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Abstract

Recently, deep reinforcement learning (DRL) has emerged as an effective method for
solving discrete-time sequential decision-making problems. This thesis studies how deep
reinforcement learning can be applied to solve combinatorial optimization problems. To
this end, we conduct a case study motivated by a real-world problem.

Acting as an educational institution, the Konrad Adenauer foundation (KAS) offers
courses to their scholarship students and past members. Based on their preferences,
the assignment problem consists in finding a reasonable assignment of students to their
requested courses. Drawing inspiration from a catalogue of rules these assignments
should obey, we interpret this problem as combinatorial optimization problem and
formulate a simplified version thereof as a linear integer program.

In order to apply DRL, we reformulate the problem using Markov decision processes and
construct neural network architectures that enable DRL agents to learn a meta-policy
which is applicable to arbitrary instances of the assignment problem, as opposed to being
forced to learn instance-specific policies only. We compare our proposed DRL methods
to a strong solver, namely Gurobi, that uses a branch-and-cut method for solving integer
programs, whereby we put our focus on the ability of DRL to approximate optimal
solutions and its time-efficiency compared to Gurobi.
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1 Introduction

The kind of assignment problem we address here is commonly encountered in the
education sector. Each year or semester, institutions such as universities or political
foundations offer a range of different courses to their students or members. In most cases
the students have to make participation requests or apply for their preferred courses
ahead of time. Given these requests, the educational institutions have to decide on a final
assignment of students to courses that does not exceed their capacities, is in accordance
with any additional formal constraints and that meets the student preferences as well
as possible. An assignment satisfying all constraints or student preferences seldom
exists and thus we are faced with the optimization problem of finding an assignment
that maximizes student happiness and minimizes the number of constraint violations.
We will refer to these problems as assignment problems. For our purposes, we mainly
work with artificial problem models, but our work is in parts motivated by a real data
set provided by the Konrad Adenauer Stiftung (KAS) which inspired a large part of
the artificial problem details. A canonical approach to solving such problems is to
interpret them as combinatorial optimization problems and use standard state-of-the-art
optimization methods for solving them

Combinatorial optimization [34] is a long standing and well studied field, that already
provides general methods for finding optimal, or approximately optimal solutions to
arbitrary integer programming problems. If we are able to formulate an integer program
that consists of a suitable objective function and constraints for modeling the assignment
problem we can apply a solver that uses for instance a branch-and-cut [34] method
to solve the problem. These methods are fairly exact in the sense that when given
a sufficient amount of time, they will be able to find optimal solutions (within a
tolerance).

The purpose of this thesis lies within studying how deep reinforcement learning [29]
(DRL) can be applied as an alternative method for solving combinatorial optimization
problems by conducting a case study on the aforementioned assignment problems.

DRL algorithms (agents) use deep neural networks to approximate optimal policies for
sequential decision-making problems. Given a Markov decision process (MDP) that
formalizes the agent’s environment, the concrete task is to find a strategy for selecting
sequences of actions that maximize a numeric reward signal. The agents can learn to
make informed decisions by observing the effects of their actions on the environments
states as well the rewards they yield. Our motivation to use DRL stems from the fact
that it has recently been the driving factor behind great advancements in challenging
applications such as learning to play Chess, Go [28], or Atari video games [14] at a
super-human level, just to name a few.

Even though deep reinforcement learning is an inexact method, i.e., it does not come
with strong guarantees for finding optimal solutions, the above applications suggest
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CHAPTER 1. INTRODUCTION

that it might be able to find sufficiently close to optimal solutions when applied to our
assignment problems. A possible advantage of DRL over exact methods that further
motivates this approach is that once an approximately optimal policy has been found,
using this policy to infer reasonable solutions could serve as a strong, and time-efficient
heuristic.

However, in contrast to classical optimization techniques, DRL is not easily applicable
to combinatorial optimization out-of-the-box for several reasons. Through the means
of our case study, we hope to come one step closer to establishing DRL as a relevant
method for solving combinatorial optimization problems and gain insights on what is
required to further advance this approach. The contributions of this thesis represent an
exemplary procedure on how to reformulate combinatorial optimization problems as
MDPs and on how to successfully apply DRL in a way that is adequately efficient

We identify that a naive approach wherein an agent learns to solve each new instance of
the assignment problem from scratch does not fulfill our efficiency requirements. As a
remedy, we study an approach that enables DRL agents to learn a meta-policy, which
is applicable to arbitrary instances of the assignment problem. It will be interesting
to investigate, whether such a policy can be learned in a way that allows us to find
reasonable assignments for multiple different problem instances.

The key contribution that enables this multi-instance meta-policy approach lies within
constructing suitable neural networks architectures. We will construct several such
architectures and compare their ability to approximate strong, generalizable policies and
also their time-efficiency to Gurobi, a powerful commercial solver, that uses a branch-
and-cut method for tackling discrete optimization problems such as the assignment
problem.

Let us now go over a brief outline of the exact contents of this thesis. We start
with a brief background section on combinatorial optimization that then allows us
to properly formulate assignment problems as integer programs in Chapter 3. After
a formal introduction of all necessary preliminaries regarding reinforcement learning,
deep learning, and deep reinforcement learning in Chapter 4, we will then be able to
present our contributions on how to apply DRL to the problem at hand in Chapter
5. Subsequently, as we are then equipped with a single-instance and multi-instance
approach for applying DRL, Chapter 6 describes several experiments comparing the
two approaches as well as detailed sections on training multi-instance DRL agents and
evaluating their resulting policies with a focus on how well they are able to compete with
Gurobi. In Chapter 7 we briefly describe an interesting parallel between reinforcement
learning and gradient-based optimization that highlights a possible improvement of our
approach, which will then be discussed, along with further avenues for future work, in
the final, concluding Chapter 8.

2



2 Related Work

The idea to tackle combinatorial optimization problems with deep reinforcement learning
is not new, and the idea to use neural networks in general for combinatorial optimization
dates back even further [16].

The first paper we are aware of that successfully used deep reinforcement learning for
combinatorial optimization revolves around pointer networks that are trained with a
reinforcement learning approach [2]. They are introduced as part of a case study on
solving the euclidean traveling salesman problem. The cities to be visited are given as
coordinates in 2D euclidean space and are encoded into a sequence of hidden states by
applying an recurrent long-short-term-memory (LSTM) network [15] to a randomized-
order sequence of the cities. Then, a tour is generated by using an attention-based
module called „pointing mechanism“. Given a fixed size representation of the current
tour and the sequence of city hidden states, it produces a distribution over all these
hidden states, where high probabilities mean that the network „points“ to this particular
city as a promising candidate for extending the tour. The fixed size tour representation
is generated online as the hidden state of another LSTM that takes as input the city
tour as it is sampled from the city pointers. Using negative tour length as a sparse
reward, the pointer networks are trained with the policy gradient method [29].

A paper published briefly after pointer networks introduces S2V-DQN (structure2vec
Deep Q Networks) [18] as a general method for solving combinatorial optimization
problems that can be formulated over graphs, where solutions are given by subsets of
vertices. For this purpose they use structure2vec [6], which can be seen as a special
type of recurrent graph neural network [35]. It produces fixed size embeddings for all
vertices of a graph. For applying S2V-DQN to the maximum cut and minimum vertex
cover problem [17], the tasks are reformulated as MDPs, where actions correspond to
selecting a single vertice that is added into the subset state, that is initially empty.
The action-value, required by the DQN algorithm, for adding some vertice is calculated
using these embeddings by additional neural network layers which are trained jointly
with the structure2vec layers.
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3 Problem Formulation

In this chapter we first give a brief introduction to combinatorial optimization and
integer programs and then formally define two realistic problems for assigning students
to courses as integer programs.

3.1 Combinatorial Optimization and Integer Programming
3.1.1 Terminology and Formulation
In one way or another, all optimization problems consist in finding the „best“ solution
from a set of „feasible“ candidate solutions, where the „goodness“ of a candidate solution
is measured by an objective function mapping them to numeric values, and feasibility is
determined by constraints that partition the set of candidate solutions into a feasible
and infeasible region.

Discrete optimization problems are characterized by the fact that (at least parts of) the
solutions are restricted to be objects from some fixed, discrete domain. By Combinatorial
optimization [34] (CO) we denote a special branch of discrete optimization. CO problems
usually revolve around some fixed set of objects P that is used to describe a specific
structure, e.g., the set of vertices of a graph. The domain from which solutions have to
be selected is then given by 2P , e.g., the task may involve selecting a minimal subset of
all vertices of a graph s.t. some conditions are satisfied.

Linear Integer Programs (IPs) [34] provide a standardized way of formulating discrete
optimization problems with linear objective functions. They are written as

max
x

cTx

s.t. Ax ≤ b
x ≥ 0

(3.1)

where x ∈ Zn are the solutions being sought, c ∈ Rn defines the objective, and A ∈ Rm×n
together with c ∈ Rm define m constraints. When defining an integer program, instead
of giving c, A, and b explicitly, it is often convenient to state them in a more human-
readable form, for which it is obvious that it can be easily brought into the above
canonical form.

Many combinatorial optimization problems, including the ones we will consider in the
next section, can be formulated as binary integer problems, i.e., the constraints require
0 ≤ x ≤ 1 where the values 0 and 1 determine the subset of P selected as corresponding
solution.

When discussing combinatorial optimization problems, it is sensible to make a distinction
between the problem itself and all possible problem instances it applies to. For example,
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CHAPTER 3. PROBLEM FORMULATION

we could formulate an integer program for finding a minimal subset P ⊆ V of vertices
s.t. this set covers all edges of the graph, i.e., we require (u, v) ∈ E =⇒ {u, v} ∩ P 6= ∅.
A good formulation of this problem should be agnostic to which graph (V,E) exactly is
considered, and allow us to construct an IP for any graph we want. In this case the
possible instances would be all possible graphs.

3.1.2 Algorithms for solving Integer Programs

In our experiments, when comparing reinforcement learning to standard methods, we
make use of the strong commercial solver Gurobi [12]. We treat Gurobi mainly as a
black box and are only interested in whether it is able to find optimal solutions (within
a tolerance) and how long the solving process takes. We just note at this point, that
according to the official documentation [11], Gurobi uses a branch-and-cut algorithm
[34] for solving integer programs. The formalities of branch-and-cut and the particular
implementation Gurobi uses are out of the scope of this thesis. Nevertheless, in Chapter
6 on experiments, we give some details on how we set up Gurobi to solve problems (see
Section 6.4.1).

3.2 Assignment Problems formulated as Integer Programs

3.2.1 Simple Assignment Problem

The simple assignment problem focuses on assignments of students to courses that are
constrained in such a way that

• every student should be assigned only to courses of his choice,

• no student that made at least two choices should be left unassigned,

• students should be assigned to at most three courses, and

• every course has a fixed capacity that may not be exceeded.

Definition 1. An instance of the simple assignment problem is given by a 4-tuple
I = 〈s, c, C,R〉 with students s = {s1, . . . , sn} and courses c = {c1, . . . , cm}. Student
requests are given by a relation R ⊆ s×c between students and courses where (si, cj) ∈ R
iff some student si requests to be assigned to some course cj . Additionally, courses have
finite capacities C : {1, . . . ,m} 7→ N.

Note that these instances essentially represent bipartite graphs over students and courses,
with requests as edges, where courses are additionally labeled with some capacity. We
will make use of this fact in Section 5.6.1 when designing neural network architectures.

Assuming we are given an arbitrary instance, assignments specify which requests are
granted and which are declined. They can also be represented as relations X ⊆ s× c
between students and courses, where (si, cj) ∈ X means that the request of student si
to be be assigned to course cj is granted by X. Furthermore we require that X ⊆ R,
because assignments should only include tuples (si, cj), where si really requested course

6



3.2. ASSIGNMENT PROBLEMS FORMULATED AS INTEGER PROGRAMS

cj . The objective is to find an assignment that grants as many requests as possible
while still adhering to the above constraints.

Before formulating this notion as an integer program, we first define some notation to
improve readability. For this purpose let us for now think of the requests and assignment
relations as total functions s × c 7→ {0, 1}, where r(si, cj) = 1 iff (si, cj) ∈ R and
x(si, cj) = 1 iff (si, cj) ∈ X. For the sake of brevity we write xi,j instead of x(si, cj)
and ri,j instead of r(si, cj). From the perspective of integer programming, the xi,j can
easily be viewed as binary variables. Let us now define several useful quantities.

• ri,: = ∑m
j=1 ri,j , the number of courses requested by si.

• xi,: = ∑m
j=1 xi,j , the number of courses assigned to si.

• r:,j = ∑n
i=1 ri,j , the number of students requesting cj .

• x:,j = ∑n
i=1 xi,j , the number of students assigned to cj .

Given an instance 〈s, c, C,R〉, we want to find an assignment X that is both a feasible
and optimal solution w.r.t.

maximize J(X) =
∑

(si,cj)∈R
xi,j (3.2)

subject to x:,j ≤ C(j), j = 1, ...,m (3.3)
xi,: ≥ 1, ∀i ∈ {1, ..., n} : ri,: > 1 (3.4)
xi,: ≤ 3, i = 1, ..., n (3.5)

Equation 3.3 ensures that courses are not overfilled beyond their capacity. Equation
3.4 captures the constraint that students who applied for at least two courses should
be assigned to at least one of their requested courses. Equation 3.5 guarantees that
students are assigned to at most 3 courses.

As feasible assignments, i.e., assignments that satisfy all constraints, might not exist for
some instances, we also consider a version of the problem where the constraints defined
by 3.4 may be relaxed to soft constraints such that constraint violations are allowed,
but incur a penalty to the objective function. In the relaxed formulation, assignments
that were previously infeasible are now subject to the penalized objective

maximize J−(X) =
∑

(si,cj)∈R
xi,j −

n∑
i=1

10 · I [ri,: > 1 ∧ xi,: = 0] , (3.6)

where I [P ] is an indicator function that evaluates to 1 if its argument P is true and
0 otherwise. That means we subtract 10 from the objective each time a constraint as
defined in 3.4 is violated. The other constraints are left untouched, so assignments
violating them are still considered infeasible. The penalty of 10 might seem somehwat
arbitrary, but we did not have any external information on how much constraint
violations should be weighted and we obviously had to settle on something, so we
decided on a penalty that heavily outweighs the value of accepting just one more request
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CHAPTER 3. PROBLEM FORMULATION

in the objective function, because this should ensure that if feasible assignments that do
not violate any constraints exists, then they are also still optimizers for this penalized
objective.

3.2.2 Valued Assignment Problem

The previous assignment problem is named simple for a reason. As we will see in Chapter
6, Gurobi performs exceptionally well on its instances. It solves most instances optimally
within fractions of seconds, so there is not much room left for possible improvements
that might be achieved with DRL methods. This is the reason why we also consider
an extended version of the assignment problem that adds complexity in the form of
requests with unequal priorities. For these valued assignment problems, we assume that
students can express their preferences by assigning different values to their requests,
instead of making equal priority requests. A request with a higher value signals that
this request should be prioritized over other requests. We formalize request values as a
total function mapping requests to their respective value.

Definition 2. An instance of the valued assignment problem is given by a 5-tuple
I = 〈s, c, C,R, V 〉, where s, c, R and C are defined as in Definition 1 and V : R 7→ [0, 1]
assigns a numeric value to each request.

These instances can be interpreted as weighted bipartite graphs where the weights are
given by request values.

Assuming an arbitrary assignment X, let us now again define some useful notation.

• vi,j = V (si, cj). Abbreviated notation for the value of the request (si, cj).

• vi,: = ∑m
j=1 vi,j . The total value of requests made by student si.

• v:,j = ∑n
i=1 vi,j . The total value of requests made for course sj .

• wi,: = ∑m
j=1 vi,jxi,j . The total value of requests granted by X for student si.

• w̄:,j = 1
C(j)

∑n
i=1 vi,jxi,j . The mean value of requests granted by X concerning

course cj .

For the sake of simplicity we assume that every student has a value budget of 1 he can
distribute across all of his requests, i.e., we only consider instances where vi,: = 1. This
is also sensible, because instances where the requests of one student are valued higher
than those of another student would entail that the students are not treated equally,
making any assignments that optimize for these values unfair.

For this kind of assignment problem we want to maximize the global value of the
accepted requests while also adhering to some new constraints. These new constraints
are based on the following considerations.

In order to ensure that student preferences are met to some minimal extent, the total
value of requests that are granted to any student should be greater than some minimal
total student request value vsmin. A similar argument can be made for courses.
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3.2. ASSIGNMENT PROBLEMS FORMULATED AS INTEGER PROGRAMS

Consider the value w:,j . From the perspective of the institution that offers the course
cj , it might also be desirable if the value w:,j (normalized by the courses capacity C(j))
is large. This is the case, because requests (si, cj) with relatively large values can be
interpreted as a consequence of student si being highly motivated to participate in
course cj . So assignments where w:,j is larger than some minimum average request value
vcmin could help contribute to the average quality of student contributions to the course
cj (assuming that higher motivation leads to more qualitative contributions).

A corresponding integer program that formalizes these constraints and that defines the
optimality criterion is given by

maximize J(X) =
∑

(si,cj)∈R
vi,jxi,j (3.7)

subject to (3.3), (3.4), (3.5)
wi,: ≥ vsmin, i = 1, ..., n (3.8)
w̄:,j ≥ vcmin, j = 1, ...,m (3.9)

Depending on the concrete values for vsmin and vcmin, it is also often the case that
assignments which satisfy all constraints 3.8 and 3.9 do not exist. So, we will again
have to resort to a relaxation of the problem, where we impose a penalized objective
function

maximize J−(X) =
∑

(si,cj)∈R
vi,jxi,j

−
n∑
i=1

10 · I [ri,: > 1 ∧ xi,: = 0] + 10 · I [wi,: ≥ vsmin]

−
m∑
j=1

10 · I [w̄:,j ≥ vcmin] .

(3.10)

For our experiments a systematic study over regarding different values of vsmin and vcmin
was out of scope due to long DRL training times. We thus fix vcmin = 0.5 and consider
two different cases vsmin ∈ {0.5, 0.7} where we expect that it should be more difficult to
learn, or find good assignments in the case vsmin = 0.7, as the constraints defined by 3.8
becomes more difficult to satisfy.

At this point we would like to summarize our treatment of the different constraints we
introduced. Course capacities 3.3 and the maximum number of assigned courses per
student 3.5 remain hard constraints no matter what. If a feasible solution does not
exist, all other constraints are relaxed, whereby each constraint is assigned the same
penalty of 10, that applies if the constraint is violated by assignments for the relaxed
problem, independent of the violation magnitude.

Before closing this chapter we introduce an additional concept that will be useful later
on, when defining an MDP in Chapter 5. Given any instance I of either the simple or
valued assignment problem and an assignment X, we denote the set of all requests that
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CHAPTER 3. PROBLEM FORMULATION

are still open by

OpenI(X) = {(si, cj) ∈ R | xi,j = 0 ∧ x:,j < C(j) ∧ xi,: < 3} . (3.11)

These are all requests that can still be granted without violating any of the hard
constraints.
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4 Background

In this chapter we introduce Reinforcement Learning, a method for solving sequential
decision-making problems and respective deep reinforcement learning algorithms. In
order to be effective in pratice, these algorithms also require carefully designed deep
neural networks as function approximators. The deep learning methods we plan to use
for this task are also introduced within this chapter.

4.1 Reinforcement Learning
Put simply, reinforcement learning (RL) is the process of solving sequential decision-
making problems through trial and error. The learning entity, commonly referred to as
RL agent, interacts with its environment in a feedback loop, where the agent’s actions
change the environments state and the agent observes these states to make an informed
decision between possible actions. The agent’s goal is to choose actions that maximize
a numerical reward signal generated in parallel to the state changes. Throughout the
learning process the agent is reinforced to make decisions that lead to a large accumulated
reward. In this section we focus on formally defining essential reinforcement learning
concepts and use them to describe the deep reinforcement learning algorithms we intend
to apply to the assignment problems defined in the previous section.

4.1.1 Basic Formalisms

Integer programs, which include our models of the assignment problem, do not feature
any form of stochasticity and are inherently discrete. Thus we can restrict our work to
a simple formalism of Markov decision processes with deterministic state transitions
and deterministic rewards.

Definition 3. A deterministic Markov Decision Process (MDP) is a tuple 〈S,A,R, T , s0,S∗〉,
where S is a finite set of states, s0 ∈ S is the initial state and S∗ ⊆ S is a set of terminal
states. A is a finite set of actions, R : S×A 7→ R is a reward function and T : S×A 7→ S
is a transition function.

The sequentiality of an MDP is captured by its possible trajectories which are sequences
of states, actions and rewards

τ = 〈s0, a0, r1, s1, . . . , sT−1, aT−1, rT , sT 〉 ,

where s0 is the initial state, sT ∈ S∗ is a terminal state and transitions (also called
environment steps) are captured by the relations st+1 = T (st, at) and rt+1 = R(st, at).
Consequently, for fixed transition and reward functions, a trajectory is fully specified by
its actions and the initial state.
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CHAPTER 4. BACKGROUND

The primary objective of RL agents lies within finding sequences of actions s.t. the
accumulated reward along the resulting trajectories is maximized. For the process of
iteratively choosing suitable actions, they use their stochastic or deterministic policy.
Due to this possible policy stochasticity, it is useful to consider trajectories of infinite
length that are made up of random variables representing states actions and rewards
rather than concrete realizations thereof. Random actions arise as a consequence of
stochastic policies and since states and rewards depend on actions they thus also become
random variables. We use capital letters St, At and Rt to denote random states, actions
and rewards.

Definition 4. Given an MDP as in Definition 3, a policy is a function π : S×A 7→ [0, 1]
mapping state action pairs to probabilities s.t. ∑a∈A π(s, a) = 1 for all s ∈ S. If
maxa∈A {π(s, a)} = 1 also holds, the policy is called deterministic and otherwise
stochastic.

We will abuse notation and interpret policies as conditional probabilities π(a | s)
for choosing action a under the condition of currently observing state s. In case of
deterministic policies we will sometimes write π(s) = a instead of π(a | s) = 1.

At first glance it might be confusing as to why we are considering stochastic policies,
but this is simply due to the fact that they come with some desirable theoretical prop-
erties. They simplify notation, can be represented by compact end-to-end differentiable
functions, and are a natural source of exploration. Due to the latter property, we always
make use of stochastic policies when training RL agents in some way. The goal of
training an RL agent is to find optimal policies.

Our formal maximization criterion for policies is given by the expected return when
starting in the initial state. The expected return of a policy conditioned on some starting
state is also known as the state value.

Definition 5. The return from step t onward is given by the discounted sum of rewards
Gt = ∑∞

k=0 γ
kRt+k+1.

Note that in the above Definition the return is also a random variable. If we consider the
concrete return of some trajectory, we write gt instead. The discount factor γ ∈ [0, 1] is
a hyperparameter used to balance short-term and long-term rewards. Values γ < 1 also
guarantee that the return is always finite, but note that they are not strictly necessary
in our case, because we only work with episodic MDPs, i.e., trajectories are guaranteed
to be of finite length. Their exact length however is still a random quantity, so from a
notational point of view it is convenient to model trajectories as infinite sequences of
random rewards.

Definition 6. The state-value function for following policy π in some state s is defined
as vπ(s) = Eπ [Gt | St = s]

Definition 7. A policy denoted by π∗ is optimal iff π∗ ∈ arg maxπ vπ(s0).

Another quantity that is especially useful when searching for optimal policies are state-
action-values. Given some policy π and a state-action pair (s, a), the action value of a
in state s is the expected return of carrying out a immediately under the assumption
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that all subsequent actions follow π. Similarly to the state-value function we define the
state-action-value function as

qπ(s, a) = Eπ [Gt | St = s,At = a] . (4.1)

The state-value and state-action-value function can be related by

qπ(s, a) = R(s, a) + γvπ(s′), (4.2)

where s′ = T (s, a) is the successor of s under action a.

4.1.2 Deep Reinforcement Learning Algorithms
Trial and error in the context of RL means that an agent deploys his policy in the
environment and uses the trajectory data obtained in this way to find an estimate for
an optimal policy. This estimate can be direct or it can be inferred indirectly from
estimates of the optimal state-action-values. Roughly speaking, a reinforcement learning
algorithm defines

• which policy is used for exploration, i.e., for collecting trajectories that help the
agent to learn,

• which functions need to be estimated for the purpose of learning an optimal policy,
and

• how the collected trajectory data is used to optimize the corresponding function
estimators.

Deep reinforcement learning algorithms all share the same property that they use deep
neural networks as function approximators.

The classic, non-deep approach for representing estimates of learned value functions (or
policies) is to explicitly store all values in a tabular form, which is theoretically possible
as state and action space are usually of finite size, or can be discretized. This approach
can work for toy problems, but is often practically infeasible, because the number of
possible states can quickly become very large, even for seemingly simple problems.

For such MDPs that have a large state space and also complex transition and re-
ward structures, RL algorithms thus require the use of sufficiently accurate functional
approximators to represent value functions or policies in order to work properly.

In recent years, deep neural networks have shown to be an excellent choice for this
purpose [23] [28], giving rise to the field of DRL. When compared to the prohibitive
memory requirements of tabular representations, they offer the advantage of being
significantly more compact. Furthermore they are also better at generalizing when
compared to more simple approximators such as parametrized linear functions. As has
been shown by many other works [2] [20] [35], the generality of neural networks also
allows us to design them in such a way that they can deal with situations where the
size of the input, for RL s ∈ S or a ∈ A, is variable. The fact that different assignment
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problems may lead to this exact kind of situation, is another reason that makes them a
good choice for this thesis.

We will now present the two particular algorithms used in this thesis which are the
DQN algorithm [23] and a simple Actor-Critic algorithm similar in spirit to A2C [22].
Both algorithms use deep neural networks as functional approximators. For now, we
treat neural networks as abstract, parametrized functions f(x; θ) differentiable w.r.t. to
their parameters θ.

Deep Q-learning

Despite the fact that stochasticity is a desirable property during training, we are
searching for optimal policies, some of which are guaranteed to be deterministic. One
way to characterize optimal policies is as policies that act greedily upon the optimal
state-action-value function q∗ = qπ∗ . Given some function Q that can be either a true
state-action value function, or any estimator thereof, the policy πQ that acts greedily
w.r.t. Q is a deterministic policy given by

πQ(a | s) =
{

1 a = arg maxa′ Q(s, a′)
0 else

. (4.3)

The optimal policy is obviously the same as the policy that acts greedily w.r.t. q∗. The
central idea behind Q-learning [32] is to derive approximately optimal policies from
learned estimates of q∗.

The core result underlying the actual Q-learning algorithm is the bellman optimality
equation [29] [32] . It states that the optimal Q-function can be rewritten as

q∗(s, a) = Eπ∗
[
Rt + γmax

a′
q∗(St+1, a

′) | St = s,At = a

]
.

We can use the right side of this equation to bootstrap target Q-values which then allow
us to calculate temporal difference (TD) errors. The information provided by TD-errors
can finally be used to update the estimator Q. The TD-error for some experience tuple
(st, at, rt, st+1), that captures exactly one environment step, is given by

δt = Q(st, at)− (rt + γmax
a′

Q(st+1, a
′)).

The considered experience tuples can be generated by following the greedy policy w.r.t.
to the current estimate Q, but in practice it is often better to deploy a stochastic ε-greedy
policy instead. These policies are parametrized by a random exploration coefficient
ε ∈ (0, 1) and choose random actions with probability ε and act greedily with probability
1− ε [29]. Formally they can be defined as

πε,Q(s, a) =


ε
|A| + (1− ε) a = arg maxa′ Q(s, a′)
ε
|A| else

.
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This kind of policy is beneficial, because choosing probabilities at random is a form
of (undirected) exploration. Large and small values of ε allow to balance between
exploration and exploitation. Since the policy is uninformed when learning starts and
gradually becomes more informed as training goes on, it is a good choice to start off
with a large ε that decreases over time, since this enables the agent to better exploit
the knowledge gained through early exploration.

RL agents that explore greedily according only to their initially uninformed estimates
are more likely to converge to suboptimal policies [29]. This happens because without
exploration, it becomes less likely that they observe trajectories that can be used to
infer optimal behavior.

A naive implementation of deep Q-learning, i.e., a version where Q is given by a neural
network Q(·; θ) with parameters θ, would collect the experiences (st, at, rt, st+1) and
learn from them on-policy. That means the TD-errors are calculated immediately when
encountering experiences, or at the end of the respective episode, and then discarded.
These TD-Errors would then be used to estimate

L(θ) = E(s,a,r,s′)∼πQθ

[
(Qθ(s, a)− y)2

]
(4.4)

where y = r + max
a′

Qθ(s′, a′). (4.5)

and the network parameters could be optimized by stochastic gradient descent (see
Section 4.2.4) on ∇θL(θ). This approach using the loss as formulated above is however
subject to two key problems.

First of all, learning on-policy means that the experiences used for learning are highly
temporally correlated, making the estimates of 4.4 and thus also the corresponding
gradients subject to a large amount of variance. This typically causes the learning
(parameter optimization) process to become unstable.

Secondly, the TD-target (4.5) is bootstrapped from the current estimator Qθ, so updating
Qθ also moves the target. This interdependency between target and estimator can lead
to severe oscillations of θ and additional learning instability.

The central contributions of the DQN algorithm, experience replay and fixed Q-targets,
specifically tackle these two issues and enable a more stable learning process. DQN
trains an estimator Qθ with parameters θ by minibatch stochastic gradient descent on
the DQN loss

L(θ) = E(s,a,r,s′)∼U(B)
[
(Q(s, a; θ)− y)2

]
(4.6)

where y = r + max
a′

Q(s′, a′; θ−). (4.7)

Experience replay denotes the fact that the experience tuples are no longer used directly,
but instead stored in a FIFO buffer B of fixed size from which random experience
batches are sampled during learning. This breaks the temporal correlation among
experiences and thus decreases the gradient variance. Additionally, the method can be
more sample efficient. If the update frequency, i.e., the number of steps between SGD
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updates, is smaller than the batch size, we effectively use some experiences multiple
times before discarding them.

Fixing the Q-target means that we store an additional set of parameters θ− which
are not immediately affected by gradient descent updates and use the corresponding
estimator Qθ− for calculating the targets y. This decouples the target from the update
process of θ and thus also makes training more stable. In the original DQN algorithm,
θ− is a periodic copy of θ, i.e., every N = 10000 environment steps, θ− is set to equal θ,
but between these target parameter updates, θ− does not change. We use exponentially
moving targets instead, i.e., instead of N ∈ N we use a hyperparameter τ ∈ (0, 1) and
update the target parameters after each SGD update as θ− = (1− τ)θ− + τθ. This way
the target is not completely decoupled, but for values τ << 1 the influence is still small
enough to prevent signifcant additional instability. Pseudo-code for our implementation
of DQN is shown in Algorithm 1.

Algorithm 1 DQN Algorithm
1: Input: Markov Decision Process 〈S,A,R, T , s0,S∗〉
2: Input: Number of training episodes N
3: Input: Initial and final epsilon ε0 and εend
4: Input: Epsilon decay β ∈ (0, 1)
5: Input: Replay Buffer B (initially empty)
6: Input: Target parameter temperature τ ∈ (0, 1)
7: Input: Number of env. steps between parameter updates K
8: Initialize online network Qθ with parameters θ
9: Initialite target network Q−θ with θ− ← θ

10: ε← ε0
11: for k = 1, . . . , N episodes do
12: t← 0
13: s← s0
14: repeat
15: a ∼ πε,Qθ(· | s)
16: r, s′ ← R(s, a), T (s, a)
17: Store (s, a, r, s′) in B
18: t← t+ 1
19: if t mod K = 0 then
20: Uniformly sample a batch of (s, a, r, s′) ∈ B
21: Estimate L(θ) (4.6) using that batch
22: Update θ by SGD using ∇θL(θ)
23: θ− ← (1− τ)θ− + τθ

24: s← s′

25: until s ∈ S∗
26: ε← max(β · ε, εend)
27: return θ

16
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Policy Gradient Methods

The only strong requirement for applying the policy gradient approach is a parametrized
policy π(·; θ) differentiable w.r.t. its parameters θ. To shorten notation we will simply
write πθ. Neural networks which output values that can be interpreted as action
probabilities are a natural fit for this kind of algorithm. Given such a policy network
one then tries to find an estimate of the policy gradient

∇θJ(θ) (4.8)

where J(θ) is a numeric measure for the performance of the policy πθ. These estimates
can then be used to update θ through any form of gradient ascent (see Section 4.2.4).

In our case, we are given episodic MDPs with initial state s0 and are interested in
policies that are optimal w.r.t. Definition 7, so J(θ) = vπθ(s0).

The policy gradient theorem [30] is fundamental to the method we are going to use for
estimating (4.8). In the episodic case it states that

∇θvπθ(s0) ∝ Eπθ

[∑
a

qπθ(St, a)∇θπθ(a | St)
]

(4.9)

where the constant of proportionality depends on episode length [29]. The intuitive
interpretation to this form of the policy gradient is that it in some state s, it encourages
updates to θ that increase the probability of those actions a with relatively high
state-action value qπθ(s, a).

Note that if we update θ by gradient ascent using an unbiased estimate of 4.9, then πθ
is guaranteed to converge to a locally optimal solution [29]. One way for obtaining such
estimates is to replace the expectation over πθ by one or multiple trajectories

τ = 〈s0, a0, r1, s1, . . . , sT−1, aT−1, rT , sT 〉 ,

that are generated on-line by following πθ. The state-action values can also be estimated
directly from the same trajectory data. Without going into detail yet we denote these
estimates as Qπθ(s, a, τ) for now. Another trick that is usually employed to improve
numerical stability is to rewrite the sum over actions within the policy gradient as an
expectation using the identity d log(f(x))

dx = 1
f(x)

df(x)
dx ,i.e.,

∑
a

qπθ(St, a)∇θπθ(a | St) (4.10)

=
∑
a

qπθ(St, a)πθ(a | St)
πθ(a | St)

∇θπθ(a | St) (4.11)

=Ea∼πθ
[
qπθ(St, a) 1

πθ(a | St)
∇θπθ(a | St)

]
(4.12)

=Ea∼πθ
[
qπθ(St, a)∇θ log πθ(a | St)

]
. (4.13)
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Putting all of this together, we finally obtain estimates of the form

∇θvπθ(s0) ≈ 1
T

T−1∑
t=0

Qπθ(st, at, τ)∇θ log πθ(at | st). (4.14)

Since we did not yet specify the way in which the estimates Qπθ(st, at, τ) are calculated,
we obtain the following template algorithm.

Algorithm 2 Template Policy Gradient Algorithm
Input: Learning rate α
Initialize policy parameters θ
for i=1, ..., N episodes do

Sample a trajectory τ ∼ πθ of length T
Calculate Qπθ(st, at, τ) for all t
∆θ ← 1

T

∑T−1
t=0 Qπθ(st, at, τ)∇θ log πθ(at | st)

θ′ ← θ + α∆θ

Optionally: Update estimators for Qπθ
θ ← θ′

return θ

The classic instantiation of this, the REINFORCE algorithm [33], fills out Qπθ(st, at, τ)
with parameter-free Monte-Carlo estimates

Qπθ(st, at, τ) = gt, (4.15)

using the observed return of τ from time step t onward. This is an unbiased estimate,
but at the same time a highly variable one, because at every step of τ , we sample a
random action from our stochastic policy πθ. This usually causes REINFORCE agents
to be very diffcult to train, as gradients will also be subject to a prohibitively large
amount of variance.

A remedy to this problem is achieved by subtracting a baseline b(st) from the Q estimates
that does not depend on actions in any way, s.t. the expectation remains unchanged
[29]. This can give rise to an estimate with drastically reduced variance. The literature
suggest that a good choice for b are learned state-value functions Vπθ(·;ψ) [22], also
represented by a deep neural network with parameters ψ. The result of the corresponding
difference

Aπθ(st, at, τ ;ψ) = gt − Vπθ(st;ψ) (4.16)

is then an estimate of the action-advantage value aπ(st, at) = qπ(st, at)− vπ(st). This
kind of approach combines policy gradient methods with value-based methods and is
usually referred to as an advantage Actor-Critic.

This name derives from the interpretation that instead of using a feedback signal based
directly on trajectory data only, they use the learned value function to estimate action
advantage values that are used for criticizing the actors policy πθ.
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For learning the state-values, the Actor-Critics typically use the same trajectory data
τ that is also used to fit the policy. The objective for the value function critic is to
minimize the loss

Lv(ψ) = Eπθ
[
(Gt − Vπθ(St;ψ))2

]
,

which can be done by SGD using the observed returns gt and states st of the sampled
trajectories τ .

Modern Actor-Critic architectures are often constructed s.t. some of the first layers
among the networks for Vπθ(·;ψ) and π(·; θ) share parameters which are then optimized
jointly [22].

For this purpose, we can reformulate the term in 4.13 as a loss

L(θ) = −Ea∼πθ
[
qπθ(St, a) log πθ(a | St)

]
, (4.17)

by changing its sign and dropping the gradient operator.

The final policy loss, Lπ(θ), the Actor is trained to minimize also includes an exploration
bonus based on the policies entropy H(πθ) = Eπθ [−log(π(At | St))]. This leads to the
formulation of the policy loss as

Lπ(θ) = L(θ)− βH(πθ), (4.18)

where β is a hyperparameter that controls the influence of the exploration bonus.
Because we aim to minimize this loss, subtracting βH(πθ) from the other loss can be
understood as an exploration bonus, as policies with larger entropy are more stochastic
than others and thus also more likely to explore their environment.

When estimating the gradient of Lπ(θ), we use the estimate in 4.14 for the gradient of
Lπ(θ), and ∇θβH(πθ) for the remaining term.

Finally, given ∇θLθ and ∇ψLv, we apply the SGD updates jointly, i.e., the intersection
of ψ and θ, that arises as a consequence of sharing initial layers, is affected by the linear
combination of both above gradients over their intersecting elements.

The reasoning behind sharing initial layers for the Actor and Critic network is that they
will be used for feature learning more effectively. If the Actor and Critic networks were
completely disjoint, both would be forced to learn features on their own.

The final Actor-Critic approach we will be using in our experiments when training policy
based DRL agents is shown in Algorithm 3.

4.2 Deep Learning
The art of deep learning usually involves choosing suitable neural network modules and
stacking them together in such a way that introduces some of the prior knowledge we have
about the problems at hand into resulting architectures. In the following subsections
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Algorithm 3 Actor Critic Algorithm
Input: Learning rate α
Input: Entropy influence β
Initialize policy and value parameters θ ψ.
for i=1, ..., N episodes do

Sample a trajectory τ ∼ πθ of length T
Compute state value estimates V (st;ψ) for all t = 0, . . . , T − 1
Use observed policy entropy averaged over all steps in τ as estimate Ĥ(πθ)
∆θ ← −

(
1
T

∑T−1
t=0 (gt − V (st;ψ))∇θ log πθ(at | st)

)
−∇θβĤ(πθ)

∆ψ ← 1
T

∑T−1
t=0 ∇ψ(gt − V (st;ψ))2

Update θ and ψ using ∆θ and ∆ψ by SGD with learning rate α
return θ

we will introduce all deep learning methods we use for designing and training neural
networks as function approximators for the DRL version of the considered assignment
problems.

We first go over the functional form of several different types of neural networks modules,
as well as the ideas behind them, and then briefly explain how gradients are used to
carry out parameter updates by gradient based optimization techniques.

4.2.1 Feed-forward Networks and Activation Functions

Functional Form of a FFN

A fully-connected feed-forward network (FFN) of depth n with din input units and
dout output units can be written as a function FFN : Rdin 7→ Rdout that arises as the
composition

FFN(x) = fn(fn−1(. . . f1(x) . . . )), (4.19)
where fi(z) = hi(W T

i z + bi), (4.20)

of n transformations (also called layers) f1, ..., fn, which are mostly non-linear, depending
on their activation functions h1, ..., hn. The FFN parameters, the entirety of the Wi

and bi, are called weight matrices and biases where the following holds

W1 ∈ Rdin×d1 (4.21)
Wi ∈ Rdi−1×di , i =2, ..., n− 1 (4.22)
bi ∈ Rdi i =1, ..., n− 1 (4.23)

Wn ∈ Rdn−1×dout , bn ∈ Rdout . (4.24)

The layer width hyperparameters d1, ..., dn−1 can be chosen freely, but for the sake of
simplicity we restrict our work to cases where d1 = ... = dn−1 = d and call d the hidden
size of the network. Additionally, we treat n = 1 as a special case where d1 = dout and
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dn−1 = din. We call fn the output layer and f1, . . . , fn−1 hidden layers. Also note that
often the activation function for the output layer fn is chosen differently than for the
hidden layers. The biases bi are optional, but if not stated otherwise, we will include
them.

Feed-forward networks can be applied on their own or serve as a modular building block
for more complex network types. If they are used on their own, then their input and
output dimension din and dout are usually determined by the problem requirements,
e.g., state representation size and number of actions in reinforcement learning. If used
in combination with other networks they are often hyperparameters, or depend on the
exact context.

Activation Functions

Activation functions do not alter the shape of their input. They only transform it in
ways that help networks to learn, or in the case of the output layer, they transform their
input s.t. the network output range matches any possible requirements. Most activation
functions are of the form h : R 7→ R and their application to multi-element objects such
as vectors, matrices or tensors is carried out element-wise.

For hidden layers, we almost exclusively use the ReLU activation function [24] which is
defined as ReLU(x) = max(0, x). Using non-linear activation functions such as ReLU
is important, because otherwise, when h(x) is linear in x, FFNs could only be used for
approximating linear functions.

Another activation function that is important to our approach is the softmax function.
It maps inputs x ∈ Rn to outputs that can be interpreted as probabilities and is defined
as

softmax(x)i = exi∑n
i=1 e

xi
i = 1, . . . , n. (4.25)

We mainly use it as the activation function for the output layer of policy networks,
s.t. their outputs can be interpreted as probabilities. Due to the exponentiation,
this activation function also allows the resulting stochastic policy to better approach
deterministic ones [29].

Finally, we also make use of layer normalization units [1], which can also be viewed as a
special form of activation, that can be added on top of the other activation functions.
For an input x ∈ Rd, layer normalization is defined as

LayerNorm(x)i = (xi − x̄)
σ̂ + ε

· γ + β i = 1, . . . , n, (4.26)

where · is elementwise multiplication, x̄ = 1
d

∑d
i=1 xi is the sample mean over all features

of x and σ̂ =
√

1
d

∑d
i=1(xi − x̄)2 the respective (biased) sample standard deviation. For

each FFN layer fi, this module may be applied just before the activation hi, with the
idea in mind that this makes the linear transformation W T

i z + bi invariant to re-scaling
and re-centering of the weight matrix Wi [1]. Introducing these invariances eases the
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optimization process which empirically often leads to significantly reduced training
times and better final results [1]. γ ∈ Rd and β ∈ Rd are learnable parameters that
allow the layer to re-scale and shift the output after normalization.

4.2.2 Recurrent Graph Neural Networks

Applying deep feed-forward networks on their own can work very well for unstructured
data, e.g., if the input consists of p structurally unrelated features that are represented
by real numbers or one-hot encodings. A typical example for data that does not follow
such an underlying structure, where plain FFNs are known to fail, are e.g. grayscale
images.

In theory, one could flatten the images and interpret the pixel gray values as independent
features of the input. Assuming images of width w and height h, a FFN with din = wh
input neurons could then be used to process the images. Practically, this approach
completely fails to capture the underlying spatial relations between pixels and introduces
unnecessarily many redundant parameters, even for moderately sized images. The long
standing state-of-the-art approach to image data are convolutional neural networks
where a set of kernels is moved across the image. These kernels are small, usually
square-shaped parameter matrices which are repeatedly applied to patches of the image
via pointwise aggregation. This enables the model to learn meaningful aggregations of
spatially close pixels, ultimately leading to the automatic extraction of features such as
edges and other structures present in images.

In our case, the information that defines an assignment problem also follows a clear
structure with a lot of redundancy that is however more complex than the spatial
structure of an image. As we already mentioned in Chapter 3, bipartite graphs provide
a very natural framework for describing this information in a structured manner.

The recent and ongoing boom within the deep learning community has given rise to a
variety of neural network architectures designed specifically for processing graph-like
data [35]. These networks usually implement forms of message passing among nodes,
i.e., nodes use some kind of neural network to transmit information across edges to their
neighbor nodes. Carrying out mutliple steps of message passing means that information
from node is able to travel beyond the node’s immediate neighbours.

Among these graph neural networks one can distinguish between recurrent graph
neural networks and graph convolutional neural networks [35]. Closely following related
work about learning to solve graph combinatorial optimization problems [18] (also see
Chapter 2), we will focus on recurrent graph neural networks. These use the same set of
parameters for each step of message passing, while graph convolutional neural networks
use a different set of parameters during each message passing step.

Consider graphs G = (V,E) with vertices v ∈ V and per-vertice features xv ∈ Rdv , as
well as edges {u, v} ∈ E with per-edge features (weights) xu,v ∈ Rde . We use graph
neural networks for the purpose of generating latent vertice embeddings ηv ∈ Rd, i.e.,
discriminative feature vectors of fixed size d. They should capture the given vertice
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features within the structural context of the graph and also incorporate the weights into
this calculation. Assuming some common initial embedding η0

v ∈ Rd, they use the edge
information to update these embeddings via learned transformations and aggregations
over vertice neighbourhoods. Iterating this update process multiple times constitutes
a form of message passing between nodes. To formalize this update process we define
embedding rules as networks F : Rd 7→ Rd with

F (ηiv) = f

ηiv + fv(xv) + µ
({
ηiu | u ∈ N (v)

})
+ fe

 ∑
u∈N (v)

xu,v

 , (4.27)

where f : Rd 7→ Rd, fx : Rdv 7→ Rd and fe : Rde 7→ Rd are feed-forward networks and µ
is an aggregation function that maps the set of neighbour embeddings back into the
original embedding space and thus implements the message passing from a vertices
neighbourhood into the vertice itself. Note that µ is typically also a parameterized
neural network, for example

µ
({
ηiu | u ∈ N (v)

})
= fµ

 ∑
u∈N (v)

ηiu

 , (4.28)

where fµ is a FFN of depth 1 with linear activation and no bias [18]. The updated
embeddings are then simply obtained by ηi+1

v = F (ηiv). The final embedding of a node
v is given by ηUv , where U ∈ N+, the number of times this update is carried out, is a
hyperparameter.

In classical graph combinatorial problems such as finding a minimal vertex cover, one
embedding rule for the whole graph is sufficient [18], as there is no further distinction
to be made among vertices and how they relate. We will however be confronted with a
bipartite graph, where vertices as well as edges can have different interpretations, i.e.,
student embeddings need to be treated differently than course embeddings. Thus, we
will require two instead of one update rules to build a suitable graph neural network.
This problem is treated in Section 5.6.1.

4.2.3 Neural Attention

Another kind of structured data that is treated by the deep learning community in ways
we can draw inspiration from are natural language sentences. They can be viewed as
sequences of words, where the words can also be represented by learned embeddings.

Historically, encoder-decoder [4] architectures that make use of two separate long-short-
term-memory networks [15] or gated recurrent units [5] were the favored approach for
processing such sequences of word embeddings, but recently attention-based approaches,
more specifically transformer architectures [31] have gained a lot of popularity.

In the context of natural language processing, transformers also apply special positional
encodings to their input s.t. the word order is preserved. This is due to the fact
that neural attention operations are permutationally invariant w.r.t. to their input.

23



CHAPTER 4. BACKGROUND

Mainly because of this property, they have been shown to also be a good choice for
processing set-structured data [21], i.e., sets of embeddings that describe one unique
kind of object. As such, they are also an interesting choice for our setting, since the
requests of assignment problems can be formalized as sets of student-course tuples.

The specific form of attention we will be using in all our attention modules is scaled dot
attention [31].

Definition 8. Given nq queries, and nk key-value pairs, Q ∈ Rnq×d,K ∈ Rnk×d, V ∈
Rnk×d, scaled dot attention is defined as

Att(Q,K, V ) = softmax
(
QKT

√
d

)
V ∈ Rnq×d.

The division by
√
d is element-wise and the softmax is applied row-wise, instead of over

the whole matrix QKT ∈ Rnq×nk .

Note that this is a parameter-free function, so it is better to think of it as a special
activation function rather than a neural network module. The output of the attention
operation is again a matrix in Rnq×d. Each row of this matrix corresponds to exactly
one query and is a convex combination of all values. The weight of the ith value (ith
row in V ) in this combination depends solely on the similarity of the particular query
with the value’s key (ith row in K), whereby similarity is being measured by their dot
product. These value weights as contained in QKT are sometimes also called attentions
scores. Intuitively (QKT )i,j gives the amount of attention paid to the key-value pair j
when considering query i.

The actual attention-based neural network module we mainly use are multi-headed
attention blocks (MAB) [21]. They essentially parameterize this operation and distribute
attention across multiple attention heads. This can be compared to the fact that
convolutional neural networks usually use not just one kernel for feature learning, but a
whole array of kernels.

Definition 9. Given queries, keys and values, Q ∈ Rnq×d,K ∈ Rnk×d, V ∈ Rnk×d, the
output of the multi-headed attention block with h heads is defined as

MAB(Q,K) = LayerNorm(H + FFN(H))
where H = LayerNorm(Q+ MHA(Q,K, V )),

and MHA is a multi-headed attention module with

MHA(Q,K, V ) = concat(A1, . . . , Ah)WA

where Aj = Att(QWQ
j ,KW

K
j , V W

V
j ).

LayerNorm is defined in Section 4.2.1 and FFN : Rd 7→ Rd is a 2-layer feed-forward
network with d input and d output units and ReLU activations. The MAB parameters
are given by the parameters of the FFN and WQ

1...h ∈ Rd×dp ,WK
1...h ∈ Rd×dp ,W V

1...h ∈
Rd×dp ,WA ∈ Rd×d, where dp = d/h and we require that d is evenly divisible by h s.t.
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the concatenation of the Aj is in Rnq×d.

Each „head“ of this module uses its respective parameter matricesWQ, WK , andW V to
project the queries, keys and values into some low dimensional space, on which we then
perform the actual attention operation. Intuitively, using multiple heads means that
the module is enabled to more effectively pay attention to different kinds of relations
of the queries and keys. WA is then used to gather the results of each head into a
final attention result by linearly transforming their concatenation. The sums inside the
layer normalization units implement residual skip connections [13] which allow general
information about the query to easily flow throughout the whole process of applying
the module. Applying them transforms the operation into what can be considered an
refinement of the queries with the attention results.

Given a matrix Z ∈ Rn×d that stands for a set of n objects, each represented by a
d-feature vector, we can use a MAB to embed the elements of this set into n refined
embeddings (also of size d) by calculating MAB(Z, Z, Z).

These embeddings are able to capture interactions among the elements of the set and
are de-facto invariant to row-permutations of Z. Rearranging the rows in Z means that
the rows in the MAB output will still be the same, just rearranged in the same way as
in the input.

A downside of MABs is that these modules are computationally quite expensive. For
MAB(Z, Z, Z) we have nk = nq = n, so due to the matrix-matrix product present in
Definition 8, the computational complexity of the MAB is O(n2d).

To tackle this issue, we can use an induced set attention block (ISAB) [21] instead.

Definition 10. Given a set Z ∈ Rn×p of n vectors, induced set attention blocks come
with learnable parameters I ∈ Rk×d called inducing points, where k, the number of
inducing points, is a hyperparameter. They use two separate MABs to perform the
operation

ISAB(Z) = MAB2(Z, Y, Y ) ∈ Rn×d

where Y = MAB1(I, Z, Z) ∈ Rk×d

In order to achieve a lower run-time, an ISAB first essentially compresses the set into a
representation Y ∈ Rk×d where k << n and then uses these as new keys and values for
the final set attention operation. Empirically, ISABs tend to perform slightly worse than
pure MABs [21], but their computational complexity compared to MABs is reduced to
O(nkd). In our experiments we will fix k = 8.

In a similar way how ISABs use attention to compress a set, we can also use PMA
modules to aggregate all elements of a set into a fixed size representation.

Definition 11. Pooling by multi-headed attention (PMA) modules are defined as

PMA(Z) = MAB(I, F (Z), F (Z)) ∈ R1×d
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where I ∈ R1×d is a learnable parameter and F : Rd 7→ Rd is a 2-layer feed-forward
network with ReLU activations.

4.2.4 Gradient Based Optimization

The most common technique for finding good neural network parameters is gradient
based optimization. These methods make use of the fact that most types of neural
networks are functions differentiable w.r.t. to their parameters θ. If we can formulate a
differentiable loss function L(θ) that becomes smaller as our idea of good performance
increases, then we can optimize θ by iterative updates of the form

θ ← θ − α∇θL(θ), (4.29)

until some termination criterion is reached. α ∈ (0, 1] is the step-size or learning-rate.
If a loss function is not given, but instead an objective that should be maximized, we
can turn the objective into a loss by simply changing its sign, which is equivalent to
performing gradient ascent, i.e., adding gradients instead of subtracting them.

The intuition behind gradient-based approaches is that if θ determines a location L(θ)
on the surface of L, then subtracting ∇θL(θ) from θ can be thought of as moving
downhill along the surface’s direction of locally steepest descent, which is why these
methods are often called gradient descent methods.

Note that usually we have to resort to estimates of L(θ) that rely on random samples,
because L often contains an outer expectation over some distribution (see for example
the policy gradient estimator in 4.14). In that case the gradients will also be stochastic
estimates, and thus the corresponding approach when relying on estimates is called
stochastic gradient descent (SGD), or minibatch SGD if we use a sample size greater
than one.

In this thesis we use the Adam optimizer [19] instead of plain SGD. Adam extends
SGD by adding gradient momentum [26] and adaptive learning rates (second-order
momentum) [7].

Using gradient momentum means that we keep track of an exponentially moving average
over all gradient estimates and use that to update our parameters instead of the estimates
directly. This accelerates the optimization process, as it helps to factor out noise present
in gradient estimates and gradient accumulation leads to generally larger updates that
still point in a reasonable direction[9].

Adaptive learning rates for each parameter are calculated by re-scaling the scalar learning
rate with an exponentially moving estimate of the non-central second-order moment of
the gradient w.r.t. to that parameter.

So, the learning rate actually used in the update is no longer a scalar, but a tensor that
has the same size as the parameters, and their multiplication is carried out elementwise.
This leads to smoothed updates, where smooth means that the update magnitudes of
different parameters are adapted to be on a more similar level. Updates to parameters
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with historically large gradients are scaled down, while updates to parameters with
historically small gradients may be scaled up.

These exponentially moving estimates for the first and second-order moment are both
biased. Adam can be distinguished from other momentum-based optimizers, by the fact
that it also calculates two separate correction terms that are used to remove some of
this bias.

27





5 Applying Deep Reinforcement Learning

In this chapter we finally present how we intend to use DRL algorithms for finding
optimal solutions to instances of both simple and valued assignment problems.

We first reformulate the problems as MDPs and also discuss how we are going to treat
the hard constraints of the assignment problem. The question how constraints are
treated deserves special consideration, as MDPs do not come with the inherent ability
to easily model constraints. Our solution consists in constraining policies in such a way
that makes it impossible to end up in states that belong to the infeasible region.

Subsequently, we will discuss how we intend to find reasonable policies for MDPs in an
appropriate amount of time. A naive approach would be to train a separate DRL agent
for each distinct MDP. Since training DRL agents is however often a very time-consuming
process, we also describe an alternative approach that allows us to essentially learn a
meta-policy that can be applied to every MDP we construct, effectively eliminating the
need to carry out an entire training process for each individual instance.

5.1 Constructing Markov Decision Processes
In order to be able to apply DRL to assignment problems, we need to reformulate them
as sequential decision-making problems in the form of MDPs. Recall, that assignment
problem instances represent bipartite graphs over students and courses and require
feasible subsets of edges (requests) X ⊆ R as solutions. Ideally, we would like to select
X = R (grant all requests), however, this solution is feasible only in pathological cases.
Thus, we need to decide which edges to include and which to exclude. If we stipulate
that these decisions are made sequentially on a per-edge basis, we can proceed in one
of two ways. We can either start with X = ∅ and iteratively add single edges, until
OpenI(X) is empty (forward procedure), or, we can start with X = R and iteratively
remove edges, until we arrive at an assignment that is feasible (backward procedure).

In this thesis we wanted to focus one of these scenarios only and chose to work with
MDPs that implement the forward procedure, because in real-world settings, the total
course capacity is often significantly smaller than the total number of requests, so
feasible assignments can grant only a small fraction of all requests. The data provided
to us by the KAS confirms this assumption.

The reasoning behind this decision is that the number of action decisions and thus also
the number of neural network evaluations to be made during the forward procedure
will be significantly smaller than during the backward procedure. For DRL agents this
means that the corresponding episodes will be significantly shorter, which ultimately
allows for smaller training times.

A desirable property for assignment problem MDPs should be that optimal policies
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lead to terminal states with a direct correspondence to optimal assignments. For
an instance I = 〈s, c, C,R〉 of the simple assignment problem, a corresponding MDP
MI = 〈S,A,R, T , s0,S∗〉 with this property is constructed such that

• S = 2R. States are given by all possible assignments.

• s0 = ∅. Initially, assignments are empty.

• A = R. Actions are given by the individual requests.

• T (X, r) = X ∪ {r}. Selecting a request as action adds it into the assignment
X ∈ S.

• S∗ = {X ∈ S | OpenI(X) = ∅}. In other words, an assignment is terminal, if it
is impossible to add further requests without harming constraints. That is, if
all courses are full, or if open requests for non-full courses are only coming from
students who already had 3 of their requests granted.

• R(X, r) = J−(T (X, r)) − J−(X) where J− is the penalized objective function
of the simple assignment problem (3.6). This means, changing an assignment is
rewarded with the resulting change in objective value. For example, if T (X, r)
no longer violates some constraint that was previously violated by X, then this
change generates a reward equal to the magnitude of the respective penalty. This
reward structure encourages the satisfaction of as many constraints as possible
before a terminal state is reached.

The construction for the MDP corresponding to a valued instance is analogous. The
only thing that changes is that J is replaced with the penalized objective function of
the valued assignment problem. Final assignments are generated from policies as the
terminal states of their trajectories.

In the sections that follow we will use the terms assignment and state, and requests and
actions synonymously.

5.2 Constrained Policies
Recall, that the penalized objective functions we used to construct a reward structure in
the previous section are obtained by relaxing only some of the constraints (see Section
3.2). The relaxation did not include all of the constraints for a good reason. As a
consequence, we need to ensure that policies cannot choose actions that lead to solutions
which are infeasible w.r.t. to these constraints.

In our case this can be implemented in a straight forward way. During exploration
and during inference with final policies, we alter the agents policy s.t. it never picks
actions that are not in OpenI(X) where X is the current state. This is achieved by
either zeroing the respective probabilities, or, in the case of Q-learning, by setting the
respective state-action values to minus infinity.

If assignments exists that are feasible w.r.t. to all constraints, then optimal policies
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should also yield these assignments as terminal states, because they are maximizers of
the penalized objective function (adding requests which lift constraint penalties heavily
outweighs adding requests that do not help to „unviolate“ any additional constraints).

5.3 Single Instance vs. Multi Instance Learning
Standard RL as we described it in Section 4.1 does not come with a concept like that
of a central problem description in the form of an objective function and constraints
that can both be applied to a whole class of possible problem instances, as it is the case
for combinatorial optimization problems. In RL, we usually just differentiate between
separate environments and their respective MDPs.

Naively applying this paradigm, one could think of modeling each new instance of an
assignment problem as an MDP and train an RL agent to find an optimal policy just
for that particular instance. This single-instance approach is compellingly simple and
can be applied directly without much effort, but it has several disadvantages.

A more sophisticated view embraces the distinction between problem description and
instances and tries to integrate this notion into the RL framework. The core idea of
our approach is that is better to train a single RL agent on multiple instances at once,
instead of forcing the RL agent to start thinking from scratch for each new instance.
More specifically, we train the agent on instances sampled from a distribution of our
choice. We hypothesize that the agent will then be forced to learn a meta-policy that
applies to any instance with similar properties.

The first obvious advantage of this approach is that it can be much less resource-heavy
in the long run. Training an agent to solve just a single instance would entail solving
that instance many times over and over again. Training an agent how to solve different
instances from a distribution also requires solving many different instances over and
over again, but once the agent is trained and has developed a generally applicable
policy, solving a new instance is done much faster as learning to solve this instance from
scratch.

Furthermore, learning to solve single instances without prior knowledge might even
become practically infeasible due to time or even memory constraints, if they grow too
large, whereas our proposed method might be able to generalize to larger instances.
Solving an instance after training has finished actually requires significantly less mem-
ory than learning to solve it, because we no longer need to worry about tracking a
computation graph and partial derivatives for the purpose of backpropagation.

We are expecting that a disadvantage of this approach should be that the quality of
solutions decreases, as the instances become more dissimilar to the instances observed in
the training distribution. When thinking about real world applications, this is however
only a real disadvantage, if one has limited or no access at all to prior information about
the instances the agent has to solve after training. If such prior information is available,
the training distribution can be fit such that it accurately represents these specific types
of instances.
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5.4 Single Instance Network Architecture

When training an RL agent to solve a single instance only, we do not necessarily require
a special network architecture. A rather simple approach which we also used in the
early stages of this thesis makes use of a deep neural network F : Rr+m 7→ Rr, where
r = |R| is the number of requests and m is the number of courses. Its input is given
by the concatenation of a one-hot-encoding x ∈ {0, 1}r of the current assignment X
and a vector crem ∈ Rm which contains the currently remaining capacity of each course
divided by the course’s total capacity. These features are not necessarily required, but
we found that they speed up learning, so we included them.

When the task is to estimate Q values, we use a single, plain 4-layer FFN with hidden
size d = 64 and linear activation in the output layer.

When estimating policies we need an additional critic network. In that case, the first
few layers among actor and critic are shared, i.e. we use the output of a 2-layer FFN
G : Rr+m 7→ Rd as the input for both the actor and critic network Fπ : Rd 7→ Rr and
Fv : Rd 7→ R, which are again 2-layer FFNs, where Fπ uses a softmax output activation
and Fv a linear output activation. The concrete computations are

z = G(concat(x, crem))
π(· | X) = Fπ(z)
Vπ(X) = Fv(z)

Note that such networks of the form F : Rr+m 7→ Rr cannot take on the role of a general
solver for multi-instance training due to the fact that r and m are subject to change if
we consider multiple different instance.

Nevertheless, we empirically compare these networks to the multi-instance networks
derived in the following two sections in the single instance setting in our experiments in
Section 6.1.

5.5 Formalizing the Multi Instance Objective

In single-instance learning, the objective was to find approximate solutions to

arg max
π

vπ(s0) (5.1)

where s0 and the value function are w.r.t. a concrete MDP 〈S,A,R, T , s0,S∗〉. Opti-
mizing a policy over a distribution of instances means that we now need to consider a
distribution over MDPs PM. The objective changes to

arg max
π

E〈S,A,R,T ,s0,S∗〉∼PM
[vπ(s0)] , (5.2)

as an outer expectation over this distribution is added.
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This formulation immediately reveals a central challenge posed by multi-instance training.
In Section 4.1.1 we defined policies and Q-functions as functions of the form S ×A 7→ ∗,
but for differing MDPs, S and A will also be differing mathematical objects. So the
term as stated above is technically not valid. We will solve this issue by replacing π with
the parameters of a neural network that is expressive enough to take on any functional
form S × A 7→ ∗ required by PM. Formally we can view such networks as cascaded
functions M 7→ (S ×A 7→ ∗), where ∗ is either [0, 1] for policies or R for value functions
and M is the set of all MDPs supported by PM. Intuitively this implements exactly
the mapping that is also peformed by the process of single-instance training. Given an
MDP as input, this function has to return some valid policy as output.

How exactly we construct networks with this property is treated in the next Section
(5.6). If these networks are used within an Actor-Critic context, policies can be extracted
directly. If we choose to use DQNs estimating Q instead, we can use the greedy policies
πQ introduced in Section 4.1.2.

Assuming we are given such a network, we also need to modify the training process of
the corresponding DRL agents to account for the new outer expectation over PM. As
we have seen in Section 4.1.2, the training process of DRL agents usually takes places
over a span of multiple episodes. Each episode starts out in the initial state of some
fixed MDP and lasts until the trajectory obtained via the DRL agent’s exploration
policy ends in some terminal state. For the next episode, the MDP is again reset to its
initial state. In order to estimate the expectation over the instance distribution, we also
sample an entirely new MDP from PM at the start of each episode.

5.6 Multi Instance Network Architecture
If the MDPs from some distribution PM were totally unrelated, designing a network that
is compatible with all of them would be significantly more difficult. In our case however,
all possible MDPs are constructed using the same procedure, as all of them describe
very similar problems that share an underlying structure. Our high-level solution takes
advantages of this and is sketched in Figure 5.1.

It mainly uses the fact that any instance can be divided into its individual requests. So,
if we are able to bring each request into a representation that

• carries sufficient information regarding the problem,

• is of fixed size, and

• can be processed with neural networks,

then we just have to find ways of dealing with different amounts of such representations.
We will refer to them as request embeddings, or action embeddings, given the fact that
requests and RL actions have a one to one correspondence.

The multi-instance network architecture can be separated into three distinct modules. A
structure-aware encoder Φ, an aggregation module µX for generating state embeddings,
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Φ
X ∈ S, A

I

µX

RL
{ηa | a ∈ A} Actions

{ηa | a ∈ X} ηX

State

π(a | X), Vπ(X)
Q(X, a)

Figure 5.1: Multi Instance Architecture Overview
The first module, the encoder Φ takes care of producing action embeddings based on state X,
actions A and static instance information I. An aggregator µX then produces a state embedding.
Action and state embeddings are finally fed into either a policy module, or a state-action value
module.

and a final policy (or alternatively Q-function) module.

5.6.1 Encoder Modules

Generally, the encoder module Φ receives the current state (an assignment X) and
the MDP actions A (the set of requests) as input, which are already pre-encoded in a
suitable way. We also include static information about course capacities and request
values in the input, to account for the fact that these vary across different MDPs.
For now, we summarize this information as a tuple I that is contains just the course
capacities I = 〈C〉 or also request values I = 〈C, V 〉, depending on whether we are
working with simple or valued instances. For concrete instantiations of encoders, this
information will be part of the state and action representations for X and A.

The encoder output are m = |A| distinct embeddings ηa ∈ Rd, one for each action
(request), where d, the hidden dimensionality, is a hyperparameter. We also call this
the agents hidden size, which we now fix to a global value of 64, i.e., all neural network
modules we use in our architecture that come with a similar parameter for their internal
dimensionality use the that exact same d = 64. Due to the large number of modules
and algorithms, systematically searching for a good value of d is out of the scope of
this thesis. For preliminary experiments, we used d = 128, but later it turned out, that
d = 64 worked just as good, while allowing for shorter training times, so we decided to
stick to this smaller value.

The encoder should operate in a way s.t. the request embeddings may encode the
corresponding requests in the context of the problems structure. That means we ideally
want Φ to not compute the same function for each a ∈ A but instead to make use of
the fact that we can relate requests with one another, e.g., by using the fact that some
requests come from the same student, or are posed for the same course.
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Encoding with Recurrent Graph Neural Networks

Graph neural networks allow us to exploit the bipartite nature of assignments problems.
We now construct a recurrent graph neural network (GNN) based encoder for valued
assignment problem instances I = 〈s, c, C,R, V 〉.

For this purpose, we reformulate instances as graphs 〈V = s ∪ c, E = R〉, where course
vertices are labeled with their capacities C, and edge labels (weights) are given by
request values V . In order to be able to generate encodings that depend on some current
assignment X, we consider X as a second set of edge labels, i.e., an edge (si, cj) is
additionally labeled with xi,j ∈ {0, 1} depending on whether X grants the respective
request, or not.

Following the principles outlined in Section 4.2.2, we first assume initially zeroed student
and course embeddings

{
η0
si | si ∈ s

}
and

{
η0
cj | cj ∈ s

}
all in Rd. Our GNN encoder is

then described by two separate embedding rules Fs : Rd 7→ Rd and Fc : Rd 7→ Rd (see
4.27), each parametrized by its own set of parameters.

We fix the FFNs used in the Definition of the embedding rule, f , fv and fe, to all be of
depth 1 with ReLU activations. For the node aggregation functions µs and µc, we use
MABs (see Section 4.2.3) in the following way

µs
({
ηcj1 , . . . , ηcjk | cj∗ ∈ N (si)

})
= MABs([ηsi ],Kc, Vc)

µc
({
ηsi1 , . . . , ηsil | si∗ ∈ N (cj)

})
= MABc([ηcj ],Ks, Vs)

where Kc = Vc =

ηcj1. . .
ηcjk

 ∈ Rk×d

Ks = Vs =

ηsi1. . .
ηsil

 ∈ Rl×d

Put into words, µs aggregates all embeddings of courses adjacent to a student by using
them as keys and values for an attention operation, where the student’s embedding is
the query. This breaks down into calculating a weighted sum of these course embeddings
where the weights depend on the students embedding. This operation is favored over a
regular sum as aggregation, because MABs are universal approximators for functions in
the space of permutation-invariant functions [20], and can thus learn to approximate
more suitable aggregations if they exist, or just fall back to a regular sum if that happens
to be sufficient.

The aggregation µc can be described analogously, but students and courses exchange
roles.

After U simultaneous applications of the embedding rules Fs and Fc to the initial student
and course embeddings, the request embeddings are obtained by jointly processing
student and course embeddings with a 2-layer FFN G : R2d 7→ Rd with ReLU activations
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only. That is, the embedding of the request (si, cj) is calculated as

η(si,cj) = G(concat(ηUsi , η
U
cj )) (5.3)

We refer to this kind of encoder module as GNN encoder.

Regarding a good choice for U , we expect that the encoder might be very sensitive to
this parameter which is why in Section 6.3.1 we do a short trial to determine a good
value.

An alternative embedding rule is given by the less complicated S2V embedding rule we
also discussed in Section 4.2.2. The encoder that uses two of these rules instead of the
MAB embedding rules will be referred to as S2V.

The respective encoder modules for simple assignment problem instances work in nearly
the same way. The only thing that changes is that edges are only labeled with the xi,j
and no longer with request values.

Encoding with Request Tokens

The approaches we define here involve a parameter-free preprocessing step for the
purpose of capturing problem structure. Namely, we pre-encode n = |R| requests into
n requests tokens, i.e., vectors containing p manually chosen features concerning the
student and course of each request.

Assuming an arbitrary assignment X for some simple assignment problem instance, the
request token for (si, cj) includes p = 3 features and is given by

[xi,:, ri,:, C(j)− x:,j ].

For the formal definitions of these features see Section 3.2.1. The first feature conveys
how many requests have already been accepted for student si, the second feature how
many requests the student made and the third feature captures the remaining capacity
of course cj .

In the valued case, we extend the above tokens with

[vi,j , wi,:, w;,j ],

i.e., the request value and the value total already assigned to si and cj (for formal
definitions see Section 3.2.2).

In a way, these features also exploit the graph-like structure of the assignment problem.
When considering R or X as edges and s ∪ c as vertices, they can all be interpreted as
features of these graphs:

• xi,: is the size of the neighborhood of si in the graph 〈s ∪ c,X〉.

• ri,: is the size of the neighborhood of si in the graph 〈s ∪ c,R〉.
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• x:,j is the size of the neighborhood of cj in the graph 〈s ∪ c,X〉, C(j) is simply
the label of cj .

• vi,j is the weight of edge (si, cj) in the graph 〈s ∪ c,R〉.

• wi,: and w;,j are the sums of edge weights over the neighborhood of si and cj in
the graph 〈s ∪ c,R〉 and 〈s ∪ c,X〉.

As ISAB encoder we define the module that further processes a set of given request
tokens Z ∈ Rn×p in the following way. First, we apply a 2-layer FFN Rp 7→ Rd with
ReLU activations to each row of Z, yielding preliminary embeddings η̃ ∈ Rn×d. These
embeddings are then refined using an induced set attention block (see Section 4.2.3),
i.e., the ηa are the rows of ISAB(η̃) ∈ Rn×d.

As FFN encoder we define the module that instead applies only a 3-layer FFN Rp 7→ Rd
with ReLU activations to each row of Z and uses those as final request embeddings
without further processing them with an ISAB. As the request tokens already capture
some of the problem structure, an ISAB might not be needed strictly necessary for
learning embeddings that allow to learn reasonable policies.

5.6.2 Aggregation Module

The aggregation module µX represents an important mathematical relation between
the MDP state and actions that arises as a consequence of our deterministic transition
function. It is easy to see, that in our case, the state X is the union over all actions that
have been executed so far. So µX should be a network that takes as input all request
embeddings ηa s.t. a ∈ X and aggregate them into a state embedding ηX ∈ Rd in such a
way that is permutationally invariant w.r.t. to its input, as the order in which requests
are accepted does not matter for our notion of states as sets of requests.

If not stated otherwise, we use a PMA module (see Section 4.2.3) for aggregating request
embeddings into a state embedding.

5.6.3 Policy and State-Action Value Modules

The final module must represent either a policy, or a state-action function. At their
core both use a function that performs a mapping Rd × Rd 7→ R that is applied to each
state-action embedding pair (ηX , ηa) individually.

When the final module’s purpose is to estimate state-action values Q(X, a), we use
a 3-layer FFN Q : R2d 7→ R1 where state-action pairs (X, a) are represented by the
concatenation of ηX and ηa and the FFN output is computed individually for each
action a as Q(concat(ηX , ηa)).

In the policy case, we use two different approaches. For graph-based encoders and the
ISAB encoder, we adopt the pointing mechanism that is used in pointer networks [2].
Given a set of actions embeddings ηA = {ηa | a ∈ A} = {η1, . . . ηa, . . . , ηr} and a state
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embedding ηX of X ∈ S, its output π(a | X), the „pointers“, can be described as

π(a | X) = softmax(u1, ..., ur)a
where ua = F (ηa,X)

ηa,X = tanh(fa(ηa) + fX(ηX))
(5.4)

and fa : Rd 7→ Rd, fX : Rd 7→ Rd and F : Rd 7→ 1 are 1-layer FFNs with no bias and
linear activation.

When creating the FFN request token encoder we intended it to be a kind of baseline
DRL architecture, so we also decided to keep the policy module as simple as possible. It
is thus more similar to the Q module as above, a 3-layer FFN π : R2d 7→ R with ReLU
activations for the hidden layers. The final policy probabilities are then computed in a
similar way as in the pointing mechanism, i.e., we apply the FFN to each state-action
pair and then apply the softmax activation to the vector of all respective outputs.

In Section 4.1.2 we discussed that it is often better to use an Actor-Critic approach
instead of a vanilla policy gradient approach. The policy module resembles the actor,
but we are still in need of a critic module, that learns state-value estimates. Our
proposed solution is to simply reuse the state embedding ηX as input for a 3-layer FFN
V : Rd 7→ R that is consequently trained to estimate Vπθ .
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6 Experiments

This chapter is segmented into four parts. First, we focus on simple assignment problems
only and show results for two experiments that support some of the claims we made
in Section 5.3. To this end we briefly compare single-instance learning and single-
instance architectures with our concept of multi-instance learning and multi-instance
architectures.

The next two parts focus on the training of all different architectures and algorithms we
introduced in Chapters 5 and 4 on simple assignment problems and valued assignment
problems, as well as how these trained agents compare to Gurobi as general solvers
when evaluated on instances of larger size. To assess the performance of DRL agents
compared to Gurobi, we focus on mainly two metrics. First, we examine how close
to optimal the assignments are that are found by trained DRL agents, especially for
instances that are larger than those from the training distribution, and secondly, we
want to study how much time it takes them to find these solutions.

When solving any instance, Gurobi is able to determine if a feasible solution exists
and more importantly, Gurobi can also provide us with knowledge about how close its
found solution is to an optimal one. These are both features our DRL approaches can
not provide. Due to approximation biases that arise as a consequence of using neural
networks as function approximators, and the bias introduced by training on only a finite
number of instances from a fixed training distribution that is not representative for all
possible problem instances, DRL methods are bound to be inexact. The only motivation
for applying such inexact methods in practice is that they might take less time than
exact methods. Since neural networks are usually relatively fast, we anticipated that
they should be able to compete with exact combinatorial optimization solvers in that
regard. However, as this chapter will show, this is often not the case.

Apart from comparing the DRL approaches to Gurobi only, we also want to compare
different DRL algorithms and neural network architectures among each other, in order
to study whether we can observe any significant differences regarding their suitability
for the task at hand.

All experiments which measured run-time in some way were conducted using an Intel(R)
Core(TM) i9-9900K CPU @ 3.60GHz (16 cores) with 32 GB of RAM and no restriction
on how many CPU cores can be used. For implementing and training neural networks
we used PyTorch [25]. All DRL experiments make use of the Adam optimizer [19] for
updating parameters.
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6.1 Instance Training Distributions

As a basis for our experiments we mainly used artificial problem instances that are
generated randomly using a set of distributions Pr, Pc, Pp, Ps, Pv over several instance
properties, namely the total number of requests, the capacity of courses, the popularity
of courses, the number of requests per student and the request values. For this purpose,
we first randomly sample an integer r ∼ Pr that determines the size of the set of requests
R. In the next step, we generate all courses together with capacities and popularities
using Pc and Pp, such that the amount of requests that need to be generated in order
to match the course popularities is exactly r. Finally, we iteratively generate students
with randomly sampled requests for those courses and optionally random values, until
the limit of r requests is met. The number of requests students make is drawn from Ps
and the value of requests from Pv. For a more detailed description see Algorithm 4.

Note that we only described the instance generation for valued assignment problem
instances, as the procedure for the simple assignment problem works in the exact same
way, except that we do not need to generate request values.

During training of RL agents we focus on the distribution over instances that arises
from Algorithm 4 with the following input.

• Number of total requests drawn from Pr = U {40, 80},

• course capacities drawn from Pc = U {10, 20},

• number of requests per student drawn from Ps = U {1, 4},

• course popularities drawn from Pp = U (1.5, 2.5), and

• request values drawn from Pv = U {1, 4},

where U (·) are continuous and U {·} discrete uniform distributions. We refer to this as
our training distribution.

When evaluating whether agents are able to generalize their policies to instances of
larger size, we use the same distribution to generate evaluation instances, but instead
of a random number of requests r ∼ Pr, we will fix r to concrete values, while the
remainder of Algorithm 4 is left unmodified.
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Algorithm 4 Instance Generation
1: Input: Distributions Pr, Pc, Pp, Ps, Pv
2: n← 0 . student counter
3: m← 0 . course counter
4: k ← 0 . request counter
5: R← ∅ . Set of requests
6: C ← empty mapping of courses to capacities
7: V ← empty mapping of requests to values
8: Sample target num. of requests r ∼ Pr
9: while k < r do . generate courses

10: m← m+ 1
11: Sample course capacity C(m) ∼ Pc
12: Sample a course popularity pm ∼ Pp
13: Calculate number of requests for course as r:,m ← bpmC(m)c
14: k ← k + r:,m

15: if k > r then
16: Clamp C(cm) and r;.m s.t. k == r

17: Create a collection B containing the courses cl exactly r:,l times (l = 1, . . . ,m)
18: while B is not empty do . generate students and requests
19: n← n+ 1
20: Sample a number of choices j ∼ Ps for student sn
21: Sample mutually distinct courses ci1 , . . . , cij ∼ U(B) without replacement
22: Sample request values V (sn, ci1), . . . , V (sn, cij ) ∼ Pv
23: Normalize V (sn, ci1), . . . , V (sn, cij ) s.t. they sum to 1
24: Add requests R← R ∪

{
(sn, ci1), . . . (sn, cij )

}
return Instance 〈{s1, . . . , sn} , {c1, . . . , cm} , R, C, V 〉

This algorithm can be used to randomly sample artificial problem instances. We only show the
algorithm for valued instances. The algorithm for simple instances is nearly identical, it just
does not require Pv and the related operations.
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Figure 6.1: Comparison of plain FFN architecture (red) and ISAB encoder architecture
(blue).

6.2 Comparison to Single Instance Architectures

We have already discussed how plain feed-forward networks can not be used to train
on multiple problem instances of different size in Section 5.4. Now we intend to show
that in any case, so also in the case of single instance training, where they can be
applied, they are also the inferior choice of neural network architecture for DQN agents
as well as Actor-Critics. To this end, we train four different RL agents on the same five
simple assignment instances from our training distribution. We compare two Actor-
Critic agents and two DQN agents, where for both algorithms, one agent uses plain
feed-forward networks with states as input as described in Section 5.4 while the other
ones uses the ISAB encoder network described in Section 5.6. We train the agents for
5000 episodes each. The decay for the ε-greedy DQN policy is chosen s.t. εend = 0.01 is
reached after exactly 3000 episodes. All other algorithmic hyper parameters are kept
fixed and are can be viewed in table 6.2.

Figure 6.1 shows the resulting training curves.

Both the DQN and Actor-Critic agent learn much faster and more consistently when
supplied with the ISAB encoder network that exploits the problem structure. This
is most likely due to the large action space of the assignment problems. The DRL
method which uses plain FFNs suffers from the curse of dimensionality, as it is forced
to estimate the policy logits (policy before softmax was applied), or state-action values
for all actions at once. As the output size of deep neural networks in general increases,
it becomes increasingly more difficult to train them. So, if we apply DRL to problems
with large discrete action spaces, training may be slow, or even fail to find satisfactory
solutions. This is a known issue and a remedy lies within action embeddings [8]. In this
thesis they arose naturally as a byproduct of our need for an architecture that is able
to process differently sized instances.
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Another advantage we already discussed in Section 5.3 is that training an agent on
small instances and then using it to solve larger instances afterwards is likely to be
more time-efficient compared to the naive approach of retraining a new agent from
scratch for each instance. In order to support this claim with empirical results, we first
trained an Actor-Critic agent with the FFN encoder architecture from Section 5.6.1
for 30 minutes on our regular training distribution. Then, we sampled four instances
of different, fixed sizes (number of requests) 250, 500 and 1000, from our otherwise
unchanged training distribution, and used the previously trained agent to solve them,
measuring the quality of solutions as well as solving run-time. Next, we also apply the
single-instance approach. We retrain the exact same agent, as well as an Actor-Critic
agent using plain FFNs, on each of the three tasks individually, until they find a solution
of equal or better quality, or until a timeout of 30 minutes is reached. Table 6.1 shows
the results of this experiment.

Instance Size MI SI-FFN SI-PLAIN
Value Time [s] Value Time [s] Value Time [s]

250 0.0 0.1 0.0 340.2 0.0 632.5
500 0.0 0.1 0.0 1314.2 0.0 1667.9
1000 0.0 0.2 -486.7 1800.0 -553.3 1800.0

Table 6.1: Objective value of the best assignment found during inference, or training from
scratch (column Value) and elapsed time in seconds until this best assignment was
first found (column Time). Results are averaged over five different random seeds.
MI is the pre-trained Actor-Critic that solves the instance after it has been trained
on our fixed training distribution. SI-FFN and SI-PLAIN are Actor-Critic agents
learning to solve each instance from scratch with a multi-instance FFN encoder, or
plain FFN architecture as backbone with a timeout of 30 Minutes.

The Actor-Critic FFN encoder agent generalizes perfectly to these three instances and it
takes just fractions of a second to solve one instance using this trained agent. Training
agents with the same configuration to find optimal solutions from scratch on the exact
same instances takes significantly more time and in the cases with 1000 requests, after
the 30 minute timeout is reached, a reasonable solution has not yet been found. These
results supports our claim that learning a generalizable strategy is the favored approach
over single-instance learning.

6.3 Training DRL Agents
Before being able to compare all of our proposed DRL agents to Gurobi, we first need
to train them and make sure that they learn reasonably good policies. In order to
judge how well the agents were able to learn a policy during training, we study their
respective training curves. The training curves of DRL agents plot their performance
as they explore the environment and learn to improve their policies. In our case, we
plot the current training episode on the x-axis and the penalized objective value of the
assignment found in that episode on the y-axis. We smooth the curves by averaging the
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assignment objective values using a window of size 300.

We also used Gurobi to find the optimal objective values for all training instances
and plot them along with the training curves s.t. we can judge, how well the DRL
agents are able to approximate optimal policies for the training distribution. The same
smoothing window that was applied to the training curves is also applied to the optimal
objective values for better comparability. For simple assignment problems we do not
plot the objective value directly but instead just the penalty incurred by any unsatisfied
constraints, as the objective value, i.e., number of accepted requests will always be equal
to the total course capacity.

We trained eight different DRL agents in total, each on five different seeds. The different
configurations arise as the cross product of two algorithms (Actor-Critic and DQN) and
four different multi-instance architectures that arise from the four different encoder
architectures we introduced in Section 5.6.1. As a reminder, these are the two encoders
that process parameter-free request tokens with either a FFN or an FFN in combination
with an ISAB module (we call the former FFN encoder, the latter ISAB encoder), and
the two graph neural networks, one of which uses the S2V node aggregation, while the
other one uses MABs for node aggregation, where we call the former S2V encoder and
the latter GNN encoder. For all Actor-Critic agents, the neural networks also differ
slightly in the policy module they use, depending on the encoder (see Section 5.6.3).

Nearly all hyperparameters used for all Actor-Critic as well as DQN agents are fixed
across all experiments and are shown in Table 6.2. Depending on the number of episodes
trained, we just alter the ε-greedy parameters of DQN agents. When training for 5000
episodes, the epsilon decay is chosen s.t. εend is reached after 3000 episodes, when
training for 10000 episodes s.t. εend is reached after 6000 episodes.

(a) DQN
Hyperparameter Value
ε0, εend 1.0, 0.01
Replay Buffer Size 10000
Update every 4
Batch Size 16
Learning Rate 0.0005
Target Update τ 0.001
Discount Factor γ 0.995

(b) Actor-Critic
Hyperparameter Value
Learning Rate 0.0005
Entropy Penalty β 0.001
Discount Factor γ 0.995

Table 6.2: DRL training algorithm hyperparameters.

6.3.1 Tuning Recurrence in Graph Neural Networks

We have not yet fixed the hyperparameter U of the graph-based neural networks that
determines the number of recurrent steps. Here we conduct a simple trial where we try
different values for U on the simple assignment problem and choose the best setting
for the rest of our experiments. To this end, we trained an Actor-Critic with the GNN
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Figure 6.2: Training curves for a GNN Actor-Critic with different amounts of recurrent steps.

encoder for 5000 episodes with U ∈ {1, 2, 3, 4}, which yielded the results shown in Figure
6.2. The curves give the mean performance over five different random seeds on our
training distribution and the shaded areas illustrates the 95% confidence intervals. As
the plot shows, U = 1 seems to be a sub-optimal choice, while for U > 1, the final
results are all very similar. In the end we decided to use U = 3, as U = 2 seems to be
not as robust as U ∈ {3, 4} and increasing U from three to four does not seem to yield
any further improvement.

6.3.2 Multi Instance Training
As already discussed in Chapter 3, we focus on three kinds of assignment prob-
lems. Simple assignment problems as well valued assignments problems, once with
(vsmin, vcmin) = (0.5, 0.5) (S5C5) and once with (vsmin, vcmin) = (0.7, 0.5) (S7C5). We
train all eight DRL agents on all instances for all three problems, using the training
distribution from Section 6.1.

The two kinds of valued assignment problems differ by the fact that with vsmin = 0.7, it
becomes significantly more difficult to satisfy the respective constraints which demand
that the requests assigned to each student have at least that much accumulated value.

For simple assignment problems, training is set to last for 5000 episodes, for S5C5 as
well as S7C5 problems, we use 10000 episodes.

Figures 6.3, 6.4 and 6.5 show the resulting training curves for the simple, S5C5 and
S7C5 problems. The left-hand plots show the training curves for our Actor-Critic agents
and the right-hand plots show the training curves for our DQN agents. Which network
was used is color coded. The dashed red curve in the DQN plots shows the values for
the exploration coefficient of the ε-greedy policy over the course of training. The grey
curve labeled OPT shows the objective value of optimal solutions found by Gurobi.
The curves are all averaged over five different training runs, each one using a different
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random seed, and the shaded areas depict the per-episode 95% confidence interval
after applying the smoothing windows. They are based on the student’s t-distribution,
since we are estimating both mean smoothed performance and performance standard
deviation.
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Figure 6.3: Training curves of all configurations on simple assignment problem instances.
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Figure 6.4: Training curves of all configurations on S5C5 valued assignment problem instances.

Simple Assignment Problem

Looking at the training curves for the simple assignment problem, it seems like most
non-graph based DRL agents are able to approximate optimal policies for the training
distribution fairly well. When using an FFN encoder as backbone, both the DQN and
Actor-Critic agent are able to approximate optimal policies almost perfectly across all
seeds. Agents equipped with the ISAB encoder perform slightly worse, but are also able
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Figure 6.5: Training curves of all configurations on S7C5 valued assignment problem instances.

to find near-optimal policies consistently.

Both graph neural network encoders however exhibit worse performances in both DRL
contexts, as well as highly variable results in case of the S2V encoder. While the GNN
encoder which uses MABs for neighborhood aggregation still performs reasonably well,
results when using the more simple S2V encoder are significantly worse.

The observation about these results that surprised us most is that the FFN request
token encoder performs best among all architectures. This means that the simple
assignments problems apparently do not require any overly complicated architecture
that goes beyond what our hand-crafted request tokens are able to provide.

S5C5 Assignment Problem

For valued assignment problems, the performance hierarchy changes. ISAB and GNN
encoders are still able to find close to optimal policies, in both the Actor-Critic as well
as DQN context, whereby the DQN agents learn slightly faster and achieve slightly
better performance in the end. The results we obtain with the GNN encoder are less
robust than those obtained with ISAB in both cases.

The agents using the FFN encoder however perform worse than before. If the FFN
encoder is used in the DQN context, the agent even seems to be unable to maintain a
good strategy, starting at about 4000 episodes, as the ε-greedy exploration coefficient has
nearly decayed to zero, the estimates of the state-action values give rise to a sub-optimal
policy. Used in combination with Actor-Critics, the FFN encoder is still able to improve
his policy compared to the start, but not by as much as his counterparts using ISAB
and GNN.

The agents using an S2V encoder exhibit poor performance. In the Actor-Critic context
it takes very long for them to start learning at all, and in the DQN context, even though
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the assignments they find become better in the beginning, it appears that the estimates
of the optimal Q function converge to a highly sub-optimal approximation.

S7C5 Assignment Problem

The results on this kind of problem are similar to the previous scenario, but the
instabilities of the DQN algorithm become more severe. Three out of the four DQN agents
are subject to a decrease in performance after an initial phase of policy improvement.
While the agent with an ISAB encoder is able to recover, the GNN and FFN agent are
unable to generate any improvement afterwards.

The Actor-Critic agents learn more slowly, but also appear to be more robust in doing so.
The ISAB agent also outperforms all other Actor-Critic agents in training performance,
while the GNN and FFN encoder yield very similar results in mean performance, but
the GNN agents performance is more variable.

The S2V encoder seems to again not mesh well with the Actor-Critic approach. This
agent is not able to improve his policy for a long time, until eventually it starts to learn
after 10000 episodes have almost ended. When deployed in the DQN context, it learns
more slowly, but also more consistently and ends with a performance that is on a similar
level as that of the other graph-based encoder.

Overall these results suggest that the ISAB-encoder based agents are the best choice
for learning policies that perform well on our training distribution. None of the agents
are however able to approximate policies for valued assignment problems that are
near-optimal. Judging the distance between the training curves and the optimality curve
one can argue that the learned policies are reasonable, but also clearly not optimal. In
the next section, where we evaluate the agents, we also investigate one possible cause
for this.

6.4 Evaluation

In this section we want to put our focus on two things. We are primarily interested in
how well our DRL approaches compete with Gurobi on instances of increasing size. This
should also give us an idea on the ability of our multi-instance RL agents to generalize to
problems that are larger than those we trained on. To assess, whether DRL approaches
are competitive, we want to see how well they are able to generalize their policies to
larger instances, and how much time it takes them to solve these instances. Since Gurobi
finds optimal solutions to all evaluation instances within a ten minute timeout, we can
not hope to improve upon Gurobi in that regard, but we want to investigate, whether
we may be able to find solutions of similar quality in less time.

Moreover, since we implemented two different DRL algorithms and several different
multi-instance architectures, it will be also interesting to see, how they compare to one
another in terms of solution quality, ability to generalize, and solving run-time.
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6.4.1 Evaluation Setup
Data

For the purpose of generating evaluation instances, we stick to our training distribution,
but for each distribution, we sample ten instances of increasing size, where instance
size is measured by the number of total requests. The smallest instance starts out at a
size of 500 requests, which is incremented to a maximum of 5000 in steps of size 500.
We repeat this process for five different random seeds, so for each of the three problem
settings we trained on, we obtain one evaluation set consisting of 50 instances.

Gurobi

Because a majority of our code is written in Python, we make use of the Python API
provided by Gurobi to implement our assignment problems as a Gurobi model and
control the optimization process.

For modelling the assignments problems as integer programs we introduce binary
variables for each request and implement the exact constraints as shown in sections
3.2.1 and 3.2.2. Fixed values such as course capacities and request values are introduced
as constants. When solving an instance, we first call Gurobi’s optimization routine
with all constraints fixed as hard constraints. If this process returns that the instance
is infeasible, we apply a feasibility relaxation to the model [10] that implements the
penalized objective functions introduced in Section 3.2, that is, we relax all constraints
that were introduced as soft constraints s.t., independent of their magnitude, violations
in the relaxed model generate a fixed penalty of minus ten. After that we again call the
optimization procedure on the relaxed model.

We do not impose any time limit on Gurobi and we enable its pre-solving routine, as
with this routine enabled, opimal solutions were found in less time. The optimization
procedure is set to terminate once an optimal solution within a tolerance of 1× 10−4 is
found.

Heuristic Baselines

When evaluating the quality of solutions obtained by our trained RL agents we also
compare them to greedy baseline heuristics.

For simple assignment problems it is very easy to implement a heuristic that essentially
performs hill-climbing. The idea is to first iteratively accept requests (si, cj) ∈ OpenI(X)
where the student s has made more than 1 request and has not been assigned to any
courses yet. That means we first try to greedily grant requests that help satisfy as many
soft constraints as possible before granting any other requests and do so in an arbitrary
order (in practice this means we do random tie-breaking). We denote this baseline by
HC-Simple.

A slightly more informed version of this heuristic does not accept these requests in an
arbitrary order, but instead breaks ties by course popularity, where requests for courses
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with low popularity are preferred. That means we will first grant those requests for
courses which are not highly requested. This leaves more capacity for later on when we
have to grant requests for students who compete for highly popular courses. We denote
this heuristic by HC-Simple+.

For valued assignment problems we also implement a greedy heuristic that prefers to
grant requests that immediately satisfy some soft constraint, if possible, and breaks ties
by request values. We denote this baseline as HC-Valued.

Evaluating trained DRL agents

Trained RL agents can be evaluated by greedily generating assignments from their final
policies. For DQN agents, we generate assignments from πQθ . For Actor-Critic agents,
we calculate πθ only and for performance reasons disable the critics output stream and
do not apply the final softmax activation. This is possible, because the result of any
greedification, i.e., of choosing a maximizer from some set of elements, is unaffected by
the softmax operation. The Actor-Critic evaluation policies thus select the action with
maximum „probability before softmax“. In both cases we use the parameters θ as they
were obtained in the end of training.

We refrain from evaluating the cross product of all trained agents (we trained each agent
on five seeds) with all evaluation instances (five seeds with ten evaluation instances
each), and all three problem cases (simple, and valued S5C5 and S7C5), because it
would be too costly. We instead select the agent with median final performance, as
measured by the objective value of assignments generated over its last 500 training
episodes and perform evaluation only with the saved agent’s final network parameters.

While we used PyTorch’s automatic differentiation module for the purpose of backprop-
agation during training, we disable this functionality during evaluation, as we no longer
need to compute gradients. This also helps to reduce run-time of DRL agents.

6.4.2 Generalization to unseen instances

We now put our focus on the quality of assignments that our trained RL agents find on
larger-than-training instances when compared to assignments found by Gurobi and the
heuristic baselines. Due to the already poor training performance, we exclude the agents
that used an S2V encoder from evaluation. So we only consider the performance of
Actor-Critic agents as well as DQN agents that use an ISAB, FFN, or GNN encoder.

We plot the same quantities on the y-axis as we did on out training plots. On the
x-axis we plot the size of the ten evaluation instances. The different neural network
architectures used are again color-coded, and the shaded areas again represent the
95% confidence interval over the five different seeds used for generating the total of 50
evaluation instances. The error-bars represent the objective value of the best and worst
assignment that was found.
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Simple Assignment Problem

In Figure 6.6 we can observe that the agents which were able to learn good policies in
the first place, are also best at generalizing these to similar instances of larger size. The
GNN-DQN agent seems to be unable to generalize its policy at all. The performance of
the GNN-AC agent also decreases as problem size increases, but not as much as for the
GNN-DQN agent.

The best agent, the FFN Actor-Critic, is able to generalize its policy perfectly to the
presented instances. When paired with DQN it performs slightly worse. Compared to
Gurobi and the Hill-Climbing heuristics (see Figure 6.7), FFN-AC is also the only agent
that is able to perform on the same level as HC-Simple+ and nearly the same level as
Gurobi.

The ISAB agents are partially able to generalize their policies, they are second best
among all DRL agents, but their performance also decreases as problem size increases.
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Figure 6.6: Evaluation for simple assignment problems. DRL agents only.

Valued S5C5 Assignment Problem

In this scenario, the ISAB agents both perform best within their agent-type (DQN or
Actor-Critic) (see Figure 6.8). Overall, Actor-Critics perform significantly better than
their DQN counterparts.

Considering Figure 6.9, The ISAB Actor-Critic and FFN Actor-Critic are the only
agents that are able to significantly outperform the HC-Valued heuristic. Only the
ISAB Actor-Critic alone comes close to the performance of Gurobi.

Interestingly, except for problems with more than 4000 requests, the solutions found by
the GNN Actor-Critic agent are eerily close to those of the HC-Valued heuristic, leading
to the assumption that it might learn a similar strategy as the heuristic.
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Figure 6.7: Evaluation for simple assignment problems. Per-agent comparison to Gurobi and
heuristic.

The fact that the FFN-encoder-based DQN agent is unable to perform well should
not be surprising, as it did not perform well during training either (recall Figure 6.4).
Similarly to the simple assignment problem, the GNN-DQN based agent is also unable
to generalize his policy to instances of larger size. The FFN Actor-Critic performs just
slightly worse than its GNN counterpart and the ISAB-DQN performs not quite as
good as the HC-Valued heuristic.

Valued S7C5 Assignment Problem

When increasing the minimum accumulated request value for students, the choice of
network seems to make less of a difference for the performance of Actor-Critics (see
Figure 6.10). They all perform on a very similar level regarding their ability to generalize.
For DQN-based agents, ISABs as encoder outperform the GNN and FFN encoders.
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Figure 6.8: Evaluation for S5C5 valued assignment problems. DRL agents only.

In direct comparison with Gurobi and the HC-Valued heuristics (Figure 6.11), 4 out of
6 DRL agents outperform the HC-Valued heuristic, all of which also come fairly close
to the optimal solution quality of Gurobi.

The two agents that perform significantly worse than the other four, GNN-DQN and
FFN-DQN, are also those which did not perform very well during training (see Figure
6.5).

6.4.3 Inspecting Constraint Violations

In order to investigate what caused our agents to be unable to learn near-optimal policies
in the valued assignment problem, we separated the objective value of assignments into
a number of violations per type of constraint.

Figure 6.12 shows the absolute difference in constraint violations for the ISAB-AC agent
and Gurobi averaged over all different evaluation instances. That is, for each kind of
constraint, we go over the assignments both methods found and count how many of
them are violated. We then subtract the number of violations Gurobi made from the
number of violations our agent made.

The label S-REQ refers to the constraint that students should be assigned to at least 1
course, if they applied for more than one, S-VAL and C-VAL refer to the constraints
that demand the accumulated value per student and (average) value per course to be
larger than some fixed constant. The left plot shows results for the S5C5 setting, the
right plot shows results for the S7C5 setting. What can be inferred from these plots is
that the approximation errors of the DRL assignments in both settings might appear
similar if we just inspect the penalized objective value, but they arise as a consequence
of two completely different things going wrong.

While the DRL agent is able to learn to optimally satisfy the constraints labeled S-
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Figure 6.9: Evaluation for S5C5 valued assignment problems. Per-agent comparison to Gurobi
and heuristic.

REQ in the S5C5 scenario, he does not come close to achieving the same thing in
the S7C5 scenario. Our interpretation on why this happens is that the reward signal
in this scenario is dominated by penalties for violating the S-VAL constraints, as a
consequence of the increased minimum accumulated student value vsmin. Since the
penalized objective function is nothing but a linear combination of the objective and
all constraint penalties, penalties for constraints that are less likely to be violated are
overwhelmed by the dominating ones that are violated much for frequently by solutions
found during exploration. As the resulting policy gradient estimates and value function
gradient estimates are averaged over whole trajectories, it thus becomes difficult for the
ISAB-AC DRL agent to learn to satisfy the constraints that are in the minority.

A similar argument can be made for the C-VAL constraints. Since there are far less
courses than students, situations where the agent can learn to satisfy them are sparse
compared to his remaining experiences.
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Figure 6.10: Evaluation for S7C5 valued assignment problems. DRL agents only.

One possible remedy to this problem could be to treat the objective and each type of
constraint penalty as a distinct objective. Multi-objective reinforcement learning [36] is
concerned with adapting RL algorithms to this kind of problem statement. We briefly
describe one possible approach in more detail in the Chapter on future work 8.

6.4.4 Solving-Time Comparison
While using Gurobi, the heuristic baselines, and our DRL methods as solvers for the
evaluation instances we did not just measure objective value, but also the wall-clock
time it took them to solve instances. Figure 6.13 shows the results averaged over all
five seeds for the simple assignment problem. Because the solving times partly have
very different scales, we plot them using on a logarithmic axis for better visibility. The
error-bars show worst (longest) and best (shortest) time across all seeds.

None of the DRL agents are able to solve the instances as quickly as Gurobi, which is
faster by more than a factor of ten. This is most likely due to the fact that the simple
assignment problem does not pose much of challenge to the methods Gurobi uses.

Since the choice of DRL algorithm (DQN or Actor-Critic) only influences the final
module of the neural network used, and since the policy-modules and state-action
value module (see Section 5.6.3) are practically identical w.r.t. to their computational
complexity, there is no significant solving-time difference at all between DRL algorithms
using the same encoder.

What can be observed is that the different encoders lead to different solving-times.
Unsurprisingly, the simple FFN encoder that just applies a feed-forward network to the
request tokens is the fastest one, whereas the ISAB encoder that also applies induced
set attention is slightly slower. The GNN encoders are computationally very expensive.
Applying a MAB for each student and each course U = 3 times turns out to be quite
expensive, which is why the solving-times are so long.
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Figure 6.11: Evaluation for S7C5 valued assignment problems. Per-agent comparison to Gurobi
and heuristic.

We experimented with two different implementations of the GNN encoder. One of them
essentially used a for-loop and applied the MAB operation individually for each student
or course respectively and then gathered the results, while the other one performs a
single MAB operation that first assumes a fully connected graph, i.e. with all nodes and
vertices as queries and keys, but then properly zeroes the attention scores (i.e. query-key
similarities in Definition 8 in Section 4.2.3) of unrelated vertices by using the actual
adjacency matrix as a mask. The plot shown here gives the running time for the latter
version, as it was the more efficient one.

Whereas the simple assignment problem seems to be an easy to solve problem for
Gurobi, the time it takes to find optimal solutions for equally sized instances of valued
assignment problems is significantly larger, as can be seen in Figure 6.14. The time it
takes Gurobi to find solutions is further increased in the S7C5 setting compared to the
S5C5 setting.

56



6.4. EVALUATION

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

Problem Size [Requests]

0

10

20

30

40

50

60

Ab
so

lu
te

 V
io

la
tio

ns
Difference RL and Gurobi S5C5

C-VAL
S-VAL
S-REQ

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

Problem Size [Requests]

0

10

20

30

40

Ab
so

lu
te

 V
io

la
tio

ns

Difference RL and Gurobi S7C5
C-VAL
S-VAL
S-REQ

Figure 6.12: Number of constraint violations made by Actor-Critic assignment are subtracted
from number of constraint violations made by optimal assignment found by Gurobi.

The time it takes our agents to solve the instances stays roughly time the same, so
the gap to Gurobi in terms of solving-time decreases and in the S7C5 setting, two
out of three of our methods are indeed faster than Gurobi. These are the ISAB and
FFN encoder based agents, whereby FFN encoders are even faster by a factor of 10
on average. Interestingly, the solving-time of Gurobi appears to be subject to a large
amount of variance. We believe this is due to the fact that the instances might be of
different difficulties, making it easier or harder for Gurobi to reach the optimality gap
of 1× 10−4.

A systematic problem that might also prevent our approach from being time-efficient
is that under some mild assumptions it is currently bound to be subject of at least
quadratic time-complexity in the problem size. Assuming a problem size n, then in
the case of our MDPs where we add requests one at a time, we have that the length
of RL trajectories increases as n increases. If we use for example the total capacity of
all courses as n, and assume that all courses have a popularity that is greater than 1,
the length of trajectories would be in O(n). For instances generated using Algorithm
4, this also means trajectory lengths are in O(n) if n denotes the number of requests.
For real world instances, it also a reasonable to assume that the number of requests
and total course capacity is relatable, e.g., universities with large enrollment numbers
are bound to offer courses with large capacities. So, it is reasonable to assume that the
number of environment steps required for solving an instance is in O(n), where n is the
number of requests.

Since some of our neural networks, e.g. policy or state-action value modules, indepen-
dently process all the n request embeddings, it is also safe to assume that the complexity
of choosing one action at the current environment step is in O(n). So, because we have
to perform one such decision per environment step this ultimately means that the time
complexity of our approach is at least in O(n2). Note that this does not yet factor
in the time it actually takes to carry out the action on the environment. However,
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Figure 6.13: Solving times for simple assignment problems
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measuring environment time and neural network evaluation time independently shows
that the latter dominates the further (for each environment step (selecting an action and
executing it within the environment/MDP), about 80% of time spent can be attributed
to the neural network evaluation for our fastest method in FFN encoders).

While we do not believe that we can significantly reduce the time complexity of the
neural networks we use, we believe it is possible to design a different kind of MDP
where the number of required environment steps does not necessarily depend on the
problem size. We give an outline on how this could be achieved in Chapter 7. The core
idea is to allow actions to make multiple changes to the assignment at once, instead of
restricting steps to be minimal (accepting one request at a time).

6.4.5 Generalization KAS 2020
This thesis was originally motivated by the relevancy of the assignment problem for
real-world applications, in this case, the task of the KAS to each year decide on how
to assign their scholarship students and past members to offered seminars and courses.
For this purpose they developed a catalogue of rules, some of which we drew inspiration
from in order to define the simple assignment problem in Section 3.2.1. We now use real
data about the student requests for courses offered in 2020 to create a corresponding
instance of the simple assignment problem and conclude our experiments by evaluating
some of our trained agents on this instance. The instance consists of just over 20000
requests, roughly 3000 students, and 281 courses. The total capacity of all courses is
6024.

Note that to our knowledge, the current strategy of the KAS is to search for such
assignments manually without any computer-aided, algorithmic assistance. The following
experiment investigates our methods and Gurobi as alternative automatic solvers for
finding (approximately) optimal assignments to this special instance. The results are
shown in table 6.3.

Method Constraint Violations [%] Time [s]
ISAB-AC 3.35 64.35
ISAB-DQN 0.50 69.35
FFN-AC 6.41 9.42
FFN-DQN 0.29 10.83
Gurobi 0.00 0.11

Table 6.3: Evaluation of DRL methods and Gurobi on KAS 2020

To put the results into perspective, we do not report the penalized objective value,
but instead the number of soft constraint violations normalized by the total number of
students that applied for more than one course, so the percentage of students for which
the assignments violate a constraint. Surprisingly, as this is not entirely consistent with
our results in Section 6.4.2, the DQN agents yield significantly better results than the
Actor-Critic agents. The FFN-AC agent, which was the best performing agent when
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evaluating on large instance generated from the training distribution, is now performing
worse than all other agents, violating more than 6% of all constraints, whereas the best
agent, the FFN-DQN agent, violates just 0.29% of constraints. Thanks to Gurobi, we
know that a solution optimal w.r.t. to the penalized objective, i.e., a solution feasible
w.r.t. constraints, exists. For finding this solution, Gurobi takes slightly more than a
tenth of a second, while our agents take between 9 and 70 seconds for finding their
respective solutions.

Considering that we did not use any information about the KAS 2020 instance when
fitting our training distribution, these are good results, as they allow for the interpre-
tation, that our DRL policies are able to generalize even to instances with different
properties. Or it could as well just mean, that this instance is in reality not particularly
difficult to solve, apart from being very large.
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7 Reinforcement Learning and Gradient
Ascent: what’s the difference anyway?

Let us start this chapter with a thought experiment. For this, first assume we are
presented with an optimization task with parameters θ where the objective is of the
form

max
θ
J(θ) (7.1)

and J is differentiable w.r.t. θ. If deriving an analytical solution is out of scope, then
gradient ascent (see Section 4.2.4) presents an attractive alternative. We can optimize θ
by iteratively applying the update scheme

θk+1 ← θk + α∇θkJ(θk) (7.2)

to some reasonable initial guess θ0.

For a suitably chosen learning rate α and initial θ0, the sequence θ0, θ1, . . . converges
to a local maximum [9]. Assuming that J is differentiable essentially means that we
assume the existence of an oracle that for any θ gives us the direction of locally steepest
ascent in J(θ).

If the optimization task is an integer program, then gradient ascent in this form is not
applicable, mainly for two reasons.

1. Such a gradient oracle does not exist. Integer programming objectives are not
differentiable, because the parameters are restricted to be integers.

2. Some parameters in θ are most likely subject to constraints. Even if we knew the
direction of steepest ascent, it is not guaranteed that following these directions
yields feasible solutions.

We will now discuss how the way we use reinforcement learning can be interpreted as an
approach that solves these two issues and by doing so effectively approximates what can
be considered a feasible variation of gradient ascent. Strictly speaking, this variation
can be even more powerful than normal gradient ascent, in the sense that following the
locally steepest ascent is replaced by a method that „thinks more than one step ahead“
and is thus (in theory) able to find global maxima.

Consider an arbitrary integer program with n variables x = [x1, . . . , xn]T ∈ Nn

max
x

cTx

s.t. Ax ≤ b
x ≥ 0

(7.3)
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WHAT’S THE DIFFERENCE ANYWAY?

In order to stick to our previous notation, we will fix θ = x and J(θ) = cTx

Partially generalizing the way we proceeded in Section 5.1, we now construct an MDP
M = 〈S,A,R, T , s0,S∗〉 with

• S = Nn (we denote states by θ ∈ S),

• A ⊆ Nn,

• T (s, a) = s+ a,

• R(s, a) = J(s′)− J(s) where s′ = T (s, a),

• s0 = 0. 1

• S∗ are all extreme points of the convex hull of {x ∈ Nn | Ax ≤ b}. 2

The actions in this case are a fixed set of directions for moving the parameters θ ∈ S. If
A is the standard basis of Nn, i.e., the set of all vectors where exactly one entry is 1,
then for each state θ ∈ S, a trajectory reaching this state trivially exists.

For a discounting factor of γ = 0 (only immediate rewards are considered in the
return), learning the optimal Q values or optimal policy directly both have interesting
interpretations.

The reward for an action a is equal to the increase of the objective when applying that
action to the current state. The optimal Q function is thus

q∗(s, a) = R(s, a) + γmaxa′q
∗(T (s, a), a′) (7.4)

= J(T (s, a))− J(s) + 0 (7.5)
= J(s+ a)− J(s) (7.6)

So Q-learning with γ = 0 can be viewed as a prediction task where the goal is to learn to
predict the amount of ascent associated with each direction a ∈ A, i.e., finite difference
surrogates for the directional derivative of J(s) along the direction a.

Estimating the optimal policy directly using the policy gradient approach breaks down
to a classification task where among a set of possible directions a ∈ A we try to classify
which of them ascends the objective the most without the need to know how much
exactly.

In our case, in Section 5.1, s0 was part of the feasible region and we additionally
constrained the policies (see Section 5.2) s.t. we disable actions that result in infeasible
states. By these means, we fixed the second issue mentioned in the beginning of this
section.

For γ > 0, reinforcement learning is theoretically more powerful than gradient ascent,
because we no longer care about finding a direction with locally steepest ascent, but
instead a whole sequence of directions s.t. that the discounted sum of objective ascents

1We restrict this example to cases where the zero vector is feasible, i.e. 0 ∈ {x ∈ Nn | Ax ≤ b}.
2We assume the convex hull is bounded in this case.
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is maximal. Optimal policies with sufficiently large γ in this case should be able to find
global maxima.

Let us now continue by making an interesting modification to the above MDP. Instead
of postulating that A is the standard basis of Nn we allow all possible vectors in Nn
to be chosen as pseudo-continuous actions. If, for a moment we assume that J(θ) is
differentiable, then gradient ascent would be equivalent to the deterministic policy

π(s) = ∇sJ(s), (7.7)

and disregarding any possible constraints for a moment, an obvious optimal policy
would in any case be the policy with

π(s0) = arg max
s

J(s) (7.8)

π(s) = 0 for all s 6= s0 (7.9)

, i.e., the policy that immediately travels to an optimal solution and then stops. Even
though this policy most likely is not really something we are going to be looking for in
practice (recall the feasibility issues), it illustrates a nice property of policies in the case
of pseudo-continuous actions, which is that the length of their trajectories no longer
necessarily depends on the size of the problem. In fact, the trajectories for the above
policy are always of length one.

This is an interesting insight, as it might allow us to solve the systematic time-complexity
limitation of our approach that we discussed at the end of Section 6.4.4. In theory it
is possible for a DRL agent equipped with a policy over pseudo-continuous actions to
solve instances in any number of steps.

An open question in this case would be how we constrain such policies to generate only
actions that lead to feasible states. Our suggestion would be that we do not constrain
policies directly, but instead modify the transition function T s.t. it does not implement
s+ a directly but instead also projects this result back into the set of feasible states.
Constructing a suitable transition function is not trivial at all and would require further
work.

Nevertheless, successfully implementing this kind of approach could prove to be beneficial
in making DRL approaches for combinatorial optimization more time-efficient, as it
resolves the systematic run-time limitation we described earlier.
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8 Conclusion and Future Work

The main goal of this thesis was to do a case study to which extent DRL algorithms
are applicable to assignment problems as an example for combinatorial optimization
problems.

To this end, we reformulated assignment problems as MDPs in such a way that preserves
our original notion of optimality and feasibility. As DRL is an inexact method that relies
heavily on approximation, we are not able to guarantee that our methods always find
optimal policies. However, after implementing suitable neural networks that allow us to
use an efficient multi-instance approach built on top of either the DQN or an Actor-Critic
algorithm, we were able to show in our experiments that at least some of our considered
DRL agents are able to find reasonably good policies in all settings. Nevertheless, there
is still room for improvement. A clear limitation of our best performing DRL agents is
that they rely on hand-crafted features which we summarized as request tokens, making
it more difficult to generalize these approaches to different problem settings. Our graph
neural network architectures, which should be easier to generalize to other problems, did
not perform as well as the aforementioned architectures during training and evaluation.
We believe that this might have been due to our choice of restricting them to recurrent
graph neural networks, and it might be worth to investigate more recent graph neural
network architectures [35] as alternatives.

Furthermore, while this thesis put a lot of attention into designing suitable neural
networks for deep reinforcement learning in the context of combinatorial optimization,
an orthogonal approach it did not pursue is to research modifications to the deep
reinforcement learning training algorithms themselves. For instance, we regard it as
promising to conduct in-depth studies on how different values for hyperparameters such
as the discount factor affect solution quality and policy generalizability. Such a study
could also investigate more sophisticated DRL algorithms. The ones we used, DQN
and a simple Monte-Carlo Actor-Critic are strong DRL baseline algorithms, but the
literature offers multiple algorithms that are generally regarded as improvements of
them, e.g. PPO [27], Rainbow DQN [14], or AlphaZero [28]. As a simple, first step it
could also be promising to just evaluate different reinforcement learning targets. Instead
of TD-targets for DQN and Monte-Carlo targets for an Actor-Critic (Section 4.1.2),
promising alternatives could be n-step Q-learning targets [29] or TD-λ [29] targets for
the Actor-Critic approach, as they allow for a better trade-of between high variance
and unbiased Monte-Carlo methods and low-variance, but biased temporal difference
methods. Besides looking to existing methods that are generally applicable, more
problem-specific approaches could study ways to intelligently choose training data. So
far, we always trained on a fixed training distribution, but alternatively one could
observe the performance of the agent during training and try to make automatic changes
to the training distribution based on this information. For instance, one could explore a
form of curriculum learning [3], i.e. start with a distribution of small, simple instances,
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where we expect rapid policy improvement, and then gradually increase the complexity
and size of the instances. More sophisticated approaches could automate such a process
by monitoring the agent’s loss or a metric for the slope of his training curve.

Another limiting factor arose as a consequence of the properties of the objective function
underlying our reward structures. Because we effectively merged different objectives
(some of which are way more prominent than others) by the means of a linear combination,
the difficulty of learning to act optimally with respect to the less prominent objectives
was increased. Another algorithmic extension to our approach, which be believe could
be a remedy to this issue, are multi-objective reinforcement learning approaches such
as [36]. They would entail that we decompose the reward function into multiple parts.
More specifically, we could treat each component of the penalized objective functions,
i.e., the actual objective function and all kinds of constraint penalties, as a separate
objective and construct as many dedicated reward signals. A multi-objective DQN
could then be instructed to learn a state-action value function for each of these reward
signals, or a multi-objective policy gradient approach could consist of a single actor that
is criticized by multiple critics, one for each objective component.

Instead of applying an inefficient single-instance approach, i.e., learning polices from
scratch for each instance, we used our multi-instance approach which proved to be more
time-efficient, as it uses neural networks that are capable of learning a meta-policy
just once, which is then applicable to arbitrary instances. Nevertheless, evaluating
the respective DRL agents, we observed that they were able to be more time-efficient
than Gurobi in only one out of three kinds of assignment problem. A brief theoretical
consideration showed that our approach has at least quadratic time complexity, mainly
due to the fact that actions are restricted to accepting one request at a time. In Chapter
7 we described an alternative approach, which when applied to our case, would break
down into accepting more than one request at once, decreasing episode length and thus
potentially also run-time. How exactly this method can be applied also presents an
interesting avenue for future work.
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