0. Assume the agent is currently in the state (x, y, 1, 0)
and chooses the action (−1, 0). If the action is successful, the agent will end up in the
state (x, y, 0, 0), i.e., at a position it has already visited. We would thus have to forbid
the action (−1, 0). The problem now is that we would sometimes prevent the agent from
taking the optimal, or even the only possible path. The shortcut of the narrow alley
map, displayed in Figure 4.5, for example requires the driver to drive to the next position
with velocity 1, then break down to velocity 0 and start again into the direction of the
next position. Therefore, we need to include this special case into this approach, i.e., we
allow the double visit of a position if it is part of a deceleration to velocity 0. Figure 4.12
shows that this approach slows down the catastrophic fall, but the final result is the
same. Because we have to allow the agent to decelerate completely, there are less than
100 distinct visited positions.
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4.3.4 Conclusion

Unfortunately, none of our attempts was successful. We have seen rather similar results
each time. Further investigations are necessary if and how an agent can be trained without
a discount to better match the learning goal to the actual training. It would also be
interesting to explore the findings of Gros [15], i.e., why the q-values decrease when
coming closer to a goal.

4.4 Learning Success, Noise and Discount Correla-

tion

Another interesting observation we made is that there seems to be a correlation between
the learning success and the noise as well. We tried different values for the discount
factor and the noise, and we found that when using 0.995 (0.005 more than usual) as the
discount factor, we were able to train an agent with 50 % noise but failed to do so when
using 0 % noise. Note that we used our standard reward structure here, but that does not
matter much. Figure 4.13 shows the respective learning curves. At first, this does not
make sense as an environment with 0 % should be extremely easy to learn. However, we
can blame the same circumstances as before for this observation. Due to the high discount
factor and the low noise, the q∗-values are extremely similar to one another. When using
a higher noise, the q∗-values deviate enough from each other to make q-learning work.
Unfortunately, this finding does not help us in the non-discounted case as, first, a higher
noise than 50 % would take over the control much too frequently and, second, we actually
tried to train an agent with 80 % noise and still observed the same catastrophic fall as
before. So, the noise does influence the parity of the q∗-values, but not enough to solve
the problems we faced here. Additionally, the idea behind the noise was to create an
abstraction of a slippery road. Increasing it is rather artificial and should not be done to
make the training work at all. We will use a rather high noise for our evaluations in order
to highlight the differences between our approaches. However, all of those approaches
would have yielded positive results with a lower noise as well.

Figure 4.13: Learning curve with 50 % noise (left) and 0 % noise (right)
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Chapter 5

Results

To evaluate the performance of the different approaches, we will use the general training
method described in Section 3.3. To increase the consistency of our results, we executed
the refinement process 10 times. Each time with a different random seed but using the
same initial agent. The best agent of each iteration was analyzed again, but with increased
accuracy. More precisely, a DSMC analysis was performed with 99 % confidence and an
error of 0.01. Due to the issues discussed in Section 4.2 this usually leads to a slight
decrease of the average goal probability, but this does not matter as it is equally fair
for all of our agents. As the required number of simulations per position to achieve this
accuracy is 26492, a single analysis can actually take several hours, which is fine as it was
only required once after the training was finished. Finally, the resulting goal probabilities
were averaged to obtain a clearer view of the performance of our different approaches.

We used three different agents for our evaluation. First, as a baseline, we have the
default agent. Second, we used the spreaded agent. And lastly, we use an agent that
uses the prioritized replay buffer as described in Section 3.5.2 in combination with a
spreaded start. The α which is used here is 1, i.e., a full prioritization. We call this last
agent the prioritized agent. The idea behind it is to further improve the performance of
the hard regions as this agent not only starts more often from them but also prioritizes
the respective trajectories. We chose those two DSMR agents as they showed the most
promising results during our evaluations. We also compare the results of all agents to the
“optimal agent” which was again computed using the Modest toolset [18]. This is not
an actual agent as we do not compute a policy. Instead, we only calculate the maximum
possible goal probability using model checking techniques. All reinforcement learning
agents did worse than the optimum and sometimes considerably so. However, it is not
the goal of this work to achieve perfect results using reinforcement learning, but to evaluate
how it can be improved using DSMC. If we would like to achieve better results, we would
need to experiment with different values for the learning parameters and especially the
composition of the neural network more. As mentioned, a perfect agent is not our goal,
and these experiments are thus out of the scope of this work.

In the following sections, the results of the three agents on the Barto-big, the ring,
the narrow alley, the river, and the maze map will be analyzed. We will consider the
DSMC heatmaps, the sampling heatmaps, the average goal probability, and the variance
of the goal probabilities. To emphasize the difference between the agents with regard
to the goal probability, we will also analyze the probabilities of what we consider to be
the hard or interesting regions. This is useful, as the average probability will not differ
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much for some maps. Not because the agents did all perform equally, but because there
are large regions that are extremely simple to drive. For example, if a map had 90
straightforward and 10 hard positions and all agent achieved 100 % goal probability on
the 90 simple positions, the average goal probability would be at least 90 % for all agents
and differences in the interesting region would not show up as much in the overall average.
As already discussed in Section 4.1 the interesting regions are marked yellow in Figure 4.4
and Figure 4.5. If not otherwise specified, we used a noise level of 50 % for the experiments
in the following sections. Using a noise this high leaves more room for improvement for
the DSMR agents as the default agent comes relatively close to the optimum when using
low noise levels. Even with this high noise, all reinforcement learning agents perform
really well in comparison to the optimum.

5.1 Barto-big Map

In the case of the Barto-big map, the DSMR agents actually perform slightly worse than
the default agent in terms of overall goal probability as Table 5.1 shows. Figure 5.1
shows that this is due to the weaker performance in the goal region. Both the spreaded
and the prioritized agent do improve the interesting region, though. Consequently, they
also decrease the variance of the goal probabilities. As expected, those observations are
amplified for the prioritized agent as it concentrates even more on the hard regions.

The sampling heatmaps in Figure 5.2 again present this one heavily sampled manda-
tory region similar to the one we have seen for the Barto-small map in Figure 4.3. Ob-
viously, this is due to the nature of the map, which requires all trajectories starting
anywhere before the mandatory region to go through it. Simultaneously, the goal region
was sampled sparsely when using the DSMR agents. There are two reasons for that. First,
those positions usually have a high analysis result and consequently are not started from
often. Second, the goal region is actually a straight line, so once an agent has reached this
straight line, it can accelerate further as the goal can be reached with any velocity. Many
positions were thus skipped. This explains the worse performance of the DSMR agents in
terms of overall average goal probability in comparison to the default agent. Additionally,
this reveals a general problem with the DSMR approach: The goal probabilities do not
necessarily reflect the performance of an agent. What we try to achieve with q-learning
is to find the optimal policy for all states. For DSMR we assume a correlation between
the goal probability of a position (x, y) and the quality of the agent’s policy for all states
between (x, y, 0, 0) and a goal state. While there is a correlation, these properties are not
equal. If the maximum possible goal probability of a position is 50 % and our agent actu-
ally achieves this 50 %, we will prioritize it even though there is nothing to be improved.
This also happens the other way around, i.e., if the maximum possible goal probability
is 100 % and our agent only achieves 90 % there is room for improvement our DSMR
approaches will not necessarily realize. In theory, we would like to use the difference
between the maximum possible goal probability and the one achieved by our agent as an
indicator for its performance. However, this is rarely possible as we usually do not have
access to an optimal agent. It was possible to compute it for these rather small racetrack
maps, but we cannot assume that to generally be the case. In fact, if it would be, our
whole approach would be pointless.
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Agent Average Goal Probability Variance of Goal Probabilities Goal Probability of Interesting Regions

Optimal 98.91 % 1.23× 10−4 97.08 %

Default 95.76 % 10.73× 10−4 90.25 %

Spreaded 95.70 % 10.36× 10−4 90.81 %

Prioritized 95.88 % 9.16× 10−4 91.09 %

Table 5.1: Results of the different agents on the Barto-big map

Figure 5.1: Results of the Barto-big map. Optimal agent (top left), Default agent (top
right), Spreaded agent (bottom left), Prioritized Agent (bottom right)
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Figure 5.2: Sampling heatmaps of the Barto-big map. From left to right: Default agent,
Spreaded agent, Prioritized Agent
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5.2 Ring Map

The ring map already offers a further challenge for the agent. From the starting region,
there are two different ways to the goal, which slightly diversifies the mandatory region.
In theory, there is a mandatory region right at the end of the ring. However, this region
is not problematic as it will have high analysis results on average and thus will not be
sampled too often. Additionally, if an agent is coming from the upper half of the ring, it
will not visit the same states as an agent coming from the lower half of the ring as both
will have different velocities. When coming from above, the velocity will be going down
and vice versa.

The observations regarding the quality of the agents resulting from the different learn-
ing approaches are similar to the observations of the previous section. The difference is
that, here, the DSMR agents actually outperform the default agent in terms of overall
goal probability as Table 5.2 shows. As before, the prioritized agent achieves the low-
est variance even though it gets outperformed in the interesting regions by the spreaded
agent.

The heatmaps in Figure 5.3 show two interesting findings. First, there are two diago-
nals with goal probability 1 in the heatmaps of both the default and the spreaded agent.
This is simply due to the fact that no turns or breaks are necessary to reach the goal when
starting from the diagonal. The agent only has to accelerate diagonally once, and it will
reach the goal in any case as the noise can only prevent an acceleration and not change the
direction itself. The prioritized agent is not as successful on the upper diagonal. This is
because it prioritizes the other regions so much that its performance sometimes suffers in
the easy regions. The second finding is that all agents perform slightly better in the lower
half of the ring. It becomes clear why this is when looking at the sampling heatmaps in
Figure 5.4. All agents seemed to prefer the lower half of the ring when starting from the
initial region and thus had more experience driving it. The upper half was only chosen
as the route to the goal when starting from the upper parts of the initial region. Overall,
the sampling heatmaps indicate a much more even sampling distribution for both DSMR
agents in comparison to the default agent, which mainly sampled the goal region.

Agent Average Goal Probability Variance of Goal Probabilities Goal Probability of Interesting Regions

Optimal 98.19 % 3.50× 10−4 96.45 %

Default 93.21 % 26.07× 10−4 87.81 %

Spreaded 93.44 % 19.29× 10−4 89.28 %

Prioritized 93.26 % 18.00× 10−4 88.92 %

Table 5.2: Results of the different agents on the ring map
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Figure 5.3: Results of the ring map. Optimal agent (top left), Default agent (top right),
Spreaded agent (bottom left), Prioritized Agent (bottom right)
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Figure 5.4: Sampling heatmaps of the ring map. From left to right: Default agent,
Spreaded agent, Prioritized Agent
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5.3 Narrow Alley Map

The experiments in this section were performed with 10 % noise. A low noise is required
for this map because it would otherwise be almost impossible to reach the goal when
starting from inside the shortcut, as we will discuss below. The narrow alley map consists
of two different ways to reach the goal. It is possible to drive the long route going down,
then right, and finally up again. Driving this way is extremely easy, as we can see on the
leftmost heatmap of Figure 5.6, which displays the goal probabilities of an optimal agent.
Obviously, another option is to take the shortcut. By design, the shortcut is hard to drive
in a way that there are only two actions (and sometimes only one) that are directed to a
goal for every state. Figure 5.5 lets us take a closer look at it. We considered the middle
position of it as the start for the purpose of demonstration and the outer positions as goals
as reaching a “real” goal is easy once you have left the shortcut. There are basically two
ways that lead to a goal here: going right or going left. When heading for the goal to the
right, one has to first choose the action (−1, 1) (up-right), which leads to position 1 with
velocity (−1, 1). As it is now required to drive down and it is only possible to accelerate
by one in each direction, the next action has to be (1,−1) to break down to velocity
(0, 0). This whole procedure of driving to the next position and breaking again has to be
repeated six times in total. Whenever a deceleration is required, there is a 10 % chance
of a crash due to the noise. So, there is a 90 % chance to successfully change a position in
this case. This is required five times (the goal can be reached with any velocity), so the
maximum possible goal probability from the start position is 0.95 = 59.05 %.

Because it is so dangerous to drive through the shortcut, it is actually better to drive
left (heading to the starting positions of the map) for all positions left of the starting point
from our example. This is why the optimal goal probabilities get symmetrically better
left and right of the middle point. Although the maximum goal probability is obviously
very low, it is actually rather easy to achieve using q-learning. As the difference between
the actions is extreme, due to the proximity to the walls, a q-learning agent will find the
correct actions rather quickly. The problem when trying to learn this map is that the
buffer will contain almost no samples from shortcut trajectories. On the one hand, this
is due to the shortcut consisting of only a couple of positions. On the other hand, many
trajectories starting from anywhere inside it will consist of only a single action. This leads
to the agent regularly losing all of its progress during the learning and subsequently never
learning how to drive the shortcut.

Figure 5.6 also shows the averaged heatmaps of our agents. As we can see on the second
left heatmap, the default agent did not find the correct policy for the shortcut as discussed
above. Remember that there are only two valid ways out of the shortcut: going right or
left as described above. In contrast to the default agent, both the spreaded agent and the
prioritized agent managed to find one of those two ways consistently. Keep in mind that
the heatmaps are averaged over ten different training runs. In most of them, both DSMR
agents found the optimal policy for the shortcut. The spreaded agent sometimes went left
when going right was the better option, which reduced the goal probability. In addition,
the agent has to reach the goal after leaving the shortcut, which also failed in rare cases.
However, in general, both agents performed really well in the interesting region as we
can see in Table 5.3. The final result of both agents was also close to the optimum in
terms of average goal probability and variance. The prioritized agent has a slightly lower
goal probability compared to the spreaded agent, but the prioritized agent has a lower
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variance. Which makes sense as it focuses heavily on the hard regions, which do improve
even further, but it neglects the other regions a bit. The heatmap of the prioritized agent
shows two yellow positions in the easy region, which is due to one of ten training runs
failing to reach the goal from there. This can happen in rare cases when the agent chooses
the standstill action when starting from there, and it drags down the average.

Figure 5.7 further explains these results. We can see that when using the default
agent, the shortcut rarely gets sampled. The heaviest sampled region is the curve before
the home straight. This is because lots of trajectories go through this region. After that,
it is possible to accelerate towards the goal every step, which leads to high velocities and,
thus, many positions being skipped. When using the default agent, the shortcut gets
sampled similarly often to the curve region, whereas using the prioritized agent actually
led to the shortcut being extremely heavily sampled. This is due to the goal probability
always being low in these states as their maximum is so low. This is a prime example of
the phenomenon described at the end of Section 5.1. However, it is not much of an issue
here because all the remaining regions are so easy to drive.

Agent Average Goal Probability Variance of Goal Probabilities Goal Probability of Interesting Regions

Optimal 99.43 % 16.08× 10−4 79.78 %

Default 97.40 % 153.33× 10−4 32.91 %

Spreaded 98.55 % 22.46× 10−4 74.14 %

Prioritized 98.42 % 21.06× 10−4 75.43 %

Table 5.3: Results of the different agents on the narrow alley map
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Figure 5.5: Closeup of the shortcut
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Figure 5.6: Results of the narrow alley map. From left to right: Optimal agent, Default
agent, Spreaded agent, Prioritized agent

Figure 5.7: Sampling heatmaps of the narrow alley map. From left to right: Default
agent, Spreaded agent, Prioritized agent

5.4 River Map

The river map is significantly harder to drive optimally than the shortcut map. The
average goal probability of the whole map and the goal probability of the interesting
regions are a bit misleading here. The overall average is so high because there are many
positions close to a goal. The goal probability of the interesting regions is higher than
what we have seen for the shortcut map. However, there is not one clear cut best action for
each interesting position as there was for the shortcut. It is thus easier to reach the goal
at all, but harder to reach the maximum possible goal probability, as there are multiple
ways to do so.

As we can see in Figure 5.8 and Table 5.4 both DSMR agents significantly improved
the starting region and the blind alley in comparison to the default agent. Simultaneously,
both of them struggled a bit in the easy regions right before the goals. The observations
of Section 5.3 and Section 5.1 that the prioritized agent slightly degraded the overall goal
probability but increased the goal probability of the interesting regions and lowered the
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variance stand here as well.
The sampling heatmaps in Figure 5.9 show that we largely achieved our design ob-

jective for this map. The idea behind the river map was to eliminate the single region
where every trajectory has to go through. The heatmap of the default agent displays a
well-distributed sampling behavior over the whole map. The region before the second goal
(when counting from the left) is sampled a little less, as are some branches of the river.
This is because it is best to take the other branch in these cases. Most of the trajectories
going left will head straight towards the first goal and ignore the second, as they should.
This behavior is amplified when using the DSMR agents. Both of them favor the hard
regions and achieve high goal probabilities in the regions before the second and third
goals. Therefore, the sampling of these regions is reduced. Instead, they fill the buffer
with trajectories from the starting region and the blind alley. The right branch from the
start is also heavily sampled, which indicates that the agent chose to go primarily right
when starting from the starting region.

Agent Average Goal Probability Variance of Goal Probabilities Goal Probability of Interesting Regions

Optimal 96.73 % 21.46× 10−4 89.20 %

Default 81.99 % 446.00× 10−4 46.10 %

Spreaded 84.69 % 269.42× 10−4 58.12 %

Prioritized 84.38 % 235.28× 10−4 60.35 %

Table 5.4: Results of the different agents on the river map

Figure 5.8: Results of the river map. Optimal agent (top left), Default agent (top right),
Spreaded agent (bottom left), Prioritized agent (bottom right)
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Figure 5.9: Sampling heatmaps of the deadend map. From left to right: Default agent,
Spreaded agent, Prioritized agent

5.5 Maze Map

The maze map was designed to have many completely different ways to reach a goal.
Due to its narrow frame, we had to use a noise level of just 10 %, which is fine as the
map is hard enough already. As we can see in Table 5.5 both DSMR agents significantly
improved both the average goal probability and the goal probability of the interesting
regions. Interestingly, the spreaded agent outperformed the prioritized agent in every
category on this map. The sampling heatmaps in Figure 5.11 reveal that the hard regions
are sampled heavily when using the prioritized agent. For the previous maps, this was fine
as the regions following the hard regions were quite easy to drive, which is not quite the
case here. Probably, the excessive focus on these regions leads to the agent not knowing
how to drive the rest of the map, which ultimately hurts the hard regions as well. It
still worked quite nicely as the performance gain in comparison to the default agent is
significant. It just got outperformed a bit by the spreaded approach.

The sampling heatmap of the spreaded agent indicates a nice sample distribution over
almost the whole map. The maze map has a single goal again and a matching mandatory
goal region, which was heavily sampled by the default agent. Due to the combination
of a disproportional start and the map being difficult, the hard regions are sampled
considerably more often when using the DSMR agents as many trajectories that started
far away from the goal resulted in a crash and thus never reached the mandatory goal
region. As argued already, the prioritized agent probably focused on the hard regions
too much, whereas the default agent excessively focused on the goal region. In this case,
the spreaded agent found a nice middle ground, which resulted in the performance we
observed in Table 5.5.
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Agent Average Goal Probability Variance of Goal Probabilities Goal Probability of Interesting Regions

Optimal 97.37 % 2.05× 10−4 95.95 %

Default 87.13 % 218.75× 10−4 59.78 %

Spreaded 92.95 % 24.86× 10−4 86.46 %

Prioritized 92.12 % 30.77× 10−4 84.77 %

Table 5.5: Results of the different agents on the maze map

Figure 5.10: Results of the maze map. From top to bottom: Default agent, spreaded
agent, Prioritized agent
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Figure 5.11: Sampling heatmaps of the maze map. From left to right: Default agent,
Spreaded agent, Prioritized agent
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Chapter 6

Conclusion

In this thesis, we implemented Deep Statistical Model Checking [16] for the racetrack
domain and developed several methods of incorporating its results into a reinforcement
learning approach, which we called Deep Statistical Model Refinement. These methods
included a spreaded agent, which uses the model checking results to build a probability
distribution over the positions of the map to control how often a training run is started
from a specific position, and two approaches which use the model checking results to
manipulate the probabilities in a prioritized replay buffer.

We have discussed the specific settings we chose to train the agents, including the
concept of refinement batches. Additionally, we have discussed why the racetrack maps
offered by Barto et al. [3] are unsuitable for showcasing our approaches. As an alternative,
we have built several new racetrack maps, each of which offers a unique new challenge for a
reinforcement learning agent to solve. We defined our learning goal to be the maximization
of the average goal-reaching probability and discussed why the chosen reward structure
and the discount factor specifically do not reflect this goal perfectly. However, we found
that the one to one representation of this learning goal yields terrible learning results
leaving us with no other choice.

Finally, we have evaluated our approaches on a number of different maps, including
the Barto-big, the ring, and our custom maps. The results showed that our approaches
were able to lower the variance of the goal probabilities and, additionally, increase the goal
probabilities in the hard to drive regions on all maps. DSMR was also able to increase
the average goal probability on most maps, for some significantly so.

We believe that DSMR can be used to automatically steer the exploration towards oth-
erwise under-represented parts of the statespace in cases where an overall well-performing
agent is needed. It is also useful to determine the specific timepoint during training that
yields the most desirable agent.

6.1 Limitations and Future Work

Despite the success we have had in this work, there is a major limitation our approaches
are facing. The DSMC analysis required us to construct a subset of the statespace, which
could then be analyzed. In the case of the racetrack domain, this was rather easy as
the subset of all states with velocity (0, 0) was a logical and useful choice. It is both
meaningful and manageable in terms of its size. Unfortunately, this is not possible or at
least not as easy for all domains. Without this subset, our whole approach falls apart as
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there are no analysis results we could incorporate into the learning process. However, this
is more of a limitation of the DSMC approach in general. Further research in the field of
model checking is necessary to eliminate this limitation.

Another interesting research topic would be the success of DSMR in another domain.
Obviously, this needs to be a domain that offers a meaningful subset of its statespace as
discussed above. However, given such a domain, it would be interesting to investigate
how DSMR could be used.

Finally, further research could go into the non-discounted case of deep reinforcement
learning to solve the issues discussed in Section 4.3.
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