
Saarland University

Master Thesis

Performance Comparison of Deep Reinforcement

Learning Algorithms for the ProGen Benchmark

Submitted by:

Ilka Kopping

Submitted on:

September 28, 2022

Reviewers:

Univ.-Prof. Dr. Verena Wolf

Univ.-Prof. Dr. Martina Maggio

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement under Oath

I confirm under oath that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die
Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken,
(Datum / Date) (Unterschrift / Signature)

Abstract

Deep reinforcement learning has recently been a fast-developing field of research. How-
ever, it is hard to compare different reinforcement learning algorithms due to varying
evaluation protocols. Additionally, many protocols do not consider an agent’s per-
formance in similar yet modified environments. In this thesis, we trained a PPO, a
REINFORCE, and two DQN agents in two settings on the ProcGen benchmark and
compared their training and generalization performance and the differences between
the settings. Additionally, we investigated the impact of different game mechanisms on
the agents’ performances. The results show that PPO outperforms the other agents in
nearly all environments. However, REINFORCE and one of the DQN agents generalize
best. We noticed that a dense reward setting benefits all agents and that some specific
tasks within the environment benefit the agents’ performances. Different surroundings
had different impacts on each agent.

iii

Acknowledgments

I highly appreciate the opportunity provided by Prof. Wolf and Timo P. Gros to work
on this exciting topic.
I thank Prof. Maggio for her willingness to review this master’s thesis.
Thanks to my advisor, Timo P. Gros, for all the advice and constructive discussions.
Also, thanks to Joschka Groß for jumping in during Timo’s honeymoon.
Additionally, I wish to thank all other thesis students at the MoSi chair I had constructive
discussions with during working on my thesis.
Lastly, I wish to thank my family and close friends who supported me during this
time.

v

Contents

1. Introduction 1
1.1. Thesis Outline . 2

2. Reinforcement Learning 3
2.1. Deep Reinforcement Learning . 4
2.2. Policy-based Algorithms . 4

2.2.1. REINFORCE . 4
2.2.2. Proximal Policy Optimization . 5

2.3. Value-based Algorithms . 6
2.3.1. Deep Q-Networks . 6

3. Generalization 9
3.1. Stochastically Modified Environments 9
3.2. Splitted Training and Test Environment 10
3.3. Call for Procedurally Generated Environments 11

4. The ProcGen Benchmark 13
4.1. Procedurally Generated Parts in ProcGen Environments 14
4.2. Evaluating Agents on ProcGen . 16
4.3. Game Mechanisms . 18

5. Experiments 23
5.1. Agents . 23

5.1.1. Network . 24
5.2. Setup . 24

5.2.1. Easy Setting . 25
5.2.2. Hard Setting . 25
5.2.3. Final Note on the Settings . 25
5.2.4. Training and Generalization Performance 25

5.3. Hyperparameter . 26
5.3.1. PPO . 26
5.3.2. REINFORCE . 26
5.3.3. DQN M . 27
5.3.4. DQN P . 27
5.3.5. Final Note . 28

5.4. Reproducibility . 28
5.5. Results . 29

5.5.1. Easy Setting - Training Performance 29
5.5.2. Easy Setting - Generalization Performance 33
5.5.3. Hard Setting - Training Performance 36

vii

Contents

5.5.4. Hard Setting - Generalization Performance 39

6. Analysis 43
6.1. Training Performance . 43

6.1.1. PPO . 43
6.1.2. REINFORCE . 45
6.1.3. DQN M . 46
6.1.4. DQN P . 46
6.1.5. Conclusion . 46

6.2. Generalization Performance . 47
6.2.1. PPO . 48
6.2.2. REINFORCE . 49
6.2.3. DQN M . 49
6.2.4. DQN P . 50
6.2.5. Conclusion . 50

6.3. Easy vs. Hard Setting . 51

7. Characterization of Game Mechanisms 53
7.1. PPO . 53
7.2. REINFORCE . 57
7.3. DQN M . 61
7.4. DQN P . 65
7.5. Conclusion . 69

8. Conclusion and Future Work 71
8.1. Conclusion . 71
8.2. Future Work . 72

Appendices 81

A. Training and Generalization for Each Agent 81
A.1. PPO - Easy . 81
A.2. PPO - Hard . 84
A.3. REINFORCE - Easy . 87
A.4. REINFORCE - Hard . 90
A.5. DQN M - Easy . 93
A.6. DQN M - Hard . 96
A.7. DQN P - Easy . 99
A.8. DQN P - Hard . 102

B. Training Performance Including Maximal Score 105
B.1. Easy Setting . 105
B.2. Hard Setting . 108

viii

1. Introduction

Since the breakthrough of deep Q-networks achieving human-level results [33] on the
famous arcade learning environment (ALE) [3], many new reinforcement algorithms have
been developed. Many of them show promising results, indicating significant progress
in deep reinforcement learning (DRL).

However, the evaluations of newly developed algorithms usually do not follow a specific
protocol. Given the broad range of RL benchmarks, algorithms are seldomly evaluated
on the same benchmark. However, a good performance on one benchmark does not
imply a good performance on another one. But even if two algorithms are evaluated on
the same benchmark, different evaluation procedures are often followed [29]. As a result,
it is often impossible to compare the different results without further experiments.
What aggravates the problem even further is that the evaluation is commonly solely
based on an agent’s training progress. Implicitly it is assumed that the performance in
similar environments could be similar as well. However, studies repeatedly demonstrated
that this assumption does not hold [6, 7, 18, 48]. Even minor environmental differences
can lead an agent to perform much worse, i.e., the agent overfitted to the known training
environment. This means that the agent did not generalize this knowledge such that it
can be applied in similar scenarios. Therefore, suggestions to additionally consider the
generalization performance [48] as well came up [29, 47, 48].

Motivated by this, Cobbe et al. developed the coinrun environment [7] and, finally, the
ProcGen benchmark [6]. This benchmark consists of 16 distinct environments. For each
environment, the levels are sampled instead of humanly handcrafted. By restricting the
training set to a fixed number of levels and evaluating the agent on newly sampled and
unseen levels, the generalization skills of an agent can be easily investigated [6].

In this thesis, we use ProcGen environments as a training and evaluation environment to
compare three different algorithms. Motivated by Henderson et al., who demonstrated
that different implementations of the same algorithm could lead to different results, even
using identical hyperparameters [17], as well as prior claims that one of the algorithms
does not perform well on ProcGen [6, 34], we try two different implementations of this
algorithm. Therefore, we compare four agents in total.

Our analysis comprises four different aspects.
Firstly, we will investigate the training performance of each agent. The training
performance will be measured as usual in reinforcement learning. In the analysis, we
will consider each environment’s maximal and trivial scores [6] to get an impression of
each agent’s performance.
Secondly, we will investigate the generalization performance of each agent.
Thirdly, we will compare each agent’s performance in easy and hard settings. These

1

CHAPTER 1. INTRODUCTION

settings differ in distribution over the difficulty level, the number of training steps, and
the number of training levels.
Finally, we will investigate the impact of different environmental aspects.

Overall, this thesis aims to understand and evaluate the performances of the four agents
in the ProcGen benchmark.

1.1. Thesis Outline

This thesis consists of seven chapters in total. After this introduction, chapter 2
provides a formal introduction to reinforcement learning. Chapter 3 discusses the topic
of generalization in reinforcement learning. The ProcGen benchmark is introduced and
discussed in chapter 4. The experimental setting is discussed and results are shown in
chapter 5. An analysis of the results is performed in chapter 6. The analysis of each
game mechanisms’ impact to the agents is discussed in chapter 7. Finally, the thesis is
concluded and provided with suggestions for future work in chapter 8.

2

2. Reinforcement Learning

Reinforcement Learning (RL) is a subarea of machine learning where an agent learns
to achieve a goal within an environment via learning by trial and error. This learning
process happens in a continuous interaction loop: the agent selects an action, and the
environment immediately updates the agent with the new state of the environment
and a possible reward. In the next step, the agent again performs an action and gets
updated about the new state and possible reward. This process is repeated until the
learning process converges. During the learning process, the agent aims to maximize
the overall reward.

RL problems are usually represented as Markov decision processes (MDPs) [41]. We
define an MDP as a tuple (S, A, T, R, s0, γ), where S is the state space of the problem, A
is the action space of the problem, T (s, a, s′) with s, s′ ∈ S, a ∈ A is the state transition
function which determines the next state s′ for a state s after action a is applied. This
transition function can either be deterministic, i.e., s′ is unique, or stochastic, i.e., a
probability distribution over multiple possible next states s′

1, s′
2, ... Furthermore, R(s, a)

with s ∈ S, a ∈ A is the reward function, indicating the reward signal the agent will
receive for applying action a in state s. We denote the environments initial state by s0.
Additionally, the MPD has a discount factor γ ∈ (0,1]. It is used to prioritize rewards
over time. With prioritized rewards, short-term rewards are valued more during the
agents’ learning progress than long-term rewards. The agent tries to maximize the
discounted return

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ...

=
T∑

k=0
γkRk+t+1,

where t = 0, 1, .. denotes the time steps and T is the last, i.e., the terminal, time step of
the current episode. In non-episodic cases, T is ∞.

In order to maximize the return, an agent can follow different approaches for RL
algorithms. This thesis discusses policy-based approaches and value-based approaches.
Policy-based approaches focus on the agents’ policy. A policy π indicates the probabilities
for selecting an action a in state s. In small state spaces, the agent computes an optimal
policy π∗. Optimal policies lead to maximal returns. In large state spaces, the agent
needs to estimate π∗. This kind of RL algorithms is discussed in section 2.2. Value-based
approaches focus on computing or estimating optimal state-value functions v∗(s). A
state-value function determines the expected return of a state s if following a given
policy. The approach of value-based algorithms is discussed in section 2.3. Sections 2.2
and 2.3 discuss the algorithms relevant to this thesis. As all discussed algorithms fall

3

CHAPTER 2. REINFORCEMENT LEARNING

into the deep reinforcement learning (DLR) category, we will first discuss this topic in
section 2.1.

2.1. Deep Reinforcement Learning

In small environments, an agent can store its experiences in simple data structures
and optimize the expected reward according to these prior experiences. This is not
possible in environments with large state spaces, in which it is infeasible to observe
even nearly all states. Therefore, an agent must be capable of generalizing experiences
to similar states. To this end, instead of calculating the optimal policy or state-value
function during the learning process, an agent needs to learn to approximate them.
As a function approximator, an agent can use an artificial neural network (ANN) [41].
ANNs consist of several units grouped into layers. An input vector X with p variables
X = (X1, X2, ..., Xp) serves as input layer. An arbitrary number of hidden layers can
follow it. Units in these hidden layers compute functions that the ANN will learn based
on input data. An output layer completes the neural network. This output layer finally
predicts the neural network’s outcome f(X) = Y [19]. The final output of a neural
network is then the estimation made by the agent. In the following, θ refers to the
parameters of a neural network.

A special kind of neural network is a convolutional neural network (CNN). CNNs are
specialized for processing input data with grid-like structures. Hence, CNNs are often
used for working with image input [13].

2.2. Policy-based Algorithms

Policy-based algorithms focus on the agents’ policy to reach the goal within an environ-
ment. A policy π is a mapping over the state space S to a probability distribution over
the action space A. Therefore, a policy π determines which action a the agent takes if
being in state s with what probability. Therefore, π(a, s) is the probability of the agent
taking a in s. Policy-based algorithms use the interaction learning loop of the agent and
the environment to adjust the agents’ policy in order to maximize the expected reward.
The agent chooses an action by sampling over the policy. Sampling has the side effect
that, given enough training time, the agent will perform and observe the consequence
of all possible actions.

2.2.1. REINFORCE

REINFORCE [45] is a policy-based gradient ascend method.

4

2.2. POLICY-BASED ALGORITHMS

Given a policy parameterization π(a|s, θ) and a step size α, REINFORCE works by
applying algorithm 1.

Algorithm 1 REINFORCE Pseudocode
Initialize a policy network θ
while not converged do

Perform a complete episode e = S0, A0, R1, ..., ST −1, AT −1, RT

for t = 0, 1, ..., T − 1 in e do
θ ← θt + α Gt

∇π(At|St,θt)
π(At|St,θt) = θt + α Gt ∇ln π(At|St, θt)

end for
end while

2.2.2. Proximal Policy Optimization

Another policy-based method is proximal policy optimization (PPO) [40]. It was
introduced in two versions: a version using a clipped surrogate objective and a version
using a kullback leibler divergence [28] penalty coefficient. Relevant to this thesis is the
first version with the clipped surrogate objective. The key idea behind PPO is that for
each update step the agent takes, it is ensured that the new policy does not deviate
much from the old one. In order to achieve this, it uses two policy networks: the current
policy πθ(at|st) and the old policy, which was used for sampling, πθold

(at|st). Using this,
let rt(θ) be the probability ratio defined as

rt(θ) = πθ(at|st)
πθold

(at|st)
.

Additionally, we introduce Ât as the estimator of an advantage function in t. An
advantage function Aπ(s, a) indicates the value of an action [2]. In small state spaces,
Aπ(s, a), the agent can compute the advantage of action a in state s as

Aπ(s, a) = Qπ(s, a)− Vπ(s).

The agent needs to estimate it in large state spaces, similar to the Q-function. Ât is
used in this algorithm instead of the expected reward. Finally, we introduce the clipped
objective for PPO as

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât],

where ϵ is a hyperparameter which controls the clip range. The main objective Êt[rt(θ)Ât],
introduced by Schulman et al. for the trust region policy optimization (TRPO) [39], is
clipped by the second term. Therefore, if the probability ratio is not within the interval
[1− ϵ, 1 + ϵ], it is clipped. The clipping prevents changes in the policy that are too large.
Through this clipping process, an agent’s learning process becomes more stable, which
leads to better results [40]. Finally, we can discuss the full PPO algorithm based on

5

CHAPTER 2. REINFORCEMENT LEARNING

a clipped surrogate objective. Given policy parameters θ0 and a clipping parameter ϵ,
algorithm 2 demonstrates the PPO procedure.

Algorithm 2 PPO Pseudocode
Initialize k = 0
while not converged do

Collect trajectories based on π(θk)
Estimate Âπk

t

θ ← arg max LCLIP
θk

(θk)
k ← k + 1

end while

2.3. Value-based Algorithms

Value-based algorithms focus on learning the state values for an environment. Given
a state s, the state-value function estimates the expected return of s when following
a given policy π. The value of taking an action a in state s under π is denoted by
qπ(s, a). The action-value function over all possible states for π is called qπ. Value-based
reinforcement learning algorithms focus on learning the state values for an environment
and acting by choosing the best action in a specific state. Note that in this case, active
exploration is necessary. Otherwise, an agent possibly does not discover the entire state
space.

2.3.1. Deep Q-Networks

Deep Q-Networks (DQN) is a value-based reinforcement learning method introduced by
Mnih et al. [31, 33]. It is a gradient descent method based on the concept of Q-learning.
Q-learning is a method for small state spaces based on a Q-table. During the learning
process, an agent builds up a table of state-action values indicating the value of an
action a taken in step s. This value is then called Q-value. The agent will base its
further decisions on Q-values to maximize the expected reward. Computing a table of
Q-values is only feasible for small state spaces. In large state spaces, an agent needs
to approximate the Q-values by an approximator. As a function approximator for
Q-values, the DQN algorithm uses neural networks [31]. A second neural network is
used to increase the stability of this approximator. This target network is updated
periodically [33]. Additionally, as with this method the best action is always chosen, a
DQN agent would not explore the entire action space. Therefore, active exploration is
necessary, which is achieved by using ϵ-greedy exploration. Given a probability epsilon,
a random action is selected instead of the most promising action [31]. DQN uses a
memory buffer to replay experienced observations [31]. The general DQN algorithm
works as shown in algorithm 3.

6

2.3. VALUE-BASED ALGORITHMS

Algorithm 3 DQN Pseudocode
Initialize the replay memory buffer D, the action-value network Q with random
weights θ and the target network Q̂ with weights θ− = θ
while not converged do

Initialize an episode, set t = 1
for t = 1, ... do

if prob < ϵ then
Choose random action at

else
Choose best action at according to Q

end if
Execute action at and observe reward rt and next state st+1
Save the observation in D
Sample a minibatch from D
θ ← θt + α(r + γ maxa′ Q(s′, a′; θk)−Q(s, a; θk))∇θk

Q(s, a; θk)
After C steps, reset the target network Q̂ = Q
t← t + 1

end for
end while

With the introduction of DQN, reinforcement learning algorithms achieved nearly
human-level results in the arcade learning environment [3].

7

3. Generalization

Commonly, trained RL agents are applied in different environments than they were
trained in [48]. Especially in real-life situations, details of the environment or their
challenges can differ from those situations the agent experienced during training [25].
It is infeasible to train an agent in all possible scenarios. Hence, agents must transfer
their knowledge and insights into similar conditions without the need to be retrained.
It is crucial for the agent to understand the underlying task and not get lost in details
that are not relevant to the task itself. At the same time, the agent needs to be able to
transfer these insights when confronted with new or modified situations. This ability is
known as generalization [41].

Yet, in reinforcement learning, an agent is often assessed by its training performance [29,
48], i.e., metrics such as game scores or goal reachability are measured during training.
The better the score becomes over time, the more successful the agent is. At first
sight, this seems a good metric: an agent that gets high rewards and therefore performs
well has learned to act successfully in the environment. Yet, several studies show
that the training score only indicates the agents’ performance in the specific training
environment [6, 7, 18, 48]. Even slightly different environments can be challenging for
an agent that scored perfect in the training environment. Details such as a changed
background color in a game environment can impact an agent’s performance [42]. This
scenario is known as overfitting [41]: the agent learned to solve challenges in its training
environment, but the knowledge the agent gained is not general but specific to the
training environment. It cannot transfer its skills, i.e., generalize, to similar scenarios.
This issue is well known in machine learning, and other machine learning subareas
developed evaluation strategies that consider the possibility of overfitting. This chapter
investigates existing mechanisms to detect overfitting in reinforcement learning. In
section 3.1, we discuss methods used to stochastically modify training environments.
Section 3.2 focuses on the importance of splitting training and test environment. Finally,
in section 3.3 , we discuss procedurally generated environments.

3.1. Stochastically Modified Environments

To be able to detect overfitted agents, several approaches were introduced to modify
the environment during testing time. These approaches have in common that they
are still based on the training environment but modify parts so that the environment
behaves stochastically. Known methods to achieve this include sticky actions [30] and
random starts [35]. The idea behind sticky actions is to repeat the action chosen by
an agent in step t− 1 instead of performing the action the agent chose in step t by a

9

CHAPTER 3. GENERALIZATION

specified stickiness factor ζ. Therefore, stochasticity affects the agents’ behavior: the
agent cannot be sure that its selected action is performed. Random starts put the agent
into arbitrary initial states during evaluation time. Therefore, the stochasticity affects
the environment’s initial setting, but neither the agents’ behavior nor aspects later
during the episode. Machado et al. propose to use sticky actions during agent evaluation
to detect overfitting [30]. And indeed, algorithms that exploit determinism within the
environment, e.g., the Brute [4] failed in this setting [30]. These algorithms do not
manage to adapt to these minor modifications. Yet, Zhang et al. demonstrated that
neither sticky actions nor random starts are sufficient to detect or prevent overfitting
for more complex reinforcement learning algorithms [48].
Therefore, while being an approach to detect agents that exploit determinism, stochas-
ticity added to the training environment is not the ideal tool to detect overfitted agents
in general.

3.2. Splitted Training and Test Environment

As discussed, stochastically modifying the environment does not yield the desired
solution. It neither prevents overfitting reliably nor does it guarantee to detect that
an agent is overfitted to the environment [48]. Hence, as another approach to detect
overfitted agents, the idea to split the training and testing environment arose: an agent
is trained in a training environment, and its generalization capability is evaluated in
a test environment [29, 47, 48]. With this training and test environment split, we get
the training performance the agent achieves during training time. Additionally, the
agent is tested in a similar but unknown environment, which provides us a evaluation
performance or test performance. Having the additional test performance, we can either
look at the test performance directly or compute the generalization performance [48].
The generalization performance is the difference between the training performance and
test performance. This thesis will consider the generalization performance as suggested
by Zhang et al. [47], and Zhang et al. [48]. With this procedure, the agents’ training
performance, as well as the generalization performance, can be investigated altogether.
The training and generalization performance combination gives a good impression of
the agents’ overall performance. A good training performance with a bad generalization
performance means the agent will most likely not be able to solve scenarios it has
not explicitly seen during training. Deciding to apply an agent solely based on its
training progress can therefore lead to poor decisions [49]. On the other hand, a good
generalization performance of an agent with a low training score means the agent will
most likely not be able to solve problems in general. Thus, an ideal agent has a high
training performance and, at the same time, a good generalization performance. A good
training score and a good generalization performance in combination mean that the
agent can solve challenges and transfer the knowledge gained during training to new
scenarios.

10

3.3. CALL FOR PROCEDURALLY GENERATED ENVIRONMENTS

3.3. Call for Procedurally Generated Environments

In well-known reinforcement learning environments, e.g., the arcade learning environment
(ALE) [3], which is based on the atari 2600 games, the levels of an environment are
humanly designed. Another option is to generate these instances or levels procedurally.
This generation process can affect several aspects of an environment. In ProcGen,
it influences parts of the environment like the level layout, game assets, the location
of enemies, obstacles, and other relevant objects [6]. A study demonstrated that
procedurally generated environments benefit the agents’ performance [22]. Besides that,
it has been shown that the generalization capabilities of an agent increase with the
number of levels it can access during training [6, 7, 47, 48]. Procedural generation offers a
way to create a large number of different levels [20] that encourage an agent to generalize
insights [6]. This advantage makes benchmarks with handcrafted level design, e.g., ALE,
which served as a gold standard for reinforcement learning agents [6], less valuable [6, 22].
It has been demonstrated that agents trained in traditional level setups as typical for ALE,
agents’ do not develop good generalization capabilities. The generalization capabilities
can even be low if the training performances of agents are greatly promising [6]. Therefore,
the usage of procedurally generated environments is encouraged by two major aspects:
the large variety of levels [6, 48] and the insight that procedurally generated levels
help the agent to generalize across levels [22]. Several benchmarks that use procedural
generation were introduced in the last years [6, 8, 11, 16, 21, 26, 36, 46]. This thesis
will focus on the ProcGen benchmark [6].

11

4. The ProcGen Benchmark

ProcGen [6] is a reinforcement learning benchmark with 16 unique environments. Each
environment has the character of a mini-game, similar to the well-known Arcade Learning
Environment (ALE) [3]. In each environment, a reinforcement learning agent takes the
role of a player in a single-player game. Observations are 64× 64× 3 Red-Green-Blue
(RGB) images. The action an agent can perform in each environment is within a discrete
action space providing 15 actions per environment. In some environments, no-op actions
are added to obtain a common interface with the same number of actions in each
environment.

Each environment has a deterministic state transition function. Therefore, being in
a state s, and the agent choosing an action a, the outcome of the application of a
in s will always be the same state s′, with the same reward r. This determinism
might lead the agent to learn which action is beneficial in a specific state instead
of being able to transfer this to other similar yet different states. However, there is
one environment, chaser, where the enemy moves (pseudo-)randomly. This (pseudo-
)randomness is seed-dependent. For this environment, states that differ by the enemies’
position can follow after an identical state s and action a being chosen. Additionally,
most environments are partially observable. Therefore, despite having a deterministic
state transition function, we can still argue that the partially observable environments
are stochastic [23]. The agent does not see the complete state most of the time, so it
does not have enough information to determine the state and its upcoming next state.
Therefore, although the transition function is deterministic, from the agent’s perspective,
the environment behaves stochastically. Note that this is true only for environments
with partial observability. Some environments, e.g., heist, are fully observable in the
usual setting.

Instead of providing handcrafted levels in the environment, as in ALE and other RL
benchmarks, each level is generated procedurally. Hence, the design of each level is
highly seed-dependent, and each environment offers a great variety of different levels.
Moreover, as they are generated on the fly, there is no limitation in the number of levels.
The unlimited amount of different levels allows agents to see a great number of various
instances of the same problem, meaning it has a lot of different situations to fine-tune
their knowledge about the environment. However, it also leads to the issue of unsolvable
levels. While ProcGen uses solvability constraints during level building to ensure that
the generated levels are solvable, there still is a chance that the agent cannot solve some
individual levels, i.e., it will eventually fail independently of the actions it chooses. For
one of the 16 environments, the agent will even die after the first step in about 7% of
the levels [6]. For the other environments, the amount of levels the agent cannot solve
is expected to be less than 1% [6].

13

CHAPTER 4. THE PROCGEN BENCHMARK

Figure 4.1.: Coinrun

4.1. Procedurally Generated Parts in ProcGen Environments

The procedural level generation impacts several aspects of the environment. Some
aspects are relevant for all environments, while others differ between them. We discuss
what aspects are part of the procedural generation.

Background and Assets. The graphical representation of environments consists of
a background that can change in color and other visual details, as well as assets that
determine the look of the player, different categories of enemies, and game objects like
boxes, coins. ProcGen provides different versions for each of backgrounds and assets.
In Figure 4.1 we can see two levels with different assets. The background and asset
versions used in a level are determined during level generation. This leads to a great
variety of the graphical aspects of the environment. An agent must quickly Figure out
the game character, even if the environment looks different. It also needs to ignore
diverse backgrounds and instead focus on the semantic changes in the environment.

Enemies and Objects. Some environments contain enemies the player has to defeat or
avoid. In addition to that, some environments can also contain objects like boxes, coins,
keys. Their location, whether an enemy is moving or static, and sometimes even their
spawn times are part of the levels’ procedural generation. Therefore, the agent needs to
generalize its knowledge about enemies or objects in way it can use this knowledge in
unseen levels with unknown enemy and object positions.

14

4.1. PROCEDURALLY GENERATED PARTS IN PROCGEN ENVIRONMENTS

Figure 4.2.: Caveflyer

Platforms. Some game surroundings consist of multiple platforms the agent can walk
on and jump between. See Figure 4.1 for an example. Their number, height, and size
are part of this generation process. The more platforms a level has, the larger the map
becomes.

Cave Maps. Some game surroundings are built with cave-like structures as in Figure 4.2.
Using cellular automata [20], these cave structures are generated during the procedural
generation process of a level. Therefore, each level has a unique cave, resulting in
individual level maps.

Mazes. Similar to caves, mazes as in Figure 4.3, which are part of some game sur-
roundings are generated during the creation process. These mazes are created using
Kruskal’s algorithm [27] and also look different at each level. This leads to a great
variety of different mazes that an agent will have to solve in this benchmark.

Game Constants. Additionally, game constants like the health points of a boss and
attacking sequences are part of the procedural generation.

15

CHAPTER 4. THE PROCGEN BENCHMARK

Figure 4.3.: Heist

4.2. Evaluating Agents on ProcGen

The ProcGen benchmark can be used for agent evaluation. In this section we discuss
the different settings that can be used as well as special modes that can be used to
evaluate advanced agent skills.

General Evaluation Settings. ProcGen provides different environmental settings for
agent evaluation: in the default setting (distribution mode: hard), the generated levels
are more likely to be harder to solve. Depending on the game, this can influence the map
size, the number of enemies, and other aspects of the environment. In this setting, the
agent will face challenging situations more often than easy ones. Sometimes, especially
if computing capacities are limited, it can be beneficial to train the agent in a less
challenging environment. In this case, the distribution mode can be set to easy. With
this setting, the generated levels are mostly easier to solve. Therefore, the agent learns
to solve the levels faster, which decreases the need for computation time. Note that
the difference between the distribution modes hard and easy influences the probability
distribution of hard and easy levels, not the level generation in general. In both settings,
there will be both, hard and easy levels. Additionally, ProcGen supports distribution
modes exploration and memory for some environments. Both settings provide special
levels to investigate the exploration skills or the memory usage of an agent within the
environment.

Generalization. In chapter 3, we discussed the importance of an agent’s ability to
generalize knowledge about the environment to similar yet slightly different situations.

16

4.2. EVALUATING AGENTS ON PROCGEN

ProcGen provides functionality to evaluate an agent’s generalization performance: the
agent can be trained on an arbitrarily large but fixed set of levels. During evaluation
time, the agent then has to solve levels it did not see during training. This way, we can
easily see how the agent performs in unknown situations: if it was able to generalize its
insights, it would score similar to the training levels. Yet, if the score during training is
high but low during evaluation on new levels, we can conclude that the agent overfits
the training level set.

Sample Efficiency. Another essential property of agents is their sample efficiency. It
describes how much knowledge agents are able to extract by only a few samples. In the
different ProcGen environments, agents face a variety of different challenges they need
to solve in order to be successful, either by getting a good score or by solving different
levels. We can evaluate an agent’s sample efficiency by training it within a challenging
amount of time. It then needs to learn fast, which means it has to extract as much
information per sample as possible to be successful.

Exploration. In reinforcement learning, the trade-off between exploitation and explo-
ration is an important topic. An agent needs to exploit actions that worked well earlier
to perform well in an environment and solve the given tasks. Yet, on the other hand,
this hinders the agent from exploring the entire action space. Hence the agent might get
stuck with actions from local maxima and not use the action spaces’ full potential. A
special mode of eight different environments in ProcGen helps to evaluate the exploring
behavior of agents. In this mode, the level seed is fixed to generate one specific level.
This level is the only one the agent sees during this training, but it is required to explore
the complete map to solve this level successfully. Note that generalization performance
cannot be evaluated in this mode due to the lack of multiple levels.

Memory. A second special mode makes it possible to evaluate the agents’ capability
to memorize essential aspects of the environment. In general, environments in ProcGen
are designed in a way such that the agent has no or very little memory, and ProcGen’s
authors state that recurrent and non-recurrent algorithms can score similarly [6]. Yet
it can be interesting to investigate how well an agent can utilize memory. Therefore,
ProcGen provides an additional distribution mode that makes it possible to evaluate the
memory skills of an agent: the memory mode, which is supported for six environments.
This mode works by increasing the world size. If not already the case, the environment
gets only partially observable. In two environments, caveflyer and jumper, restrictions
to prevent dead-end paths are removed during level generation. These changes require
the agent to use memory in order to solve the levels confidentially.

17

CHAPTER 4. THE PROCGEN BENCHMARK

4.3. Game Mechanisms

Although ProcGens’ 16 environments are unique games with different challenges, the
environments can be grouped according to different aspects. This section discusses the
possible groupings we will focus on during our analysis in chapter 6.

Non-friendly vs. Friendly. Most ProcGen environments are not peaceful. In these
environments, levels can end early. This can happen if the agent collides with or gets
shot by an enemy. Another possible threat to the agent is lethal obstacles. Colliding
with these obstacles will also lead to an early end of the level. We use the term enemy in
this context for moving or shooting entities that can kill the agent and lethal obstacle for
static objects that lead to the death of a player when colliding with them. In extreme
cases, like in bigfish or fruitbot, only a part of the enemies or obstacles are evil, while
colliding with others actually leads to a reward. Additionally, ProcGen provides three
friendly environments. In these environments, the agent can only succeed or time out.
Table 4.1 lists the environments according to their type.

Game Enemies Obstacles Friendly
bigfish x - -
bossfight x x -
caveflyer x x -
chaser x - -
climber x - -
coinrun x x -
dodgeball x x -
fruitbot - x -
heist - - x
jumper - x -
leaper x x -
maze - - x
miner - x -
ninja - x -
plunder - - x
starpilot x x -

Table 4.1.: Non-friendly and friendly environments in ProcGen

Main Challenges. The different environments provide several different sorts of chal-
lenges. We focus on five challenges: Moving to a specified goal, collecting specific objects,
opening doors, avoiding enemies and lethal objects, destroying enemies or obstacles
and surviving active attacks. The first three challenges are independent of enemies or
obstacles and can also hold in friendly environments. They are listed in table 4.2. In

18

4.3. GAME MECHANISMS

contrast, the last three challenges can only occur in non-friendly environments. They
are listed in table 4.3.

Game Move to Goal Collect Open
bigfish - x -
bossfight - - -
caveflyer x - -
chaser - x -
climber - x -
coinrun x x -
dodgeball x - -
fruitbot x x x
heist x x x
jumper x x -
leaper x - -
maze x x -
miner x x -
ninja x x -
plunder - - -
starpilot - - -

Table 4.2.: Game challenges, possibly friendly

Surrounding. ProcGen provides different kinds of environmental surroundings. These
are usually part of the procedural level generation. Some games like coinrun consist
of multiple platforms. To be successful, the agent needs to move forward on these
platforms. Often it has to be careful about enemies on platforms, or it has to collect
objects placed on them. Also, the agent might fall down from a platform, sometimes
leading to losing the level. Other games have maze structures in which the agent has to
move around, e.g., in heist, the agent has to collect keys to open doors. To achieve this,
the agent has to move within and explore a level’s maze. Another possible environmental
structure is the cave. The agent usually has to look for the goal in these caves, such as
in caveflyer. In some environments, caves contain platforms on which the agent can
walk. Other environments have walls that the agent must not walk against but do not
have other structures besides these walls. Another possible surrounding is without a
concrete structure, e.g., in bigfish, there are no platforms or walls. In some of these
open surroundings, the agent has to avoid lethal objects, e.g., falling rocks in miner.
Table 4.4 lists the different surrounding types.

19

CHAPTER 4. THE PROCGEN BENCHMARK

Game Avoid Fight Survive
bigfish x - -
bossfight x x x
caveflyer x - -
chaser x - -
climber x - -
coinrun x - -
dodgeball x x x
fruitbot x - -
heist - - -
jumper x - -
leaper x - -
maze - - -
miner x - -
ninja x - -
plunder - x -
starpilot x x x

Table 4.3.: Game challenges, non-friendly

Platforms Mazes Caves Walls Open
climber chaser caveflyer dodgeball bigfish
coinrun heist jumper 1 fruitbot bossfight
jumper maze ninja1 leaper
ninja miner

plunder
starpilot

Table 4.4.: Possible surroundings in ProcGen environments

Full vs. Partial Observability. As discussed at the beginning of this chapter, some
environments are fully observable, i.e., the agent can observe the entire environmental
state. Contrary, some environments are only partially observable, i.e., the agent cannot
observe the whole map at a single point in time. The partitioning of the fully and
partially observable environments is listed in table 4.5.

Negative Rewards and Penalties. Most games only provide positive rewards. Some
of them possibly end when colliding with lethal obstacles or being killed by an enemy.
However, there are two exceptions: fruitbot provides negative rewards for collecting
unhealthy objects instead of fruit. Further, plunder provides penalties for shooting

1Note that this environment is listed twice because the cave contains platforms. Only on those
platforms the agent can move through the cave

20

4.3. GAME MECHANISMS

Full obs. Partial obs.
bigfish caveflyer
bossfight climber
chaser coinrun
dodgeball fruitbot
heist jumper
leaper ninja
maze starpilot
miner
plunder

Table 4.5.: Observation spaces in ProcGen

friendly ships instead of enemy ones. This penalty decreases the remaining time to solve
the level. Both are interesting categories.

Reward Structures. The reward structure differs between the environments. We
detect three different structures that we can group the environments with: very sparse
rewards, where the agent only gets a reward when successfully solving a level, and two
types of intermediate rewards. In the first intermediate reward category, the agent gets
rewarded for one thing, e.g., collecting coins or killing enemies. The other category
also provides intermediate rewards, but they are provided for different actions than
those that successfully end a level. An example of this category is the game caveflyer :
the final and most significant reward is provided for finding the goal. However, during
the running level, the agent can also collect smaller rewards by killing enemies. The
categorization of the reward structure is shown in table 4.6.

Level-end only Intermediate, identical Intermediate, different
coinrun bigfish caveflyer
heist bossfight dodgeball
jumper chaser fruitbot
leaper climber miner
maze plunder
ninja starpilot

Table 4.6.: Reward structures in ProcGen

21

5. Experiments

This chapter explains and shows details regarding the performed experiments. In section
5.1, we discuss the four agents that are trained and evaluated in the experiments.
The two different setups of the experiments are discussed in section 5.2. The agents’
hyperparameters, as well as how they have been obtained, are presented in section
5.3. Additional information about the reproducibility of the experiments is provided
in section 5.4. Finally, we provide an overview of our results in section 5.5. The final
analysis of the experiments will take place in chapter 6.

5.1. Agents

This thesis aims to compare multiple deep reinforcement learning algorithms according
to their training and generalization performance and classify game mechanisms that the
agents solve particularly well or poorly. To this end, four different agents were trained
in the experiments based on three algorithms. The following paragraphs discuss the
different agents. All agents use the Adam optimizer [24].

REINFORCE. The first agent is an implementation of the episodic REINFORCE
algorithm by Williams [45]. The implementation originates from the open-source library
ChainerRL [12]. ChainerRL is a deep reinforcement learning library that provides
open-source implementations of well-known DRL algorithms to enable reproducible
research results. Specifically, we use the implementation of the Preferred Reinforcement
Learning (PRFL) library, which is a direct successor of ChainerRL. Instead of Chainer
networks [44, 43], as in ChainerRL, PFRL algorithms are compatible with neural
networks implemented with PyTorch [38].

PPO. The second agent originates from the ProcGen introductory paper [6]. It is a
PPO implementation published in the openAI baseline repository [9]. The implementa-
tion is optimized for GPU usage.

DQN M . For the third agent, we use an implementation of the DQN algorithm provided
by Gros et al. [15].

23

CHAPTER 5. EXPERIMENTS

DQN P . The fourth agent is based on a different DQN implementation. This agents’
DQN implementation stems from ChainerRLs’ PyTorch library PFRL [12]. While, in
theory, the same algorithm should produce identical results, it has been demonstrated
that different implementations can differ a lot, presumably by missing details in the
publication of the algorithms [17]. Combined with a hint that DQN does not work well
on ProcGen [34], it is interesting to investigate this behavior further.

5.1.1. Network

All agents use the same network proposed by Cobbe et al. in the ProcGen introduction [6].
This network was introduced with the IMPALA agent [10] and compared against the
NatureCNN network [32]. Experiments demonstrated that the IMPALA network
outperforms NatureCNN both in sampling efficiency and generalization performance [6].
Cobbe et al. omit the long short-term memory (LSTM) part of the IMPALA network.
The decision is probably based on the fact that ProcGen was designed so that agents
do not need much memory. An exception to this is the memory mode, as discussed in
chapter 4.2. Further experiments showed that on ProcGen, the LSTM part does not
improve performance in general. In some environments, it additionally led to unstable
training progress [6].

5.2. Setup

We performed the experiments in two different settings for each agent: an easy and a
hard setting. Details of the easy setting are presented in section 5.2.1, and the details
for the hard setting are shown in section 5.2.2. In each setting, agents are trained for a
specified amount of steps instead of episodes. We decided on this because it matches
the training process in the ProcGen introduction paper [6]. Additionally, Machado et
al. argue for a step-based setup instead an episodic setup: Often, if an agent performs
well, it also takes more steps within one episode. Being allowed to perform more steps
means that agents that learn fast have access to more observations than slow learning
agents. Making less observations can be a disadvantage for slow learning agents [29]. In
each episode, an agent faces one level, which is sampled at the beginning of the episode.
The episode ends this level, i.e., either because the agent won the level, it is defeated
by an enemy, or the maximal amount of steps per episode are taken. The last value
is given by the environment itself. The experiments are run in both settings on all 16
ProcGen environments on three seeds each. The results of the different seeds are then
averaged.

24

5.2. SETUP

5.2.1. Easy Setting

The first setting for our experiments is the easy setting. In this setting, each agent is
trained for 3 million time steps. During this training phase, the agent has access to
200 different levels. Additionally, the distribution mode of each environment is set to
easy. The sampled levels are, on average, less challenging than in other distribution
modes. Therefore agents are expected to learn faster [6]. The easy distribution mode
was introduced to enable users of ProcGen with less computing capabilities to run
experiments with fewer resources.

5.2.2. Hard Setting

We refer to the second setting as the hard setting. In this setting, each agent is trained
for 12 million time steps with 500 differently sampled levels the agent has to solve during
the training process. In the hard setting, the distribution mode of each environment is
set to hard. Cobbe et al. introduced this distribution mode as the default distribution
mode [6]. We expect the agents to perform similarly as in the easy setting.

5.2.3. Final Note on the Settings

Cobbe et al. allowed the agent to train for 200 million steps. While this is more than
in our setting, this came not with a specific reason but rather because this amount of
steps is used frequently on ALE [6]. An additional argument by Cobbe et al. was that
their PPO agent needed roughly 24 hours for 200 million steps, which they claimed to
be an acceptable amount of time [6]. We figured out that our three other agents are
much slower in computation time, e.g., the REINFORCE agent took roughly one day
for 12 million steps on the heist environment1. Due to limited computing capabilities,
we restricted the training steps to 12 million in the hard setting and 3 million in the
easy setting. The relation of training steps between easy and hard distribution modes
stays the same as in Cobbe et al. [6]. In contrast to the decision of time steps, where the
authors followed known ranges, the amount of levels in each distribution mode comes
with a reason. During experiments, Cobbe et al. figured out that for their PPO agent,
this was the number of levels needed to impact the generalization performance [6].

5.2.4. Training and Generalization Performance

For each agent, the training performance is measured as the mean score over the last
few thousand steps during training in the environment. Additionally, the generalization

1The agent run on a machine with a V100 GPU and an Intel Xeon CPU.

25

CHAPTER 5. EXPERIMENTS

performance, as discussed in chapter 3, is measured. To this end, after a fixed amount
of steps, the agent has to solve unknown levels in an evaluation environment. The
evaluation performance is tracked like the training performance. We subtract the
evaluation scores from the training scores to calculate the generalization performance.
While in the evaluation environment, the agent will not continue learning and only
access unknown levels.

5.3. Hyperparameter

In this section, we discuss the different hyperparameters of each agent and how we
obtained them.

5.3.1. PPO

With the publication of ProcGen, Cobbe et al. also published the results of a PPO
agent on the benchmark [6], including the hyperparameters tuned by them. Table 5.1
lists the hyperparameters. We stick to these hyperparameters.

Hyperparamater Value
γ 0.999
λ 0.95
Minibatch size 8
Entropy bonus β 0.01
Clip range 0.2
Reward normalization yes
Learning rate 5× 10−4

Loss coefficient 0.5
Max grad norm 0.5

Table 5.1.: PPO hyperparameter

5.3.2. REINFORCE

Due to time and computing capability constraints, we reuse the tuned hyperparameters
from the PPO agent. The hyperparameter relevant and used for REINFORCE are
listed in table 5.2.

26

5.3. HYPERPARAMETER

Hyperparamater Value
Entropy bonus β 0.01
Learning rate 5× 10−4

Max grad norm 0.5
Minibatch size 8

Table 5.2.: REINFORCE hyperparameter

5.3.3. DQN M

For DQN, we did not have any hyperparameters we could confidentially reuse. Therefore,
we tuned the hyperparameters ourselves. Table 5.3 lists the hyperparameters. We
performed the hyperparameter tuning on four environments: coinrun, fruitbot, heist,
and starpilot. We selected four environments that provide different game mechanics
and challenges for the agent. We tuned the parameters in the easy setting discussed in
section 5.2.1 on three different random seeds per environment. Due to time and compute
capacity, we did not tune the full cross product of all combinations of hyperparameters.
Instead, we started with a specific parameter, tuned it, fixed this parameter to be the
best value, and then tuned the following parameter. The hyperparameter tuning only
considers training performance. The evaluation runs in unknown environments are not
taken into account.

Hyperparamater Value
ϵ start 1.0
ϵ end 0.01
ϵ decay 0.9
Learning rate 5× 10−6

γ 0.999
τ 0.01
Batch size 32
Buffer size 50000

Table 5.3.: DQN hyperparameter

5.3.4. DQN P

DQN M and DQN P implement the same algorithm. Hence, we use the same hyperpa-
rameter for both agents as listed in Table 5.3.

27

CHAPTER 5. EXPERIMENTS

5.3.5. Final Note

The agents based on PFRL implementations have an additional hyperparameter reward-
scale-factor. It controls the scaling of rewards provided by the environment. It speeds
up the learning process of agents [12]. Despite this hyperparameter seeming to have a
small impact in the first experiments, we decided to fix it to 1, i.e., omit to scale. We
took this decision mainly for two reasons:

1. Usually, the hyperparameters control algorithmic aspects of the agent rather
than the environmental part. Especially because in reinforcement learning, the
environment is defined as everything that the agent cannot control [41]. It seems
a bit counterintuitive to add a hyperparameter for agents that modifies the
observation provided by the environment.

2. First experiments hinted that the hyperparameter is different for the agents. While
we could have added this additional hyperparameter to the other two agents to
make it fairer, the training progress would not be comparable as the results would
have different scales.

Especially the combination of these two arguments made us omit the hyperparameter.

5.4. Reproducibility

A common problem in reinforcement learning is that it is hard to understand how
researchers achieved their results, even if an agent’s hyperparameters are provided. We
provide everything necessary in this section to enable our readers to understand how
results were achieved.
If not stated otherwise, the experiments were conducted using Python 3.9.13, PyTorch
1.9.1, NumPy 1.22.4, gym 0.15.4, and ProcGen 0.10.7.
The implementations of agents REINFORCE , and DQN P were taken from the Chain-
erRL library. To this end, we used PFRL version 0.3.0.
The DQN M agent relies on RLMate [14]. In the experiments, we used RLMate version
0.1.0.
All agents above used a PyTorch implementation of the IMPALA network. The results
are GPU-dependent.
To achieve reproducibility on identical GPUs, in the PyTorch backend, the option
deterministic and benchmark for the deep neural network library cuDNN need to be
set to True and False, respectively. The first option ensures that only deterministic
functions are used on the GPU. The second option abstains from optimizing algorithm
decisions on the GPU whenever multiple algorithms usually exist. We tried this, and the
results were roughly 4x slower, i.e., a single run took roughly 24 hours for 3 million steps
instead of roughly 7-8 hours. At the same time, we do not expect significant changes in

28

5.5. RESULTS

the results. Therefore, for the scope of this thesis, we omit full reproducibility. Due to
compatibility issues, the experiments with the PPO agent were performed using Python
3.7.3. Besides this, we stuck to the Tensorflow [1] implementation of the IMPALA
network, as reprogramming it would have been too complex. To this end, we used
Tensorflow 1.15.0.

5.5. Results

This section presents the results of all four agents in all settings. We show the training
and generalization performance in different graphics for better readability. We performed
the experiments on three seeds and plotted the average performance of the three runs
each. The training and generalization performance for each agent in combination are
shown in Appendix A.1 - A.8.

5.5.1. Easy Setting - Training Performance

Figure 5.1 shows the training results in the easy setting for all four agents in all 16
environments. The PPO agent outperforms all three other agents in all environments.
The only exception is the environment plunder, where the REINFORCE agent performs
similarly to the PPO agent. Except for the environments bossfight, caveflyer, and
fruitbot, all agents outperform the DQN M agent.

(a) bigfish (b) bossfight

29

CHAPTER 5. EXPERIMENTS

(c) cavefyler (d) chaser

(e) climber (f) coinrun

(g) dodgeball (h) fruitbot

30

5.5. RESULTS

(i) heist (j) jumper

(k) leaper (l) maze

(m) miner (n) ninja

31

CHAPTER 5. EXPERIMENTS

(o) plunder (p) starpilot

Figure 5.1.: Training performance - easy setting

32

5.5. RESULTS

5.5.2. Easy Setting - Generalization Performance

Figure 5.2 shows the generalization performance results in the easy setting for all four
agents in all 16 environments. As the generalization performances were a lot more
unstable than the training performances, we smoothened the visualization by averaging
up to the 10 last results. We see that the PPO and DQN P agents often show the
highest generalization performances, whereas the DQN M and REINFORCE agents
often show a generalization performance around zero or even a negative performance.
The latter indicates that the agent performs better in the evaluation than in the training
environment.

(a) bigfish (b) bossfight

(c) cavefyler (d) chaser

33

CHAPTER 5. EXPERIMENTS

(e) climber (f) coinrun

(g) dodgeball (h) fruitbot

(i) heist (j) jumper

34

5.5. RESULTS

(k) leaper (l) maze

(m) miner (n) ninja

(o) plunder (p) starpilot

Figure 5.2.: Generalization performance - easy setting

35

CHAPTER 5. EXPERIMENTS

5.5.3. Hard Setting - Training Performance

Figure 5.3 shows the training results in the hard setting for all four agents in all 16
environments. The results are pretty similar to the results from the easy setting. Again,
in all environments except for plunder, PPO outperforms the other agents. However,
all agents tend to score less.

(a) bigfish (b) bossfight

(c) cavefyler (d) chaser

36

5.5. RESULTS

(e) climber (f) coinrun

(g) dodgeball (h) fruitbot

(i) heist (j) jumper

37

CHAPTER 5. EXPERIMENTS

(k) leaper (l) maze

(m) miner (n) ninja

(o) plunder (p) starpilot

Figure 5.3.: Training performance - hard setting

38

5.5. RESULTS

5.5.4. Hard Setting - Generalization Performance

Figure 5.4 shows the generalization performance results in the hard setting for all four
agents in all 16 environments. As for the easy setting, we smoothened the results by
averaging up to the last 10 results. The generalization performances are similar to the
results in the easy setting. However, DQN P seems to show generalization performances
around zero more often.

(a) bigfish (b) bossfight

(c) cavefyler (d) chaser

39

CHAPTER 5. EXPERIMENTS

(e) climber (f) coinrun

(g) dodgeball (h) fruitbot

(i) heist (j) jumper

40

5.5. RESULTS

(k) leaper (l) maze

(m) miner (n) ninja

(o) plunder (p) starpilot

Figure 5.4.: Generalization performance - hard setting

41

6. Analysis

In chapter 5, we already discussed the experiments. This chapter analyzes the results
under four different aspects. The training performance of the agents is analyzed in
section 6.1. The generalization performance of each agent is analyzed in section 6.2.
Additionally, we analyze the impact of different game mechanics, as discussed in 4.3 in
section 7. Finally, we analyze the influence of the two different settings, as discussed in
5.2 in section 6.3.
The analysis will focus on the easy setting. The only exception is section 6.3, which
discusses the differences in performances between the easy and hard settings.

6.1. Training Performance

As a first step of the analysis, we look at the general impression of each agent’s training
progress. The training performance, as pictured in chapter 5.5, does neither consider
the maximal reachable score, nor a trivial score that should be easy to achieve. To
better rate the results, we consider these maximal and trivial scores per environment in
this part of the analysis. Table 6.1 lists each environment’s maximal and trivial scores
with an easy distribution mode. We use the values provided by Cobbe et al. [6]. The
maximal scores were determined using different ways. For the environments bigfish,
bossfight, coinrun, dodgeball, heist, jumper, leaper, maze, miner, ninja, and plunder,
the maximal rewards were computed. For caveflyer, chaser, and climber, the scores
were empirically determined. The values for fruitbot and starpilot were determined by
training a PPO agent for eight billion time steps [6]. Additionally, we take a look at the
trivial scores. These were obtained by training an agent with masked observations [6].

The scores between the four agents often differ greatly. For the training performance
analysis, we consider the results depicted in Figure 5.1 in Chapter 5.5.1, and the close-ups
for each agent in Appendix A.1, A.3, A.5, and A.7.

6.1.1. PPO

In general, the PPO agent shows good learning progresses across environments. Es-
pecially in bigfish, bossfight, fruitbot, and starpilot, the training performance increases
significantly with more training steps. A bit less impressive, either due to the learning
curve itself or the amount of score progress, but still good and noticeable progress is
visible in chaser, climber, coinrun, jumper, and miner. In the environments dodgeball
and plunder, there is some but no impressive increase in training performance over time.

43

CHAPTER 6. ANALYSIS

Environment Max Score Trivial Score
bigfish 40 1
bossfight 13 0.5
caveflyer 12 3.5
chaser 13 0.5
climber 12.6 2
coinrun 10 5
dodgeball 19 1.5
fruitbot 32.4 -1.5
heist 10 3.5
jumper 10 3
leaper 10 3
maze 10 5
miner 13 1.5
ninja 10 3.5
plunder 30 4.5
starpilot 64 2.5

Table 6.1.: Maximal and trivial scores for each ProcGen environment with easy distri-
bution mode

Figure 6.1.: Training progress

44

6.1. TRAINING PERFORMANCE

(a) Trivial Score (b) Maximal Score

Figure 6.2.: Scores compared to trivial and maximal score

The training performance is relatively constant in caveflyer, heist, maze, ninja, and
leaper. The correspoding statistics is depicted in Figure 6.1.
As shown in Figure 6.2, the PPO agent meets the trivial scores in all environments. In
caveflyer, miner, and ninja, the training score even gets visibly better than the trivial
score. The training scores for bigfish, bossfight, chaser, starpilot, climber, and jumper
are even better, compared to their trivial score. Very well is the score for fruitbot.
In coinrun, the score even becomes close to the maximal achievable score. However,
compared to the maximal achievable scores, the agent’s performance is only significant
in coinrun, fruitbot, and jumper. In maze and ninja, the agent achieves at least roughly
half of the possible score. A summary is provided by Figure 6.2.

6.1.2. REINFORCE

In general, as visible in Figure 6.1, the REINFORCE agent’s training progress is much
more limited. In some environments, the progress is utterly stable after the first
few thousand steps, with no or minimal improvements in training scores. The agent
shows performance progress in the environments chaser, climber, coinrun, dodgeball,
fruitbot, leaper, ninja, plunder, and starpilot. It is pretty constant for all seven other
environments.
In none of the environments, the agent meets the trivial score. However, for bigfish,
chaser, fruitbot, and plunder, the REINFORCE agent nearly meets the trivial score. A
bit further from the trivial score is the agent in the environments leaper and starpilot.
In all other ten environments, the agents’ training performance is significantly below
the trivial score. Nevertheless, for climber, coinrun, dodgeball, and ninja, it seems the
agent is still learning, but slowly. In the other environments, it possibly got stuck in a
locally optimal policy. These results are concluded in Figure 6.2.

45

CHAPTER 6. ANALYSIS

6.1.3. DQN M

In general, the training progress of the DQN M agent does not seem very promising. The
achieved scores remain pretty constant from the scores from the first few thousand steps.
In the environments caveflyer, climber, coinrun, ninja, and plunder, the performance
even decreases during the training process. However, some training progress is visible in
chaser, dodgeball, fruitbot, leaper, maze and starpilot. Although the improvements are
minor, with more training time, the agent could become better. In fruitbot, the agent
even outperforms the REINFORCE and DQN P agent. These results are summarized
in Figure 6.1. Additionally, the agent meets the trivial score in fruitbot. However, the
agent does not exceed the trivial score often. In all other environments, its score stays
below the trivial score, as visualized in Figure 6.2.

6.1.4. DQN P

The DQN P agent shows promising training progress for several environments. This is
the case for the environments caveflyer, coinrun, fruitbot, maze, and jumper. The agent
improves slightly during the training process in chaser, climber, dodgeball, heist, leaper,
and miner. At the same time, the agents’ performance is relatively stable in bigfish,
bossfight, and starpilot. However, in ninja and plunder, the training performance even
decreases. Results are summarized in Figure 6.1.
The agent can meet the trivial score in the environments bigfish, chaser, and fruitbot.
In bossfight and leaper, it nearly meets the trivial score. In leaper, the learning process
visibly continues, so with more training time, it would probably meet the trivial score.
Not too far from the trivial score is the agents’ performance in starpilot. In all other
environments, the agent misses the trivial score significantly, as depicted in Figure 6.2.

6.1.5. Conclusion

Undoubtedly, the PPO agent outperforms all other agents’ training progresses sig-
nificantly. The only exception is the environment plunder, where the PPO and the
REINFORCE agent reach a similar training score. Difficulties for DQN agents in
ProcGen have already been observed earlier [6, 34].

In plunder, PPO and REINFORCE reach the trivial score. Interestingly, plunder is,
together with climber, one of the only environments where the policy based agents
clearly outperform the value based agents during the full training progress. PPO reaches
the trivial score in all other environments. This is no surprise, as the trivial score is
based on a PPO agent trained with the observations being masked out [6]. In many
environments, PPO even exceeds the trivial score. In coinrun, it even gets close to
the optimal score. The other agents often have trouble reaching even the trivial score.

46

6.2. GENERALIZATION PERFORMANCE

Figure 6.3.: Evaluation performance

However, only considering the training progress without comparing their reached scores,
we see similarities between the agents. All agents show some training progress in chaser,
dodgeball, and fruitbot. In chaser and fruitbot, all agents reach or nearly reach the trivial
score, PPO even gets a quite good overall score. However, in dodgeball, no agent reaches
impressive results. Three agents showed training progress in climber, coinrun, leaper,
and starpilot.
Interestingly, DQN M and DQN P had different tendencies in three environments: cave-
flyer, climber, and coinrun. Here, DQN P showed training progress, whereas DQN M even
showed negative training progress. This strengthens the observations made by Hender-
son et al., which indicate that implementation of the same algorithm and using identical
hyperparameters, as discussed in chapter 5.3.4, can still lead to different results [17].
In the environments caveflyer, heist, and ninja, at most one agent showed noticeable
training progress. In fruitbot, all agents either reached a good score (PPO) or (nearly)
met the trivial score (REINFORCE , DQN M , DQN P). Except for DQN M , the same
holds in the environments bigfish, chaser, and pilot.

6.2. Generalization Performance

This section analyzes the agents’ generalization performance. To this end, we consider
the formula discussed in chapter 3.2, namely the difference between training performance
and evaluation performance. Therefore, the generalization performance can maximally

47

CHAPTER 6. ANALYSIS

Figure 6.4.: Evaluation scores compared to trivial score

be the same as the training score, indicating that an agent does not yield rewards in
the evaluation environment. On the other hand, a negative generalization performance
indicates that an agent performs better in the evaluation environment than in the
training environment. An exception to this is the environment fruitbot, where negative
rewards are possible. Ideally, an agent has a generalization performance around zero.
This means the agent performs equally in the training and evaluation environment.
For the generalization performance analysis, we consider the results depicted in Figure
5.2 in chapter 5.5.2, and the close-ups for each agent in Appendix A.1, A.3, A.5, and
A.7. Often the visualizations in the appendix allow deeper insights, as we can see the
generalization performance compared to the agents’ training performance. We argue
that the same generalization performance weights less in an environment where the
agent achieves high values. In contrast, it is more dramatic in environments with a
lower performance in general.

6.2.1. PPO

In general, the training progress and the evaluation progress look quite similar. However,
compared to the progress during training, in the environments bigfish, dodgeball, and
jumper, the generalization performance increases visibly, i.e., the performance in the
evaluation environments do not keep up with the learning progress in the corresponding
training environment. The agents’ generalization performance increases slightly in the
environments bossfight, caveflyer, chaser, heist, maze, ninja, plunder, and starpilot. The

48

6.2. GENERALIZATION PERFORMANCE

generalization performance is roughly but not wholly zero in the other environments,
i.e, the agent scores similar in training and evaluation. In general, the generalization
performance of the PPO agent is non-negative, i.e., the training performance is always
better or equal to the evaluation performance, as visible in Figure 6.3.
With the proceeding training progress, the generalization performance increases in
nearly all environments, which means the agent cannot transfer all its knowledge from
the training environment to unknown levels.
For nearly all environments, the agent still meets the trivial scores, as summarized in
Figure 6.4. However, in bigfish and jumper, the performance gets significantly closer to
the trivial score. In dodgeball and heist, the agent cannot meet the trivial score in the
evaluation environment.

6.2.2. REINFORCE

In general, the generalization performance of the REINFORCE agent is roughly around
zero, with a tendency towards negative values. Hence, the agent performs equally
or better in the evaluation environment. Especially in environments where the agent
showed training progress, the agent achieves a promising generalization performance.
In the environments dodgeball, plunder, and starpilot, the evaluation performance exceeds
the training performance. Contrary, in fruitbot, leaper, and maze, the evaluation perfor-
mance is visibly worse than the training performance. In all other environments, the
performances are nearly identical. This indicates that the learned policy is stable even at
unknown levels. A summary can be found in Figure 6.3. However, as REINFORCE did
not score too well in training, a generalization performance of roughly zero or slightly
below zero also indicates that the agent does not score too well in general. Yet, in the
environments bigfish, chaser, climber, fruitbot, plunder, and starpilot, the agent achieves
the trivial score in evaluation environment in several levels. Figure 6.4 summarizes
these insights.

6.2.3. DQN M

As depicted in Figure 6.3, the generalization performance of the DQN M agent has
a tendency towards a negative value. This means the agent performs better in the
evaluation environment than in the training environment. This is surprising, as it does
not learn in those environments. Especially as there is seldomly really noticeable training
progress, we are astonished by these results. Especially in bigfish, chaser, dodgeball,
fruitbot, and starpilot, the evaluation performance progresses with training time. In
fruitbot, the evaluation performance increases even significantly with proceeding training.
The evaluation performance is visibly worse in coinrun, jumper, miner, and ninja.
While the training performance only meets the trivial score in the environment fruitbot,
the agent is more successful in the evaluation environment. Here, it meets the trivial
score several times in bigfish, bossfight, and fruitbot. In caveflyer, the agent even learns

49

CHAPTER 6. ANALYSIS

to meet the trivial score regularly towards the end of the training process. In starpilot
only slightly misses the trivial score. A summary of the trivial scores in generalization
is depicted in Figure 6.4

6.2.4. DQN P

In general, the generalization performance of the DQN P agent is not as good as that
of the DQN M and REINFORCE agents. The agents’ generalization performance is
summarized in Figure 6.3.
In bigfish, the evaluation performance is better than the training performance. In
fruitbot, the evaluation performance exceeds the training performance after half of the
training progress. The performances are similar to the training performance in chaser,
dodgeball, fruitbot, and starpilot. However, in chaser, the agent meets the trivial score
in training but not in the evaluation environment. Figure 6.4 shows the summary of
trivial scores in the generalization environments. In caveflyer, climber, coinrun, heist,
jumper, leaper, maze, miner, ninja, and plunder, the evaluation performance is visibly
worse, i.e., the agent does not generalize well or at all in those environments.

6.2.5. Conclusion

The generalization performance of PPO and the other three agents is hard to compare.
This is because PPO achieves solid scores, whereas the other agents mostly only score
minimally. By the definition of the generalization performance, REINFORCE and both
DQN agents cannot get a high, i.e., undesirable, generalization performance. The risk
for PPO to achieve a worse generalization performance is much higher, as the training
performance is much better. However, we try to analyze each agent’s generalization
performance. To this end, we focus on the performances between the environments for
each agent.

PPO shows a decreased evaluation performance in most environments but with varying
impacts. In contrast, REINFORCE , and especially DQN M , show a tendency towards
a negative generalization performance. This means the agents perform better in the
evaluation environment than in the training environment. A possible explanation for
this might be that these agents learning progress improves in only some of the training
levels, but not enough to improve the overall training score. In the evaluation, where
many more levels are sampled, these insights might turn out to be beneficial. Similar to
PPO, the DQN P agent shows a tendency toward a decreased evaluation performance.
However, the evaluation performance increases compared to the training performance in
two environments. In these environments, the evaluation performance is also increased
for DQN M . However, it is interesting that the generalization behavior of both DQN
agents differs greatly. This is yet another hint supporting the observation by Henderson
et al. [17].

50

6.3. EASY VS. HARD SETTING

In jumper, maze, and ninja, three agents show an increasing generalization performance.
The evaluation performance of the PPO agent decreases close to the trivial score,
yet meeting it in two environments. In another two environments, it does not meet
the trivial score in the evaluation environment anymore. The DQN P agent misses a
trivial score that was met in training environments. Surprisingly, REINFORCE and
DQN M can meet trivial scores in the evaluation environment that they do not meet
during training.

Although PPO mostly shows a worse generalization performance than the other agents,
its scores in the evaluation environment are still higher. Therefore, when assessing
the performances of agents, it is essential to consider both the evaluation performance
as well as the generalization performance. Finally, it needs to be mentioned that the
number of levels in the training environment was determined based on the performance
of a PPO agent [6]. Whether other algorithms need more or fewer levels until the
generalization gap closes needs further investigation.

6.3. Easy vs. Hard Setting

As discussed in chapter 5.2, the experiments were performed in two different settings.
The main difference between the settings is the distribution mode, which is set to
easy in one setting and hard in the other, i.e., in the easy setting, the sampled levels
are easier to solve in general, whereas in the hard setting, they are harder to solve,
on average. The number of steps and training levels is adjusted to the distribution
mode. The idea behind the different modes is to provide a mode that requires fewer
computing resources [6]. This section inspects the results in both settings. We compare
the training performances from Figures 5.1 and 5.3 and generalization performances as
seen in Figures 5.2 and 5.4 from chapter 5.5.

Training. In many environments, the scores reached during training in the hard setting
decrease for all or nearly all agents. This is the case in bigfish, fruitbot, heist, leaper,
maze, ninja, plunder, and starpilot. In caveflyer, chaser, climber, coinrun, dodgeball,
and jumper, two agents score lower or show worse training progress than in the easy
setting, respectively. In miner, PPO performs better. Also, in bossfight, both DQN
agents perform better, and PPO even doubles its reached scores.
However, whether an agent showed a good or not training performance, as well as that
PPO outperforms the other agents, remain the same. Also, the changes in scores are
not dramatic. While the performances are generally worse than in the easy setting, we
still consider the settings to show similar results. A summary of the differences between
easy and hard training results is provided in Figure 6.5.

Generalization. REINFORCE does not show visible changes in its generalization
performance in any of the environments. DQN M has an increased generalization per-

51

CHAPTER 6. ANALYSIS

(a) Scores (b) Training Progress

Figure 6.5.: Differences between easy and hard training

Figure 6.6.: Differences between easy and hard generalization performance

formance in bigfish, fruitbot, and starpilot. In bigfish and starpilot, the generalization
performance remains negative, i.e., it still performs better in the evaluation environ-
ment. However, PPO and DQN P show better generalization performances in multiple
environments. For PPO, this is true in four environments, while it also has an increased
generalization performance in four environments. DQN P shows a better generalization
performance in eight of the 16 environments while only showing an increased generaliza-
tion performance in two environments. This could be an indicator that DQN P benefits
from the longer training time.
However, we do not face dramatic changes similar to the training progress. As for the
training performances, we consider the settings to show similar results. A summary of
the differences between easy and hard generalization performances is provided in Figure
6.6.

52

7. Characterization of Game Mechanisms

In chapter 4.3, we discussed several game mechanisms. To this end, we grouped the
environments into different categories and discussed their properties. This chapter
investigates whether any of the categories of mechanisms impact the performance of
one of the agents.

7.1. PPO

Environments without enemies and lethal obstacles are seldomly among the best or
most impressive achievements of the PPO agent. Also the training progress in friendly
environments is less impressive than in non-friendly ones. Additionally, as summarized
in Figure 7.1, in non-friendly environments, the generalization performance is sometimes
constant, whereas in friendly environments it is always positive, i.e., the performance
in evaluation levels decreases visibly. However, the results do not indicate a strong
preference of the agent toward non-friendly environments. Within the non-friendly
challenges, the generalization performance is only constant in some environments where
the agent has to avoid enemies, as depicted in Figure 7.2. We do not see another relation
between environments with different non-friendly challenges. Within the different
friendly challenges, the agent seems to perform well in environments where it has to
collect objects. This is especially true for the training progress, as summarized in Figure
7.3. The agent is less successful in moving towards a goal in environments without
intermediate rewards or with barriers it has to open. However, moving towards a goal
while having intermediate rewards seems to provide a good learning environment for
the agent. Compared to the maximal reward, the agent is most successful in this kind
of environment. Yet, this only holds for the training progress. We did not see such a
pattern for the agents’ generalization performance.
However, the agents performances seem to be affected by the surrounding. Figure 7.4
shows a summary of this impact. The agent shows the best training performances
in environments with platforms, walls, or open environments. In maze-structured
environments or when the environment contains walls, the generalization performance
increases, i.e., the training performance improves while the evaluation performance does
not keep up with this progress. This behavior is also seen in some, but not all, open
environments.
Except for maze, which is a fully observable environment, the agent scores best compared
to the maximal score in the partially observable environments. Additionally, we see an
increase in generalization performance in fully observable environments. Full tendencies
are summarized in Figure 7.5. However, we assume that the reason does not lie in
observability itself. I.e., all maze-structured environments, where the agent also has an

53

CHAPTER 7. CHARACTERIZATION OF GAME MECHANISMS

Figure 7.1.: Friendly vs. non-friendly, PPO

Figure 7.2.: Non-friendly challenges, PPO

54

7.1. PPO

Figure 7.3.: Friendly challenges, PPO

Figure 7.4.: Different surroundings, PPO

55

CHAPTER 7. CHARACTERIZATION OF GAME MECHANISMS

Figure 7.5.: Fully vs. partially observable, PPO

Figure 7.6.: Reward structures, PPO

56

7.2. REINFORCE

increased generalization performance, are fully observable.
The negative reward in fruitbot does not hinder the agent from performing well in this
environment. While it does not perform ideally in this environment, compared to other
environments without a negative reward, it still performs well regarding the maximal
achievable score. In plunder, the agent only meets the trivial score. We assume that the
agent understands how to score in plunder, but it does not understand the time penalty
for similar actions.
The most impressive training progress by the PPO agent is in environments providing
intermediate rewards, except for coinrun and jumper. The agents’ training progress
here is also good, but they only provide level-end rewards. The agent also scores
significantly above trivial scores in dense reward environments. However, scores close to
the maximal score are mostly seen in the level-end reward environments. We assume this
contradiction comes from the fact that in level-end environments, there is no room for
many rewards, i.e., whenever the agent does not solve a level successfully, this reduces
the score visibly. However, in dense reward environments, a successful level can nullify
a bad performance in another level compared to the trivial score. Yet, this reduces the
overall score enough to distance the score from the maximal achievable score.
However, the generalization performance in dense reward environments with identical
results is worst, as depicted in Figure 7.6.

7.2. REINFORCE

As seen in Figure 7.7, there is no indication that the existence or absence of enemies
and lethal obstacles influences the agents’ performance. However, contrary to friendly
environments, the generalization performance is constant in most non-friendly environ-
ments.
Additionally, we see no hints that the non-friendly enemy challenges influence the agents’
training performance. However, the REINFORCE agent shows a good evaluation per-
formance in two of three environments where the agent has to fight or survive enemies,
as well as in environments where the agent has to avoid enemies. The latter is visible in
Figure 7.8. In another environment where the agent has to shoot enemies but is friendly
in the sense that the enemies will not attack the agent, it also performs relatively well.
While there is still one exception, bossfight, we assume the agent is good at learning to
attack enemies if intermediate rewards are provided. Another challenge that seems to
be easier to learn for the agent is collecting. All environments where the agent nearly
meets the trivial score fall into this or the previously discussed category. However, some
environments with the task of collecting objects still are challenging for the agent. The
agents’ generalization performance is quite constant in environments where it has to
collect or move towards a goal, as depicted in Figure 7.9.
The different kinds of surroundings in the environment do not seem to impact the
agents’ performance significantly, as depicted in Figure 7.10. However, in environments
containing platforms or walls, the training progress is mostly increased, whereas in
other we see more neutral training processes. In open environments, and environments

57

CHAPTER 7. CHARACTERIZATION OF GAME MECHANISMS

Figure 7.7.: Friendly vs. non-friendly, REINFORCE

Figure 7.8.: Non-friendly challenges, REINFORCE

58

7.2. REINFORCE

Figure 7.9.: Friendly challenges, REINFORCE

Figure 7.10.: Different surroundings, REINFORCE

59

CHAPTER 7. CHARACTERIZATION OF GAME MECHANISMS

Figure 7.11.: Fully vs. partially observable, REINFORCE

Figure 7.12.: Reward structures, REINFORCE

60

7.3. DQN M

Figure 7.13.: Friendly vs. non-friendly, DQN M

containing walls, we observe negative generalization performances.
In partially observable environments, the agent shows a better training performance.
The generalization performances are comparable in fully and partially observable envi-
ronments. The statistics is shown in Figure 7.11
The agent meets the trivial score in fruitbot, which is the environment providing negative
rewards. However, the agents’ score, as well as the trivial score, are both negative. In
plunder, we observe the same as for the PPO agent.
Intermediate rewards are provided in all environments where the agent scores well. The
agents’ evaluation performance only overtakes the training performance in intermediate
reward-providing environments, while the evaluation performance in level-end reward
environments gets worse than the training performance. Also, all environments where
the agent meets the trivial score in the evaluation environment have a dense reward
structure. Apart from these aspects, the performances seem comparable according to
the tendencies in training and generalization performance, as shown in Figure 7.12.

7.3. DQN M

The existence or absence of enemies and lethal obstacles does not seem to impact the
agents’ training performance directly. However, in non-friendly environments, the agent

61

CHAPTER 7. CHARACTERIZATION OF GAME MECHANISMS

Figure 7.14.: Non-friendly challenges, DQN M

Figure 7.15.: Friendly challenges, DQN M

62

7.3. DQN M

Figure 7.16.: Different surroundings, DQN M

Figure 7.17.: Fully vs. partially observable, DQN M

63

CHAPTER 7. CHARACTERIZATION OF GAME MECHANISMS

Figure 7.18.: Reward structures, DQN M

generalizes worse than in friendly environments. Yet, it is noticeable, that only in
friendly environments, the agent never shows a decreasing training performance. Figure
7.13 shows the full distribution of the agent’s training and generalization progresses.
However, in two of three environments where the agent has to fight enemies actively,
the agent (nearly) meets the trivial score. Additionally, in this category, for two
environments, the evaluation performance exceeds the training performance in addition
to noticeable training progress. This hints that this category could be easier to learn for
this agent. As depicted in Figure 7.14, in environments where the agent has to avoid
enemies, it does not show decreasing training progress. We do not observe a tendency
toward environments where the agent has to collect objects, as visible in Figure 7.15.
This is in contrast to the prior discussed agents, which had increased performance in
this group of environments. For the DQN M agent, we observe both improving and
decreasing training progress in environments where it has to collect objects, as well
as in environments where the agent does not have to collect objects. In general, the
performance seems to be less challenge dependent as for other agents. Figures 7.14 and
7.15 show mostly balanced tendencies.
In environments containing walls, the agent shows better training and evaluation progress
than in the other categories of the environmental surrounding. In maze-structured
environments, the agent also shows good training and generalization performances.
Especially in environments containing platforms, we either see a decrease in performance
during training or the evaluation performance is not good. As depicted in Figure 7.16,

64

7.4. DQN P

the performances in open environments are quite diverse.
In Figure 7.17, we can see a small tendency towards fully observable environments.
The agent generalizes a bit better in this category of environments. Additionally, the
environments in which the training progress decreases are mostly partially observable
environments.
In total, the agent performs best in fruitbot, i.e., in the environment providing negative
rewards. However, although the agent performs best here, the score does not entirely
indicate that the agent learns to interpret this negative reward. In plunder, the agent
does not perform so well. Given the low score, we guess this is not correlated to the
penalty, which only hinders achieving good scores but not from scoring in general.
Figure 7.18 shows the training and generalization progresses for the different reward
structures. The training progress is mostly similar between the categories: the agent
shows increased, constant or decreased progresses in all categories. An increased
evaluation performance, including meeting or nearly meeting the trivial score, is most
visible in environments that provide intermediate rewards. The agent even reaches
negative generalization performances here, i.e., it performs in the full range of the
environments’ levels even better than in the training levels only. In environments with
very sparse rewards, i.e., only at level-end, the agent shows a constant or decreased
evaluation performance.

7.4. DQN P

As depicted in Figure 7.19, the agent has a decreased training performance in one
environment containing obstacles and one friendly environment. In non-friendly environ-
ments, it sometimes shows a constant, i.e., neither increasing nor decreasing performance.
In all categories, the agent has an increased training progress several times. However,
only in non-friendly environments the agent generalizes well in some environments.
The agent nearly met the trivial score in two of three environments where it had to
avoid enemies to survive and fight enemies. Contrary, in environments where the agent
only needs to avoid enemies, we do not see such a tendency. Here, the agent even
shows positive generalization performances, as visible in Figure 7.20. Additionally,
environments that combine the need to collect and move towards a goal seem to benefit
the agents’ performance. Minor training progress is visible for environments with only
one of these two challenges. A summary is shown in Figure 7.21.
Within surroundings containing walls or mazes, the agent mostly showed training
progress. In open environments, the training was rather stable or only slightly progress-
ing, containing one environment with a decrease in training performance. The agent
usually showed some progress in environments containing platforms, with one exception.
The evaluation performance was worse in environments with caves or platforms. The
full statistics for impact of surrounds in depicted in Figure 7.22.
In contrast to our other agents, that showed improved training or generalization per-
formance in the partially observable environments, this agents’ performances seem
independent of the observability. The corresponding statistics are provided in Figure

65

CHAPTER 7. CHARACTERIZATION OF GAME MECHANISMS

Figure 7.19.: Friendly vs. non-friendly, DQN P

Figure 7.20.: Non-friendly challenges, DQN P

66

7.4. DQN P

Figure 7.21.: Friendly challenges, DQN P

Figure 7.22.: Different surroundings, DQN P

67

CHAPTER 7. CHARACTERIZATION OF GAME MECHANISMS

Figure 7.23.: Fully vs. partially observable, DQN P

Figure 7.24.: Reward structures, DQN P

68

7.5. CONCLUSION

7.23.
In the only environment providing negative rewards, fruitbot, the agent performed quite
well compared to other environments. This is not the case for the environment plunder,
which provides penalties.
The reward structure seems to have an impact on the agents’ performance. Most
of the environments where the agent meets or nearly meets the trivial score provide
intermediate rewards, whereas, in level-end only reward environments, the agent per-
forms less well, compared to the trivial score. However, the training progress in sparse
reward and dense reward with different rewards, is mostly increased, whereas in dense
reward with identical reward settings, the training progress is also neutral quite some
times. Nevertheless, in sparse reward settings, the agent fails to generalize. Figure 7.24
visualizes the training and generalization processes in the different reward settings.

7.5. Conclusion

The absence or existence of enemies and lethal objects seems to have a low impact
on the agents. Especially the generalization performances are better in non-friendly
environments. However, ProcGen only provides three friendly environments. For a final
conclusion, it would be interesting to train the agents in more friendly environments.
In environments where the agent has to collect objects or fight enemies, three of four
agents showed improved training and evaluation results compared to their performance in
other environments. All agents had their best performances in environments providing
intermediate rewards, i.e., environments with a dense reward structure. PPO and
DQN P seem to prefer partially observable environments. In contrast to dense reward-
providing environments, where the improvement in performance is understandable, we
do not understand why this is the case. However, we assume this is rather by coincidence,
i.e., that those environments are easier to solve for other reasons.
The different environmental surroundings seem to have an impact, but each agent
is impacted differently. However, surroundings with walls have a positive impact on
DQN M and DQN P . We observe that in the only environment providing penalties,
fruitbot, all agents have one of their best performances. Yet, except for PPO, the scores
in training and evaluation are still rather low, i.e., it is possible that the agents do not
fully understand the negative reward. In this case, the good performance would, similar
to the observability, be based on other circumstances.
Besides the problem of the low scores, only one environment provides these negative
rewards, i.e., we cannot draw conclusions based on fruitbot only. Similarly, we observe
a similar problem for non-friendly environments, different surroundings, and partially
even the challenges. These categories only provide three to four different environments.
Therefore, it is hard to draw universal conclusions.

69

8. Conclusion and Future Work

This final chapter concludes this thesis in section 8.1. Section 8.2. provides inspiration
for additional future work.

8.1. Conclusion

The goal of this thesis was to compare multiple deep reinforcement learning algorithms.
To this end, we trained four agents representing three algorithms in all 16 ProcGen
environments in two different settings. We discussed each agent’s training and gener-
alization performance and investigated how different game mechanisms influence the
agents’ performance. Additionally, we discussed whether a more challenging setting
impacts the performances. Our results show that PPO has the best training and
evaluation scores. PPO scored pretty close to the maximal achievable score in a few
environments. The number of environments where PPO did not score so well is rather
small. Contrary, all other three agents had trouble meeting even the trivial score.
However, REINFORCE and DQN M showed excellent generalization performance. Sur-
prisingly, both agents showed better performance in the evaluation than in the training
environment. This led them to achieve the trivial score more often during evaluation
than during training. We are not certain why this is the case for these two agents,
however, a possible explanation is that they learn to solve a few levels of the training set.
Low scores then are still possible if the knowledge from those levels does not improve the
performance in most training levels. However, when these challenges are represented in
the newly sampled evaluation levels, then the evaluation score can exceed the training
score.
Additionally, we also deepened the observations by Henderson et al., who observed that
the same algorithm in different implementations could get differing results [17]. Differing
performances were visible for both DQN agents, where DQN M showed a visibly worse
training performance but generalized well, whereas the DQN P agent had better training
yet worse evaluation performance.
Our analysis showed that some game mechanisms, such as the reward structure, impact
all agents. Others, e.g., challenges like collecting objects, increased the performance
of most agents. On the other hand, different environmental surroundings impacted
each agent differently. While all agents had a good performance, compared to their
results in other environments, in the environment providing negative rewards, a single
instance seems insufficient to draw general assumptions. Further investigations into this
direction might be interesting.

71

CHAPTER 8. CONCLUSION AND FUTURE WORK

8.2. Future Work

In a competition in the ProcGen benchmark, some teams modified the IMPALA
network [34]. Seemingly, this changes improved the agents’ performances. A structured
investigation on this could be interesting.

Furthermore, due to time constraints, we only could train four agents. However, com-
paring the results to more different agents would help to further assess the performances
and gain additional knowledge on agents’ potentialities on ProcGen. A first attempt
could be Rainbow. A Rainbow agent was evaluated in the work by Cobbe et al., yet
only in regards to sampling efficiency [6]. An investigation of Rainbow’s generalization
performance was omitted. But also agents based on other algorithms are of interest.

Also, we assume that an epsilon-greedy exploration strategy, as used for DQN, is
not optimal in ProcGen. As most environments contain multiple no-op actions, only
choosing random actions for exploration does not seem beneficial. Especially in sparse
reward settings, more complex exploration strategies have been shown to be beneficial
on ALE [5, 37]. Therefore, we expect that the performance of our agents could be
increased by using an enhanced exploration strategy.

We performed experiments in two different settings. One with the distribution mode easy,
and one with distribution mode hard. However, as discussed in chapter 4.2, ProcGen
provides additional modes. These modes additionally challenge an agents’ exploration
or memory skills. Training and evaluating the agents in additional settings with these
modes could further improve the understanding of these agents’ performances.

Lastly, it would be interesting to investigate our observations in regard to the game
mechanisms in other environments, too. This is especially the case for categories
with only a few representatives, as for the negative reward structure or environments
providing implicit penalties.

72

Bibliography

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
{TensorFlow}: a system for {Large-Scale} machine learning. In 12th USENIX
symposium on operating systems design and implementation (OSDI 16), pages
265–283, 2016.

[2] Leemon C Baird III. Advantage updating. Technical report, WRIGHT LAB
WRIGHT-PATTERSON AFB OH, 1993.

[3] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade
learning environment: An evaluation platform for general agents. Journal of
Artificial Intelligence Research, 47:253–279, 2013.

[4] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade
learning environment: An evaluation platform for general agents (extended abstract).
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
pages 4148–4152, 2015.

[5] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by
random network distillation, 2018.

[6] Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging
procedural generation to benchmark reinforcement learning, 2019.

[7] Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quanti-
fying generalization in reinforcement learning. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Machine Learning Research, pages
1282–1289. PMLR, 09–15 Jun 2019.

[8] Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes,
Emery Fine, James Moore, Ruo Yu Tao, Matthew Hausknecht, Layla El Asri, Mah-
moud Adada, Wendy Tay, and Adam Trischler. Textworld: A learning environment
for text-based games, 2018.

[9] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert,
Alec Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov.
Openai baselines. https://github.com/openai/baselines, 2017.

[10] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih,

73

https://github.com/openai/baselines

Bibliography

Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg,
and Koray Kavukcuoglu. Impala: Scalable distributed deep-rl with importance
weighted actor-learner architectures, 2018.

[11] Meire Fortunato, Melissa Tan, Ryan Faulkner, Steven Hansen, Adrià Puig-
domènech Badia, Gavin Buttimore, Charles Deck, Joel Z Leibo, and Charles
Blundell. Generalization of reinforcement learners with working and episodic mem-
ory. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

[12] Yasuhiro Fujita, Prabhat Nagarajan, Toshiki Kataoka, and Takahiro Ishikawa.
Chainerrl: A deep reinforcement learning library. Journal of Machine Learning
Research, 22(77):1–14, 2021.

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[14] T. P. Gros and J. Groß. Rlmate. https://pypi.org/project/rlmate/. Accessed:
2022-08-30.

[15] Timo P. Gros, Holger Hermanns, Jörg Hoffmann, Michaela Klauck, and Marcel
Steinmetz. Deep statistical model checking. In Alexey Gotsman and Ana Sokolova,
editors, Formal Techniques for Distributed Objects, Components, and Systems,
pages 96–114, Cham, 2020. Springer International Publishing.

[16] Danijar Hafner. Benchmarking the spectrum of agent capabilities, 2021.

[17] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup,
and David Meger. Deep reinforcement learning that matters. In Proceedings of the
AAAI conference on artificial intelligence, volume 32, 2018.

[18] Maximilian Igl, Kamil Ciosek, Yingzhen Li, Sebastian Tschiatschek, Cheng Zhang,
Sam Devlin, and Katja Hofmann. Generalization in reinforcement learning with
selective noise injection and information bottleneck. Advances in neural information
processing systems, 32, 2019.

[19] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An intro-
duction to statistical learning, volume 112. Springer, 2013.

[20] Lawrence Johnson, Georgios N. Yannakakis, and Julian Togelius. Cellular automata
for real-time generation of infinite cave levels. In Proceedings of the 2010 Workshop
on Procedural Content Generation in Games, PCGames ’10, New York, NY, USA,
2010. Association for Computing Machinery.

74

http://www.deeplearningbook.org
https://pypi.org/project/rlmate/

Bibliography

[21] Arthur Juliani, Ahmed Khalifa, Vincent-Pierre Berges, Jonathan Harper, Ervin
Teng, Hunter Henry, Adam Crespi, Julian Togelius, and Danny Lange. Obstacle
tower: A generalization challenge in vision, control, and planning. In Proceedings of
the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-
19, pages 2684–2691. International Joint Conferences on Artificial Intelligence
Organization, 7 2019.

[22] Niels Justesen, Ruben Rodriguez Torrado, Philip Bontrager, Ahmed Khalifa, Julian
Togelius, and Sebastian Risi. Illuminating generalization in deep reinforcement
learning through procedural level generation, 2018.

[23] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H
Campbell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski,
Sergey Levine, et al. Model-based reinforcement learning for atari. arXiv preprint
arXiv:1903.00374, 2019.

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[25] Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey of
generalisation in deep reinforcement learning. arXiv preprint arXiv:2111.09794,
2021.

[26] Dimitrios I. Koutras, Athanasios Ch. Kapoutsis, Angelos A. Amanatiadis, and
Elias B. Kosmatopoulos. Marsexplorer: Exploration of unknown terrains via deep
reinforcement learning and procedurally generated environments, 2021.

[27] Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical Society, 7(1):48–50,
1956.

[28] Solomon Kullback and Richard A Leibler. On information and sufficiency. The
annals of mathematical statistics, 22(1):79–86, 1951.

[29] Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew
Hausknecht, and Michael Bowling. Revisiting the arcade learning environment:
Evaluation protocols and open problems for general agents, 2017.

[30] Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew
Hausknecht, and Michael Bowling. Revisiting the arcade learning environment:
Evaluation protocols and open problems for general agents, 2017.

[31] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning, 2013.

75

Bibliography

[32] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. nature,
518(7540):529–533, 2015.

[33] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis.
Human-level control through deep reinforcement learning. Nature, 518(7540):529–
533, 2015.

[34] Sharada Mohanty, Jyotish Poonganam, Adrien Gaidon, Andrey Kolobov, Blake
Wulfe, Dipam Chakraborty, Gražvydas Šemetulskis, João Schapke, Jonas Kubil-
ius, Jurgis Pašukonis, Linas Klimas, Matthew Hausknecht, Patrick MacAlpine,
Quang Nhat Tran, Thomas Tumiel, Xiaocheng Tang, Xinwei Chen, Christopher
Hesse, Jacob Hilton, William Hebgen Guss, Sahika Genc, John Schulman, and Karl
Cobbe. Measuring sample efficiency and generalization in reinforcement learning
benchmarks: Neurips 2020 procgen benchmark, 2021.

[35] Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon,
Alessandro De Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles
Beattie, Stig Petersen, Shane Legg, Volodymyr Mnih, Koray Kavukcuoglu, and
David Silver. Massively parallel methods for deep reinforcement learning, 2015.

[36] Open Ended Learning Team, Adam Stooke, Anuj Mahajan, Catarina Barros, Charlie
Deck, Jakob Bauer, Jakub Sygnowski, Maja Trebacz, Max Jaderberg, Michael
Mathieu, Nat McAleese, Nathalie Bradley-Schmieg, Nathaniel Wong, Nicolas Porcel,
Roberta Raileanu, Steph Hughes-Fitt, Valentin Dalibard, and Wojciech Marian
Czarnecki. Open-ended learning leads to generally capable agents, 2021.

[37] Georg Ostrovski, Marc G. Bellemare, Aaron van den Oord, and Remi Munos.
Count-based exploration with neural density models, 2017.

[38] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. Pytorch: An imperative style, high-performance deep learning library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc., 2019.

[39] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter
Abbeel. Trust region policy optimization, 2015.

76

Bibliography

[40] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms, 2017.

[41] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018.

[42] Yujin Tang, Duong Nguyen, and David Ha. Neuroevolution of self-interpretable
agents. In Proceedings of the 2020 Genetic and Evolutionary Computation Confer-
ence, pages 414–424, 2020.

[43] Seiya Tokui, Ryosuke Okuta, Takuya Akiba, Yusuke Niitani, Toru Ogawa, Shunta
Saito, Shuji Suzuki, Kota Uenishi, Brian Vogel, and Hiroyuki Yamazaki Vincent.
Chainer: A deep learning framework for accelerating the research cycle. In Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 2002–2011. ACM, 2019.

[44] Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. Chainer: a next-
generation open source framework for deep learning. In Proceedings of Workshop on
Machine Learning Systems (LearningSys) in The Twenty-ninth Annual Conference
on Neural Information Processing Systems (NIPS), 2015.

[45] Ronald J. Williams. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine Learning, 8(3):229–256, 1992.

[46] Cheng Xue, Vimukthini Pinto, Chathura Gamage, Ekaterina Nikonova, Peng Zhang,
and Jochen Renz. Phy-q: A testbed for physical reasoning, 2021.

[47] Amy Zhang, Nicolas Ballas, and Joelle Pineau. A dissection of overfitting and
generalization in continuous reinforcement learning, 2018.

[48] Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on
overfitting in deep reinforcement learning, 2018.

[49] Chenyang Zhao, Olivier Sigaud, Freek Stulp, and Timothy M Hospedales. Inves-
tigating generalisation in continuous deep reinforcement learning. arXiv preprint
arXiv:1902.07015, 2019.

77

Appendices

79

A. Training and Generalization for Each
Agent

We provide each agent’s training, evaluation, and generalization performance in both
settings. It is based on the same data as the visualization in Figures 5.1-5.4 in chapter 5.5.
However, we found it helpful to gain further knowledge about each agent’s performance.

A.1. PPO - Easy

Figure A.1 shows the training, evaluation, and generalization performance of the
PPO agent for all 16 environments in the easy setting.

(a) bigfish (b) bossfight

(c) cavefyler (d) chaser

81

APPENDIX A. TRAINING AND GENERALIZATION FOR EACH AGENT

(e) climber (f) coinrun

(g) dodgeball (h) fruitbot

(i) heist (j) jumper

82

A.1. PPO - EASY

(k) leaper (l) maze

(m) miner (n) ninja

(o) plunder (p) starpilot

Figure A.1.: PPO performance - easy setting

83

APPENDIX A. TRAINING AND GENERALIZATION FOR EACH AGENT

A.2. PPO - Hard

Figure A.2 shows the training, evaluation, and generalization performance of the
PPO agent for all 16 environments in the hard setting.

(a) bigfish (b) bossfight

(c) cavefyler (d) chaser

(e) climber (f) coinrun

84

A.2. PPO - HARD

(g) dodgeball (h) fruitbot

(i) heist (j) jumper

(k) leaper (l) maze

85

APPENDIX A. TRAINING AND GENERALIZATION FOR EACH AGENT

(m) miner (n) ninja

(o) plunder (p) starpilot

Figure A.2.: PPO performance - hard setting

86

A.3. REINFORCE - EASY

A.3. REINFORCE - Easy

Figure A.3 shows the training, evaluation, and generalization performance of the
REINFORCE agent for all 16 environments in the easy setting.

(a) bigfish (b) bossfight

(c) cavefyler (d) chaser

(e) climber (f) coinrun

87

APPENDIX A. TRAINING AND GENERALIZATION FOR EACH AGENT

(g) dodgeball (h) fruitbot

(i) heist (j) jumper

(k) leaper (l) maze

88

A.3. REINFORCE - EASY

(m) miner (n) ninja

(o) plunder (p) starpilot

Figure A.3.: REINFORCE performance - easy setting

89

APPENDIX A. TRAINING AND GENERALIZATION FOR EACH AGENT

A.4. REINFORCE - Hard

Figure A.4 shows the training, evaluation, and generalization performance of the
REINFORCE agent for all 16 environments in the easy setting.

(a) bigfish (b) bossfight

(c) cavefyler (d) chaser

(e) climber (f) coinrun

90

A.4. REINFORCE - HARD

(g) dodgeball (h) fruitbot

(i) heist (j) jumper

(k) leaper (l) maze

91

APPENDIX A. TRAINING AND GENERALIZATION FOR EACH AGENT

(m) miner (n) ninja

(o) plunder (p) starpilot

Figure A.4.: REINFORCE performance - hard setting

92

A.5. DQN M - EASY

A.5. DQN M - Easy

Figure A.5 shows the training, evaluation, and generalization performance of the
DQN M agent for all 16 environments in the easy setting.

(a) bigfish (b) bossfight

(c) cavefyler (d) chaser

(e) climber (f) coinrun

93

APPENDIX A. TRAINING AND GENERALIZATION FOR EACH AGENT

(g) dodgeball (h) fruitbot

(i) heist (j) jumper

(k) leaper (l) maze

94

A.5. DQN M - EASY

(m) miner (n) ninja

(o) plunder (p) starpilot

Figure A.5.: DQN M performance - easy setting

95

APPENDIX A. TRAINING AND GENERALIZATION FOR EACH AGENT

A.6. DQN M - Hard

Figure A.6 shows the training, evaluation, and generalization performance of the
DQN M agent for all 16 environments in the hard setting.

(a) bigfish (b) bossfight

(c) cavefyler (d) chaser

(e) climber (f) coinrun

96

A.6. DQN M - HARD

(g) dodgeball (h) fruitbot

(i) heist (j) jumper

(k) leaper (l) maze

97

APPENDIX A. TRAINING AND GENERALIZATION FOR EACH AGENT

(m) miner (n) ninja

(o) plunder (p) starpilot

Figure A.6.: DQN M performance - hard setting

98

A.7. DQN P - EASY

A.7. DQN P - Easy

Figure A.7 shows the training, evaluation, and generalization performance of the
DQN P agent for all 16 environments in the easy setting.

(a) bigfish (b) bossfight

(c) cavefyler (d) chaser

(e) climber (f) coinrun

99

APPENDIX A. TRAINING AND GENERALIZATION FOR EACH AGENT

(g) dodgeball (h) fruitbot

(i) heist (j) jumper

(k) leaper (l) maze

100

A.7. DQN P - EASY

(m) miner (n) ninja

(o) plunder (p) starpilot

Figure A.7.: DQN P performance - easy setting

101

APPENDIX A. TRAINING AND GENERALIZATION FOR EACH AGENT

A.8. DQN P - Hard

Figure A.8 shows the training, evaluation, and generalization performance of the
DQN P agent for all 16 environments in the hard setting.

(a) bigfish (b) bossfight

(c) cavefyler (d) chaser

(e) climber (f) coinrun

102

A.8. DQN P - HARD

(g) dodgeball (h) fruitbot

(i) heist (j) jumper

(k) leaper (l) maze

103

APPENDIX A. TRAINING AND GENERALIZATION FOR EACH AGENT

(m) miner (n) ninja

(o) plunder (p) starpilot

Figure A.8.: DQN P performance - hard setting

104

B. Training Performance Including Maximal
Score

We additionally provide the visualized training progresses according to the maximal
score of each environment. While the actual training progress is hard to see in most
cases, it helps us assess the performance compared to the achievable performance.

B.1. Easy Setting

Figure B.1 shows the training performance compared to the maximal score of all agents
for all 16 environments in the easy setting.

(a) bigfish (b) bossfight

(c) cavefyler (d) chaser

105

APPENDIX B. TRAINING PERFORMANCE INCLUDING MAXIMAL SCORE

(e) climber (f) coinrun

(g) dodgeball (h) fruitbot

(i) heist (j) jumper

106

B.1. EASY SETTING

(k) leaper (l) maze

(m) miner (n) ninja

(o) plunder (p) starpilot

Figure B.1.: Training performance - easy setting

107

APPENDIX B. TRAINING PERFORMANCE INCLUDING MAXIMAL SCORE

B.2. Hard Setting

Figure B.2 shows the training performance compared to the maximal score of all agents
for all 16 environments in the easy setting.

(a) bigfish (b) bossfight

(c) cavefyler (d) chaser

(e) climber (f) coinrun

108

B.2. HARD SETTING

(g) dodgeball (h) fruitbot

(i) heist (j) jumper

(k) leaper (l) maze

109

APPENDIX B. TRAINING PERFORMANCE INCLUDING MAXIMAL SCORE

(m) miner (n) ninja

(o) plunder (p) starpilot

Figure B.2.: Training performance - hard setting

110

	Introduction
	Thesis Outline

	Reinforcement Learning
	Deep Reinforcement Learning
	Policy-based Algorithms
	REINFORCE
	Proximal Policy Optimization

	Value-based Algorithms
	Deep Q-Networks

	Generalization
	Stochastically Modified Environments
	Splitted Training and Test Environment
	Call for Procedurally Generated Environments

	The ProcGen Benchmark
	Procedurally Generated Parts in ProcGen Environments
	Evaluating Agents on ProcGen
	Game Mechanisms

	Experiments
	Agents
	Network

	Setup
	Easy Setting
	Hard Setting
	Final Note on the Settings
	Training and Generalization Performance

	Hyperparameter
	PPO
	REINFORCE
	DQNM
	DQNP
	Final Note

	Reproducibility
	Results
	Easy Setting - Training Performance
	Easy Setting - Generalization Performance
	Hard Setting - Training Performance
	Hard Setting - Generalization Performance

	Analysis
	Training Performance
	PPO
	REINFORCE
	DQNM
	DQNP
	Conclusion

	Generalization Performance
	PPO
	REINFORCE
	DQNM
	DQNP
	Conclusion

	Easy vs. Hard Setting

	Characterization of Game Mechanisms
	PPO
	REINFORCE
	DQNM
	DQNP
	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendices
	Training and Generalization for Each Agent
	PPO - Easy
	PPO - Hard
	REINFORCE - Easy
	REINFORCE - Hard
	DQNM - Easy
	DQNM - Hard
	DQNP - Easy
	DQNP - Hard

	Training Performance Including Maximal Score
	Easy Setting
	Hard Setting

