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Abstract

Reinforcement Learning tries to obtain optimal policies, according to which an agent can
solve given tasks. In our case, the policies will be represented by neural networks. Finding
this policy is not always easy, particularly when it comes to large instances of such tasks.
In this work, we will try to approach this issue in Planning domains, specified in the
framework Jani, by applying Reward Shaping in a setting already specified by Vinzent
et al. 2022 [16]. The following work gives a theoretical background on the concepts used,
an analysis of the policies obtained, and an outlook on further research topics to follow
up on.
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Chapter 1

Introduction

Reinforcement learning became more and more popular as a method to learn policies
according to which intelligent agent makes decisions in an environment. In this environ-
ment, the agent is usually given a task it is supposed to fulfill. Depending on how the
agent performs, it receives a reward. This is then used to optimize the agent’s policy
and this way its performance. An issue encountered especially in large instances of tasks
is that the agent performs poorly since it takes very long to reach the goal state and
therefore doesn’t receive a reward very often. Without receiving rewards the agent won’t
improve the policy and is not able to improve the way it performs its task or even fails to
solve the task at all. Reward shaping makes it possible for the agent to receive rewards
in additional stages of the task.

We apply reward shaping on planning tasks in a framework specified by Vinzent et
al. [16]. For this, we use the Jani formalization as well as the code base they used in
their work as well.

This work starts with an overview of the background of our work in chapter 2. We
therefore address how the state space is formalized. Then a background on reinforcement
learning, neural networks, and reward shaping is given. Chapter 3 describes the tasks we
are considering in our work, how they are formalized and what reward shaping functions
we use depending on the task. Afterward, we display the results accomplished during
the work in Chapter 3.3.3. In this section we will give insights on both the progress of
learning as well as on how well the learned policies perform, taking both their safety as
well as overall performance into account. This chapter is closed with a summary of these
results. Finally, in chapter 4.6 we look into future research topics in this area of work.

1.1 Related Work

Since both Reinforcement Learning and AI Planning are very current topics, lots of work
has been done in this area, covering topics related to this work.

The general formalization of the state space, independent of the automata language
used, was introduced by Vinzent et al. [16] in their work for verifying instead of in this
work learning neural network action policies using. We will be using the coding of this
project as a basis for our work. Furthermore, the automata language Jani was the
basis of their implementation there as well as the implementation of this work. First
introduced for qualitative model checking by Budde et al. [4], Jani is the automata
language which will also be used for the modeling of the planning domains. Later, the
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Python framework Momba was created using the Jani-model [11]. Although not directly
used for reinforcement learning or the training of agents, Momba was used by Gros et
al. [7] to create the integrated toolbox Mogym. Mogym is meant for the training and
verification of such intelligent agents using formal methods.

Regarding the reward shaping part of this work, it originates from Ng et al. [13].
Grzes [8] later publishes further work in this area of research. Since we are considering
planning domains in reinforcement Learning for this work, it may be useful to involve
heuristics in the learning progress. Gehring et al. [6] try to solve the sparse-rewards issue
we encounter in large instances of our tasks as well through applying heuristics as dense
reward generators.
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Chapter 2

Background

The upcoming chapter gives a background on the technologies and methods used in our
work. We start with the formalization of the description of the state space. Afterward,
we give a background on reinforcement learning. The last subsection introduces rewards
shaping and in particular potential-based reward shaping, which is the method we apply
in this work.

2.1 Setting

2.1.1 State Space Formalization

Although we use parts of Jani (Budde et al. 2017 [4]) to implement the following state
space, it can also be formalized as follows:

The automata networks used in our work were already defined by Vinzent et al.
2022 [16] for neural network action policy verification via predicate abstraction.

Generic Description

The state space, a three-tuple ⟨V ,L,O⟩, is defined as follows:

• state variables V : each variable v ∈ V has a domain Dv, which is a non-empty
bounded set of integers

• action labels L: the labels of O

• operators O: an operator o ∈ O is a three-tuple (g, l, u) consisting of the label
l ∈ L, the guard g ∈ C and update u : V → Exp

• with

– linear integer expressions Exp: a polynomial with elements of V as vari-
ables, which all have 1 as an exponent.
(e.g. dr · vr + ...+ d1 · v1 + d0 with v1, ..., vr ∈ V and d0, .., dr ∈ Z)

– linear integer constraints C over V : a linear integer constraint c is:

∗ either a comparison of 2 elements e1, e2 of Exp: e1 ≤ e2, e1 ≥ e2 or e1 = e2
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∗ or a boolean combination of two linear integer constraints c1, c2 ∈ C
(e.g. c1 ∧ c2, c1 ∨ c2, c1 → c2, ...)

Additional Definitions:

• variable assignment s(v) over V (may be a partial variable assignment):
takes some variables of V and assigns each of them a value from their domain
→domain of s dom(s) ⊆ V , codomain of s codom(s) ∈ Dv for v ∈ dom(s)

• update of s1 by s2 s1[s2]:
dom(s1[s2]) = dom(s1) ∪ dom(s2) with

s1[s2](v) =

{
s2(v) v ∈ dom(s2)
s1(v) else

• e(s) evaluation of e ∈ Exp over s

• ϕ(s) evaluation of ϕ ∈ C

• s |= ϕ if ϕ(s) evaluates to true

Further, we define the state space of ⟨V ,L,O⟩ as a labeled transition system (LTS)
LTS Θ = ⟨S, L, T ⟩:

• states S: the finite set of all complete variable assignments over V

• transitions T ⊆ S × L × S: T contains a transition (s, l, s′) if: {∃o ∈ O | s |=
g ∧ s′ = s[u(s)]}

– s[u(s)] abbreviated by sJoK; s |= g rewritten to s |= o

– with u(s) as the partial variable assignment induced by u evaluated over s
→u(s) = {v 7→ u(v)(s)|v ∈ dom(u)}

– applying the update in s results in s’. The transition is only possible if the
guard is satisfied.

Automata Networks [17]

A network of automata ⟨V,L, A,Λ⟩ is underlying the generic state space description. It
is defined as follows:

• the finite set of integer state variables V

• the finite set of labels L: includes all labels except for the silent label τ /∈ L

• the finite set of automata A over V and L

• the finite set of synchronization constraints Λ ⊆ (A ↛ L)× L

further definitions

• automaton a over V and L: tuple ⟨L,E⟩

– non-empty finite set locations L
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– finite set edges E: edge e as a tuple (lS, g, l, u, ld) ∈ E with:

∗ source location lS ∈ L

∗ guard g ∈ C over V

∗ l :

{
l ∈ L if e is labelled
l = τ if e is a silent edge

∗ update u (may be partial): V → Exp (over V)

∗ destination location ld ∈ L

Transforming a state space description ⟨V ,L,O⟩ into an automata network ⟨V,L, A,Λ⟩ is
defined as follows:

• V = V ∪ {vloc,a | a ∈ A} with vloc,a as the location variable of a automaton a with
Dvloc,a = L(a)

• O contains an operator

– ((vloc,a = ls) ∧ g, τ, u[{vloc,a} 7→ ld]) for each silent edge (ls, g, τ, u, ld) ∈ E(a) in
each automaton a with a ∈ A

– (g, l, u) for each synchronization constraint (λ, l) ∈ Λ and each combination of
edges e1 ∈ E(a1), ..., en ∈ E(an) such that:

∗ dom(λ) = {a1, ..., an}
∗ ei = (lig, g

i, l(ai), u
i, lid) for i ∈ {1, ..., n}

∗ g = ∧ni=1(vloc,ai = lis ∧ gi)

∗ u =
⋃n

i=1 u
i[vloc,ai 7→ lid]

• There are special naming rules for the the environment modeling silent edges. Taking
them is independent of the policy(π : S → L) which controls the agent.

2.1.2 From the State Space to Neural Networks

Deciding which action l ∈ L is taken in which state depends on an action policy π.
Obtaining these policies is our main goal for the bachelor thesis.

Since we will especially be considering large instances of tasks, using a dynamic pro-
gramming table as often used in reinforcement learning is not possible. The table would
take too much space to compute, so instead as already mentioned the action policy is
represented by a neural network (NN).

7



2.1.3 Neural Networks

Neural networks have become more and more popular over the last years, especially due
to their good performance when used with large amounts of data. Therefore it seems
appropriate using them for our task. Benchmarks for this setting already exist, as they
were used for neural network policy verification by Vinzent et al. 2022 [16]. We will use
the fully connected feed-forward NN, which also was used there.

Structure of the neural network:

• input layer with 1 input for every state variable

• arbitrarily many hidden layers

• output layer with 1 output for each action, from which the policy π is obtained by
applying argmax

Given this neural network, we define a NN action policy for the state space ⟨V ,L,O⟩
similar to Vinzent et al. [16] as

π : S → L, s 7→ fo(fd(...f2(fI(s)))) (2.1)

with

• d: the number of layers of the NN

• di for i ∈ {1, ..., d}: the size of layer i in the NN.

The functions fm for m ∈ {1, ..., d} ∪ {I} ∪ {o}:
• fi : S → Rd1 , s 7→ (s(v1π), ..., s(v

d1
π )) :

the input interface with

vjπ ∈ V for j ∈ {1, ..., d1}

as the state variable associated with input neuron j

• fi : Rdi−1 → Rdi , V 7→ ReLU(Wi · V +Bi), for i ∈ {2, ..., d− 1}:
the forwarding function induced by hidden layer i.

– Wi ∈ Qdi×di−1 as the weight of output neuron k in layer i− 1
i.e. Wi as a Matrix from layer i− 1 to layer i

– Bi ∈ Qdi as the rational bias vector of layer i

• fd : Rdd−1 → Rdd , V 7→ Wi · V +Bi:
the forwarding function induced by the output layer d

• fo : Rdd → L, V 7→ l
argmaxj∈dd

(V )j
π :

the output interface with ljπ ∈ L for j ∈ {1, ..., dd} as the action label associated
with output neuron j

Real-valued vectors are forwarded from the input to the output layer in a way that each
of the forwarding function represents one layer in the NN structure.

Due to this definition of NN action policies, it is possible that the action policy selects
inapplicable actions for a state. This results from the setting given by Vinzent et al. [16],
according to which applicability filtering is non-trivial.
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2.2 Reinforcement Learning

2.2.1 Background on Reinforcement Learning

”Reinforcement Learning is learning what to do - how to map situations to actions - so as
to maximize a numerical reward signal.”(Sutton and Barto 2018 [15]) This is how Sutton
and Barto try to define reinforcement learning in one sentence. In general, reinforcement
learning aims at finding a policy according to which a task can be solved.

We formally define this task as a Finite Markov Decision Process(MDP)

M = (S,L, T, γ, R) (2.2)

with

• S: the finite set of states (same as S from the definition of LTS)

• L: the actions (similar to the action labels L from the state space description)

• T : the transition probabilities T = Psl(·)|s ∈ S, l ∈ L, i.e. Psl(s
′) gives the

probability of reaching state s′ when applying l in s (in our case Psl(s
′) is always

either 1 or 0, in general it might be in [0, 1] with
∑
s′∈S

Psl(s
′) = 1|∀s ∈ S )

• γ: the discount factor

• R: the reward distributions

(γ and R are further specified below).

A policy π(s|l) for every state s ∈ Snt (Snt as the set of non-terminal states) is defined as
the probability of taking an action l ∈ L when in s at time t, i.e. P (Lt = l if St = s) with
Lt being the applicable actions at this point and S the set of states. The ”|” represents
that it is a probability distribution over the actions.

To find this policy, the learning agent repeats the task for several iterations, so-called
episodes, and learns from what happens during the episodes and especially from what
resulting state the episode ends in. This learning progress is guided by rewards, which
the agent receives in (intermediate) states. After arriving in a terminal state, the return
Gt represents all rewards Ri received on the way from the initial state to the terminal
state. Usually, the return

Gt =
∞∑
k=0

γkRt+k+1 (2.3)

is calculated by summing up individual rewards and discounting them with some factor
γ. From a mathematical perspective, a value function, defined as follows, is used to carry
out the search for the optimal policy (we differentiate between a state-value function

vπ(s)
.
= Eπ[Gt|St = s] = Eπ

[ ∞∑
k=0

γkRt+k+1

∣∣∣∣St = s

]
(2.4)

for a state and an action-value function

qπ(s, l)
.
= Eπ[Gt|St = s,Lt = l] = Eπ

[ ∞∑
k=0

γkRt+k+1

∣∣∣∣S = s,Lt = l

]
(2.5)
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for applying an action in a state.

For these functions we use the following:

• Eπ[·] being the expectation of a random variable as long as the agent follows policy
π

• t being some time step

• Gt theoretically being an arbitrary function of reward sequence received in this task,
which is then specified

• Ri being some reward the agent might receive

• γ being the factor by which the rewards are discounted

Further, resolving the sum of Gt leads to the

Gt
.
=

∞∑
k=0

γkRt+k+1

= Rt+1 + γ ·Rt+2 + γ2 ·Rt+3 + γ3 ·Rt+4 + ...

= Rt+1 + γ · (Rt+2 + γ ·Rt+3 + γ2 ·Rt+4 + ...)

= Rt+1 + γ ·Gt+1

(2.6)

as the recursive definition of the return.
This recursive definition can also be applied to the value function

vπ(s)
.
= Eπ[Gt|St = s]

= Eπ[Rt+1 + γGt+1|St = s]

=
∑
l

π(l, s)
∑
s′

∑
r

p(s′, r|s, l)

[
r + γEπ[Gt+1|St+1 = s′]

]

=
∑
l

π(l|s)
∑
s′,r

p(s′, r|s, l)

[
r + γvπ(s

′)

]
,

(2.7)

leading to the Bellman equation defined as

vπ(s) =
∑
l

π(l|s)
∑
s′,r

p(s′, r|s, l)

[
r + γvπ(s

′)

]
. (2.8)

The goal of our agent is to solve the task as well as possible, i.e. receive the highest
reward achievable in this setting. The optimal policy is supposed to fulfill this criterion.
But since there are many actions applicable in each state, there also exist many policies
according to which the agent can act. This means, from all those policies we want to
determine the policy π∗ which has the highest expected return Gt, the optimal policy. If
we now calculate the state-value functions for the start states or a sample of start states,
which this way represents the expected return of a policy, extracting the optimal policy
means selecting the state-value function with the highest value. We call this state-value
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function the optimal state-value function

v∗(s)
.
= max

π
vπ(s)|∀s ∈ S. (2.9)

Same holds for the optimal action-value function

q∗(s, l)
.
= max

π
qπ(s, l)|∀s ∈ S ∧ l ∈ L. (2.10)

q∗ includes v∗ because

q∗(s, l) = E[Rt+1 + γ · v∗s(St+1|St = s, Lt = l)]. (2.11)

Intuitively, this is the expected return of applying l in s and then following the optimal
policy.

The Bellman equation also holds for the optimal value functions, in form of the Bell-
man optimality equation

v∗(s) = maxl∈L(s)qπ∗(s, l)

= max
l
Eπ∗ [Gt|St = s, Lt = l]

= max
l
Eπ∗ [Rt+1 + γGt+1|St = s, Lt = l]

= max
l
E[Rt+1 + γv∗(St+1)|St = s, Lt = l]

= max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)]

(2.12)

q∗(s, l) = E

[
Rt+1 + γmax

l′
q∗(St+1, l

′)|St = s, Lt = l

]
=

∑
s′,r

p(s′, r|s, l)
[
r + γmax

l′
q∗(s

′, l′)

]
.

(2.13)

There are several different methods of reinforcement learning, but for our work, we will
be using deep Q learning.

2.2.2 Q-Learning

Temporal-Difference Learning (TD) – Merging Dynamic Programming and
Monte Carlo Methods

Two widespread types of reinforcement learning Methods are dynamic programming and
Monte Carlo Methods. Both are collections of algorithms to obtain optimal policies to
solve a task.

The dynamic programming algorithms in reinforcement learning are such algorithms,
which use dynamic programming to calculate value functions and then use these to ob-
tain optimal policies. As mentioned above, one can retrieve an optimal policy from an
optimal value function v∗ or q∗. Monte Carlo Methods on the other hand do not need
complete knowledge of the environment the agent acts in. Instead, it suffices to have
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samples of state-action-reward sequences of actual or simulated interaction. The impor-
tant advantage over dynamic programming is that it is not necessary to have the complete
probability distributions of all transitions possible. This means instead of finding the opti-
mal policy over the entire task, only samples are used to obtain this policy. Similar to the
Monte Carlo Methods, calculating the policy also does not necessarily need this complete
probability distribution. During temporal-difference learning, the estimates are already
updated based on intermediate results, which is also done in dynamic programming.

Q-Learning in General

Q-learning is a special case of temporal-difference Learning. It aims at learning an action-
value function Q. The update rule works according to

Q(St, Lt)← Q(St, Lt) + α

[
Rt+1 + γmax

l
Q(St+1, l)−Q(St, Lt)

]
(2.14)

with α being a constant step size parameter.
The respective algorithm for Q-Learning, also known as off-policy TD control, for esti-
mating π ≈ π∗ works as follows.

Algorithm 1 Q-Learning (off-policy TD control) for estimating π ≈ π∗ [15]

Parameters: step size α ∈ (0, 1], small ϵ > 0
Q(s, l)← i | ∀s ∈ S, l ∈ L(s) for some arbitrary i
Q(terminal, ·)← 0
for each episode do

for each step of episode do
Chose L from S using policy derived from Q (e.g., ϵ-greedy)
Take action L, observe R,S’

Q(St, Lt)← Q(St, Lt) + α

[
Rt+1 + γmax

l
Q(St+1, l)−Q(St, Lt)

]
S ← S ′

if S is terminal then
break loop

end if
end for

end for

ϵ-greedy means selecting the action depending on this epsilon. With probability ϵ a ran-
dom action is selected and with probability 1− ϵ the action with the highest action value.
This way exploring new actions is possible while mostly exploiting the information learned
until this point in time.

Q-Learning is an off-policy learning algorithm. This means that at every point during
learning there are 2 policies maintained: One policy, Qq, according to which actions are
taken while learning, and one, Qu which is updated according to the received rewards.
Every k-episodes, Qq is set to Qu and then the learning continues with the Qu as the
policy according to which the actions are selected.
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Q-Learning with Deep Neural Networks [12], [14]

When using Q-Learning without neural networks, the policy is represented by a table such
as the one used in dynamic programming algorithms. Since this table is hard to compute
for large instances, we instead use deep neural networks in this work. The neural network
is used to approximate the optimal Q-Value function, i.e. the neural network receives a
state as an input and outputs the Q-Values for the actions applicable in this state.

The updating of the deep neural network works similarly to the approach of Mnih et
al. [12]. Since reinforcement learning might be unstable or diverge when using a neural
network, some adaptions have to be made in order to use neural networks as policies [12].
This is necessary because neural networks are nonlinear function approximators.
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2.2.3 Reward Shaping

Reinforcement learning and in our case Deep Q-Learning aims at learning a policy by
repeating a task over and over again. The policy is then adapted according to the reward
the agent receives during learning. This means that for the agent to make progress in the
process of learning (i.e. adapting the policy towards the optimal one) it needs to receive
rewards. If we consider for example a task with a very large state space in which the agent
only gets rewarded when reaching a goal state, the agent will not receive rewards very
often or even not at all. This happens especially at the beginning of the learning process
because by choosing mainly arbitrary actions, it is very unlikely that the agent manages
to reach a goal state. Without reaching a goal state, in the cases stated above, the agent
does not receive awards and does not make progress towards learning an optimal policy.
To counteract this issue, reward shaping is used.

Reward shaping is applied to MDPs as defined above. But instead of then running
the reinforcement learning algorithm on the MDP given for the task, we instead run it on
a modified version

M ′ = (S,L, T, γ, R′) (2.15)

of the task.
Furthermore, we define

R′ = R + F (2.16)

as the transformed reward function in M’ with

F : S × L× S 7→ R (2.17)

called the shaping reward function (a bounded, real-valued function)

So M ′ is the same task as M , only that the rewards received by the agent are now the
sum of the reward from M and some additional value calculated by F.

Since M ′ is not the formalization to the task we want to obtain an optimal policy
for, but an optimized version thereof, using reward shaping only makes sense if the policy
learned using M ′ is equal to the optimal policy π∗ for M . To ensure this holds, there are
several criteria that have to be met, which were already specified by Ng et al. 1999 [13]
and Grzes 2010 [8]. The first characteristic F has to meet is

F (s, l, s′) = Φ(s′)− Φ(s) (2.18)

with Φ being a function over states. This is necessary to impede positive cycles from
being created in π∗

M . Such cycles would mislead the agent from doing what it is sup-
posed to do and instead encourage it to walk through the cycle repeatedly to accumulate
rewards. Ensuring the condition above holds leads to F (s1, a1, s

′
2) + F (s2, a2, s

′
3) + ... +

F (sn−1, an−1, s
′
n) + F (sn, an, s

′
1) = 0 for any possible cycle.

Including the discounting factor γ into the formula for F , F : S×L×S 7→ R is called
a potential-based shaping function if

F (s, l, s′) = γΦ(s′)− Φ(s) (2.19)

with
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• Φ : S 7→ R

• ∀s ∈ S − s0, l ∈ L, s′ ∈ S (S − s0 = S if γ < 1)

• Φ(s ∈ I) = 0 (I as the set of start states (maybe a sample of start states))

• Φ(s ∈ G) = 0 (G as the set containing all goal/terminal states)
(this criterion was not part of the definition by Ng et al. 1999 [13] but instead shown
to be necessary by Grzes 2010 [8]).

A potential-based shaping function fulfills the following necessity and sufficiency condi-
tion, stating that the obtained optimal policy when learning with M ′ = (S,L, T, γ, R+F )
is equivalent to the optimal policy of M = (S,L, T, γ, R):

• Sufficiency If F is a potential-based shaping function, then every optimal policy
in M ′ will also be an optimal policy in M (and vice versa).

• Necessity If F is not a potential-based shaping function (e.g. no such Φ exists
satisfying F (s, l, s′) = γΦ(s′)− Φ(s), then there exist (proper) transition functions
T and a reward function R : S×L 7→ R such that no optimal policy in M ′ is optimal
in M .
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Chapter 3

Specifications of the Tasks and
Shaping Functions

The following section gives an overview of what the tasks we are considering look like.
First, the tasks at hand are described as well as their modeling in the formalization of
the previous chapter. Furthermore, the so-called avoid states and set of initial states are
defined according to the work of Vinzent et al. [16]. Then the actual reward shaping
functions are defined for each of the instances. Finally, we give some final remarks as well
as general specifications.

In our work we look at planning tasks, so they usually are considered in classical
planning. The formal representation described in chapter 2 underlies the tasks for our
work. All concrete specifications of the tasks are already defined and used by Vinzent
et al. [16]. We learn neural networks with two hidden layers of size either 16, 32, or 64
neurons per hidden layer, as defined by Vinzent et al. [16].

3.1 Description of the Tasks

3.1.1 N-puzzle/Sliding Tiles

As already hinted in the title of the task, the n-puzzle task can be scaled to different sizes
denoted by n. Aiming at bringing tiles into an intended order, a n-puzzle consists of a
(
√
n+ 1)2 grid with n tiles and one empty field. On this grid, the agent can move the

tiles located next to the empty field on the empty field.
For our experiments, we only considered 8-puzzles, so puzzles with 8 tiles and one

empty tile on a 3× 3 grid.
With regard to the formal representation from chapter 2, n-puzzle has the following

formalization:

• variables:

– one variable for each tile tile1 , ..., tile8 , representing the current position of the
tile.

– one variable empty as the position of the empty field.
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– each variable can have values from 0 to 8 reflecting on one position on the grid.
The calculation of this index is given by

index (x, y) = x+ y · 3 for x, y ∈ {0, 1, 2}. (3.1)

• action labels and their respective operators

– moveleft : move the tile left of the empty field to the empty field on the grid.
This leads to the following assignments:

∗ tilei = tilei +1 for i ∈ {0, ..., 8} ∧ tilei = empty − 1 (tilei being the tile left
of the empty field)

∗ empty = empty − 1

– moveright : move the tile right of the empty field to the empty field on the grid.
This leads to the following assignments:

∗ tilei = tilei − 1 for i ∈ {0, ..., 8} ∧ tilei = empty + 1 (tilei being the tile
right of the empty field)

∗ empty = empty + 1

– moveup: move the tile located above the empty field to the empty field on the
grid. This leads to the following assignments:

∗ tilei = tilei +3 for i ∈ {0, ..., 8}∧ tilei = empty−3 (tilei being the tile next
above the empty field)

∗ empty = empty − 3

– movedown: move the tile below the empty field to the empty field on the grid.
This leads to the following assignments:

∗ tilei = tilei − 3 for i ∈ {0, ..., 8} ∧ tilei = empty + 3 (tilei being the tile
below the empty field)

∗ empty = empty + 3

• the goal positions of the tiles and the empty position are the following:

goalPositions = [”empty” = 8, ”tile1” = 7, ”tile2” = 6, ”tile3” = 5,

”tile4” = 4, ”tile5” = 3, ”tile6” = 2, ”tile7” = 1, ”tile8” = 0]

In addition to the general rules of the task, Vinzent et al. [16] defined unsafe or avoid
states for sliding tiles. In 8-puzzle the avoid state is reached if one random tile reaches a
certain position.

Solvability of a N-puzzle/Sliding tiles instance [2]

• in opposite to the other tasks considered in this thesis, depending on how the tiles
are ordered initially, it is possible that an 8-puzzle is unsolvable. Given an initial
state and the goal configuration, it is possible to check whether the goal configura-
tion can be reached:
The goal configuration from before looked as shown in Figure 3.1:
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Figure 3.1: Goal Configuration of Sliding Tiles Instance

Encoding this configuration into a vector and representing each tile by its index and
the empty field by 0 gives:

(8, 7, 6, 5, 4, 3, 2, 1, 0)

In this goal configuration, the tiles are sorted in decreasing order. We can describe
every positioning of such tiles as a vector. If the instance is not solved yet, the vector
will not be sorted descending. For a vector, we can now count the number of pairs
of entries, which are not ordered descending, also known as Inversions(vector).
The empty tile, so in our case, the position with index 0 is not taken into account.
Depending on whether Inversions is an even or an odd number i.e. what the
polarity of the vector is, the puzzle is solvable or not.
For example, given the following positioning vector:
exampleV1 = (7, 5, 8, 4, 3, 6, 0, 1, 2)
We get the following not correctly ordered pairs:

– 7 < 8

– 5 < 8

– 5 < 6

– 4 < 6

– 3 < 6

– 1 < 2

So Inversions(exampleV1) = 6 and therefore this instance of the puzzle would be
solvable.
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Another Example:
exampleV2 = (7, 5, 8, 4, 3, 6, 0, 1, 2)
We get the following not correctly ordered pairs:

– 7 < 8

– 5 < 8

– 5 < 6

– 4 < 6

– 3 < 6

Inversions(exampleV2) = 5→ exampleV2 is not solvable.

• the calculation above was used to generate sets of solvable start states

3.1.2 Transport

The planning task transport can be specified in several ways with very different parame-
ters. In general, a transport task always is specified through:

• locations: the positions, at which the trucks can be. Some locations are connected
to each other

• trucks: the trucks which move from one location to another if the locations are
connected

• packages: the packages, which the trucks can load and unload at locations

The general task then is specified in a way that given some combination of trucks, loca-
tions, and packages, the goal is for the trucks to move the packages to other locations.
There can be several adaptions of the task, such as the trucks consuming fuel and driving
from one location to another is only possible under some conditions. The task we are
considering in this work is specified as follows:

• 10 locations indexed from 0 to 9. A location li is connected to another location lj if
|i− j| = 1

• driving from location 8 to 9 and from location 9 to 8 has as an additional constraint,
that the truck only has 1 package loaded

• there are 15 packages, which are initially distributed at random across the 10 loca-
tions

• the goal is that all packages are transported to l9

• there is one truck driving between the locations

• the truck can load up to 15 packages

Looking at our formal representation from chapter 2, the task is formalized in the
following way:
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• variables:

– one variable for each location representing the current amount of packages
placed there → {locationLoad0 , ..., locationLoad9}

– one variable for the current location of the truck → truckPosition

– one variable for the current load of the truck → truckLoad

– one variable indicating whether the capacity limit between two locations was
violated → capacityLimit

• action labels and the respective operators:

– driveForward : increases truckPosition by one. Has no applicable operator if
truckPosition = 9. If truckposition = 8 and truckLoad = 1, applying this
action leads to a violation of safety indicated by capacityLimit .

– driveBackward : decreases truckPosition by one. Has no applicable operator if
truckPosition = 0 or truckLoad > 1.

– pickup: decreases locationLoadi with i = truckPosition by one and increases
truckLoad by one. Has no applicable operator if locationLoadi = 0

– drop: decreases truckLoad by one and increases locationLoadi with locationLoadi =
truckPosition by one. Has no applicable operator if truckLoad = 0

The agent reaches an unsafe or avoid state in the transport task if he exceeds the capacity
limit of a road. In our formalization, this can only occur if the truck has more than one
package loaded and drives from location 8 to location 9 or backward from location 9 to
location 8.

3.1.3 Blocks World

Blocks World is one of the most famous planning domains. It in general consists of some
number of uniquely identifiable blocks distributed across a table. The learning agent can
pick up one block at a time and stack it on another block. At every point in time, there
can only be one block stacked directly on top of another. Furthermore, the robot can
only pick up those blocks that currently do not have other blocks stacked on top of them.
The objective of the agent is to stack the blocks in a certain order onto each other. In our
tasks, the blocks are numbered so they can be distinguished. The goal is for the agent to
stack them forming one tower with the blocks being stacked in ascending order, i.e. the
block with the largest index is at the top and the one with the smallest is standing on
the table. We considered several tasks with different numbers of blocks:

• 4 blocks (indexes from 0 to 3)

• 6 blocks (indexes from 0 to 5)

• 8 blocks (indexes from 0 to 7)

• 10 blocks (indexes from 0 to 9)

Specifying the task in the formalization from chapter 2 leads to the following variables,
action labels, and operators:
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• variables:

– One variable representing whether the hand of the agent is currently empty
→ handEmpty

– One variable counting the number of blocks currently positioned on the table
→ tableCounter

– One variable for each block, indicating the current position of a block.
→ blocki |i ∈ {0, ..., number of blocks− 1}
These variables can take values from 0 to the number of blocks, with 0 repre-
senting the block βi being in the hand of the agent, 1 β being on the table, and
each other value βi being stacked on another block β′. The larger this value
gets, the larger the index of the β′.

– One variable for each block, indicating whether the agent can currently pick
up the block or if it is blocked by either other blocks stacked on top of it or
the block is already in the hand of the agent.
→ cleari |i ∈ {0, ..., number of blocks− 1}

• action labels and their respective operators:

– table: if the agent has a block in his hand (blocki = 0), this action label leads
to the block being put on the table (blocki = 1)

– moveBlocki for i ∈ {0, ..., number of blocks − 1}: depending on the state, the
following happens:

∗ if cleari = 1∧ handEmpty = 1, i.e. if the block with index i is not blocked
and the hand of the agent is empty, then this action leads to the block
being picked up by the agent. (blocki = 0, cleari = 0, handEmpty = 0)

∗ if cleari = 1 ∧ handEmpty = 0 ∧
blockj = 0|j ∈ {0, ..., number of blocks− 1}\{i},
i.e. if the block with index i is not blocked and there is another block with
index j in the hand of the agent, then this action leads to the block with
index j being stacked on top of the block with index i.
(handEmpty = 1, cleari = 0,

blockj =

{
2 + i if i < j
2 + (i− 1) else

)

• the goal state is encoded as follows:

blocki = i+ 1|∀i ∈ {0, ..., number of blocks− 1}

In Blocks World, an unsafe or avoid state is reached by the Agent if all blocks are lying
on the table, so there is no block in the hand of the agent and there are no two or more
blocks stacked on each other.
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3.2 Start States of the Tasks

The set of start states we particularly want the policies to be safe on and perform well is
already defined by Vinzent et al. [16]. The sets look as described in the following sections.

• For n-puzzle, the set of start states contains states fulfilling a rule regarding the
tiles. We are given all the sets of tiles, which are then partitioned into disjoint
subsets. Within each subset, for each tile it must hold that when sorting the indexes
of the tiles in ascending order, the positions of the tiles are sorted in ascending order
as well.

• For Transport, the start states have to fulfill the criterion that initially each pack-
age is positioned left of the bridge described above. A package may be loaded.

• For Blocks World, the blocks have to be positioned either on the table or on top
of blocks with larger indexes than their own. Additionally, the unsafety condition
must not be fulfilled, i.e. not more than a certain number of blocks may be placed
on the table.

3.3 Reward Shaping Functions

As mentioned in the chapter 2, each potential-based reward shaping function has to fulfill
the criteria that the potential of initial and terminal states is 0. Additionally to the
definitions in the upcoming section, the functions below fulfill these criteria.

3.3.1 N-puzzle/Sliding Tiles

While both Transport and particularly Blocks World are tasks that are quite simple for
people to solve, solving a n-puzzle is not as intuitive for people to solve. Therefore there
is no intuitive approach from which we can derive shaping functions for n-puzzle.

The shaping functions we used for learning the networks are:

1. goal count: during learning, the agent receives an additional reward of 10 for each
tile that is located at its goal position. Encoding this into potential-based rewards
leads to the function

Φp1 =
∑

i∈{0,...,8}

(tilei == goalPositions [”tilei”])·10+(empty == goalPositions [”empty”])·10.

(3.2)

22



2. editing distance: during editing, the agent receives an additional reward depend-
ing on how much the x and y coordinate of each tile and the empty field differ from
the goal position of this tile. Encoding this into potential-based rewards leads to
the function

Φp2 = 36−
∑

i∈{1,...,8}

ed(tilei)− ed(empty) (3.3)

with

ed(te) = |goalPositions [te].xCoordinate− te.xCoordinate|
+ |goalPositions [te].yCoordinate− te.yCoordinate|.

3. solving approach: when trying to solve an 8-puzzle as a human player, one ap-
proach to solving it is the following:

(a) you move the tile which belongs in the top left corner to the top left corner

(b) you move the tile which belongs in the top right corner to the top right corner

(c) you move the tiles belonging in the top row into their goal positions

(d) you move the tiles belonging in the left column into their goal positions

(e) you move the leftover tiles into their goal positions

Trying to guide the agent to try and use this approach leads to the function

Φp3 =


26 if tile8 = 0 ∧ tile6 = 2 ∧ tile7 = 1 ∧ tile5 = 3 ∧ tile2 = 6
21 if tile8 = 0 ∧ tile6 = 2 ∧ tile7 = 1
15 if tile8 = 0 ∧ tile6 = 2
8 if tile8 = 0

(3.4)

for potential-based reward shaping.

4. solving approach and editing distance: The agent receives additional rewards
during learning through p2 and p3. Encoding this into potential-based rewards leads
the function

Φp4 = Φp2 + Φp3 . (3.5)

3.3.2 Transport

For Transport we considered the following reward shaping function:

1. Number of packages at goal: During learning, the learning agent receives an
additional reward of 10 for each package located at l9. Encoding this into potential-
based rewards leads to the function

Φt1(s) = locationLoad9 · 10. (3.6)

2. Number of packages loaded: During learning, the learning agent receives an
additional reward of 10 if 1 package is loaded and of -5 for each package loaded in
addition to this package. Since the truck is not able to enter locationLoad9 while
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having more than one package loaded, this shaping function is on the one hand
supposed to encourage the agent to load one package and on the other not to load
any other packages. Encoding this into potential-based rewards leads to the function

Φt2(s) =

{
10 if truckLoad = 1
(truckLoad − 1) · (−5) if truckLoad > 1

. (3.7)

3. Number of packages loaded and number of packages at goal: A combination
of the shaping functions above. Encoding this into potential-based rewards leads to
the function

Φt3 = Φt1 + Φt2 . (3.8)

3.3.3 Blocks World

1. Blocks at their goal positions: The learning agent receives a reward of 10 for
each block that is at its goal position. Encoding this into potential-based rewards
leads to the function

Φb1 =
∑

i|i∈{0,...,number of blocks−1}

10 · (blocki == i+ 1). (3.9)

Possible issues with this shaping function: This shaping function has the issue that
the agent may receive high rewards in states, in which it is necessary to first unstack
many blocks and then stack them again in a different order to reach the goal. Let
us look at an example with 4 blocks Figure 3.2.

The state in the example has a potential of 20 since the blocks with indexes 1 and 2
are positioned at their goal position. In order to reach the goal from this state, the
agent would have to first unstack the blocks with indexes 0, 1 and 2 again, leading
to it entering states with smaller potential than the example state. The shaping
function therefore might lead to the agent learning a policy aiming to get the blocks
in the state from the example, although this state is bad if the actual goal of the
agent is to reach the goal state.

2. Blocks at their goal positions recursive checking: The learning agent receives
a reward of 10 for each block that is at its goal position as long as the blocks with
smaller indexes are at their goal positions as well. We use

Φb2 =
∑

i|i∈{0,...,number of blocks−1}

10 · belowAtGoal(blocki) (3.10)

with

belowAtGoal(blocki) =

{
(blocki = i+ 1) if i = 0
(blocki = i+ 1) ∧ belowAtGoal(blocki−1) if i > 0

as the function for reward shaping.
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Figure 3.2: Example where the functions taking goal positions into account are misguiding

Possible issues with this shaping function: Looking at Figure 3.3 Φb2 would en-
counter the same issue as Φb1 . Still, there are cases where Φb2 does not give a high
reward on a bad state while Φb1 does. An example of this is shown in Figure 3.3.
Once again, several unstackings would be necessary here to reach the goal state,
but Φb1 assigns this state a potential of 30. By recursively checking the underlying
blocks as well, Φb2 detects the issue in this state and therefore assigns a potential
of 0.

3. Penalties on wrong stacking: The learning agent receives a negative reward of
10 for blocks positioned on a height, which is not the table, the hand of the robot,
or their goal height. Furthermore, the learning agent receives an additional negative
reward of 10 for blocks that are stacked on top of a block with a larger index than
their own.

Encoding this into potential-based rewards yields the function

Φb3 =
∑

i|i∈{0,...,number of blocks−1}

(
(−10)·(¬(blocki = i+1∨blocki < 2))+(−10)·(blocki > i+1)

)
.

(3.11)

For example, if we are considering a Blocks World instance with 6 blocks, we are
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given the scenario where the block with index 3 is stacked on top of the block with
index 5, the block with index 2 is stacked on top of the block with index 3, and the
block with index 1 is stacked on top of the block with index 2 (Figure 3.4). All other
blocks are lying on the table. Formalized and ignoring the variables handEmpty and
tableCounter this example would look as follows:

block5 = 1, block3 = 6, block2 = 4, block1 = 3, block0 = 1, block4 = 1
clear5 = 0, clear3 = 0, clear2 = 0, clear1 = 1, clear0 = 1, clear4 = 1

This state would have a potential of −60, because:

• ¬(block1 = 1 + 1 ∨ block1 < 2)

• ¬(block2 = 2 + 1 ∨ block2 < 2)

• ¬(block3 = 3 + 1 ∨ block3 < 2)

• block3 > 4

• block2 > 3

• block1 > 2

4. Blocks at their goal positions recursive checking & Penalties for wrong
stacking: Adds up the potential of Φb2 and Φb3 . Therefore we use the function

Φb4 = Φb2 + Φb3 . (3.12)

By combining Φb2 and Φb3 , this function aims avoiding the bad estimation given
by Φb2 in Figure 3.2. While the potential of the state in Figure 3.2 calculated by
Φb2 would be 30, Φb3 recognizes that the block with index 0 is stacked on top of
the block with index 3 and therefore assigns a penalty of -20. This leads to a total
potential of 10, which gives a better estimate than 30.

Another advantage of the combination of the shaping functions is that it guides
larger parts of the search space. Φb2 on its own only guides the agent towards
building the tower with the blocks in the right way, but if the blocks are stacked
in the wrong order, Φb2 gives no feedback on what good actions might be. For
example in Figure 3.5, Φb2 assigns both example 1 and example 2 the same potential
0, although for solving example 1 several unstackings are necessary before stacking
them again in the right order to reach the goal. Vice versa, Φb3 on its own only
punishes the learning agent if the blocks are stacked in the wrong order. In Figure
3.6 the upper state shows a scenario, where the goal is almost reached, while in the
lower state several additional actions have to be applied. Still, according to Φb3 ,
they both have the potential 0. The combination by building the sum of Φb2 and
Φb3 is able to differentiate the states in Figure 3.5 and in Figure 3.6. This way it
should guide the learning of the agent in both scenarios towards learning policies
that choose good actions.
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Figure 3.3: Example where Φb2 gives a better estimate than Φb1
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Figure 3.4: Example for Φb3
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Figure 3.5: Example of states with the same potential according to Φb2
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Figure 3.6: Example of states with the same potential according to Φb3
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Chapter 4

Results

This chapter states the results retrieved from learning policies and evaluates them on
different sets of start states. We start with a description of the framework which was
used and what general conditions were met during learning. Afterward, we evaluate the
performance of the learned networks and compare different shaping functions to each
other and to other approaches. The last section sums up these results.

4.1 Specifications on the Implementation

As already mentioned in chapter 1, the implementation used for policy learning is the same
as used by Vinzent et al. [16]. This implementation already supported a basic version of
reward shaping, not yet fulfilling the criteria necessary for potential-based reward shaping.
Therefore it was adapted to meet the respective criteria.

4.2 Specifications on Learning and Evaluation

For the learning of each task, the number of episodes is limited to 100000. Exceptions from
this are mentioned below. Furthermore, the time limit for both learning and evaluation
is set to 4000 seconds. During the evaluation, cycles are terminated when occurring. In
the tasks n-puzzle and Blocks World, there are two configurations of networks, one which
takes the action cost into account and one which does not. The shaping functions are
applied for learning both cases. Learning and evaluation are conducted for each instance
for each number of neurons per hidden layer.

When the agent reaches a goal state, he receives an award of 100, when reaching a
avoid state, the award is −100. These rewards are independent of the reward shaping
applied.

N-puzzle/sliding tiles: Since we were still interested in finding safe policies on the
benchmarks given by Vinzent et al. [16], the evaluation was conducted on both a set of
only solvable start states and the set given by Vinzent et al., which does not guarantee
to only contain solvable states. The sets of data used for training and evaluating the
networks in addition to the set from Vinzent et al. [16] contain 120000 randomly sampled
states each. The set from Vinzent et al. [16] contains 4900 states.

Transport: Evaluating how the learned networks perform on the state set used by
Vinzent et al. [16] is not feasible due to the size of the start set of interest. We instead
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use a subset of the set of start states described in chapter 3. Therefore the following sets
are used for learning and evaluation of the policies in the Transport benchmark:

• for learning: two sets of start states, one containing 1000 and one containing 5000
states.

• for evaluation: the evaluation was conducted first on the set which was also used for
learning the networks and afterward on a newly generated set consisting of 10000
states

• All sets were generated at random using an implementation already specified by
Vinzent et al. [16]

Blocks World: For Blocks World, the set of start states used for learning the Neural
Neural Network is the one used by Vinzent et al. [16]. The Policies were evaluated on the
set used for learning (Training set) as well as on an additionally generated set of random
start states (Test set), generated using a generator also provided by Vinzent et al. [16].
The number of states used depending on the number of blocks is as follows:

Number of blocks / Set of start states Training Set Test set
4 blocks 14 72
6 blocks 202 4050
8 blocks 4139 100001
10 blocks 115974 100001

For Blocks World instances with 4 blocks, the number of episodes considered was
reduced to 40000 instead of 100000.

4.3 Policies in Addition to the Shaping Functions

In addition to comparing the policies applying the shaping functions from chapter 3,
we took some additional approaches into account. First of all, we compare the policies
to those by Vinzent et al. [16]. Then we learned networks without applying any reward
shaping. Furthermore, we conducted learning, during which the agent always acted epsilon
greedy. Finally, we also evaluated the performance of an agent, which ignores the policy
in the first place and instead always acts epsilon greedy.

4.4 Process of Learning

As can be seen in the evaluation of the neural networks learned as policies for the tasks
Transport and n-puzzle (Figures A.1 – A.10),

the policies obtained applying reward shaping perform poorly. The only instances
where reward shaping leads to significantly better performances than no shaping are the
large instances of Blocks World, i.e. the instances with 8 and 10 Blocks. This advanced
performance is also reflected in the learning curve of the shaping functions. When looking
at the figures displaying the learning curves, we see that applying reward shaping leads
to significantly larger rewards than not. The learning progress made in the first episodes
is also higher when reward shaping is applied (Figures 4.1 – 4.4).
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Figure 4.1: Learning Curves Blocks World 8 Blocks Cost Aware
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Figure 4.2: Learning Curves Blocks World 8 Blocks Cost Ignoring
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Figure 4.3: Learning Curves Blocks World 10 Blocks Cost Aware
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Figure 4.4: Learning Curves Blocks World 10 Blocks Cost Ignoring
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4.5 Safety of the Learned Policies

Diagrams giving more detailed information on the safety of the policies can be found in
appendix A.

In n-puzzle, applying reward shaping does not lead to a significant advantage with
regard to safety. Both the stalling and avoid states are reached similarly often, indepen-
dent of whether reward shaping is applied or not. The only noticeable fact is, that when
learning networks always choose actions epsilon greedily, the policy ends up in dead ends
almost all the time (Figures A.1 – A.6).

With regard to transport, the number of reached avoid and stalling states is very little
as well. The networks previously learned by Vinzent et al. [16] encounter an increase in
dead ends, while the approach always acting epsilon greedy leads to several avoid states
reached. As in n-puzzle, the evaluation of the policies learned choosing actions epsilon
greedy has an increased number of stalling states reached. Besides the two approaches
mentioned before, all policies are mostly able to circumvent both avoid and stalling states
(Figures A.7 – A.10).

Throughout Blocks World, the number of reached stalling states when evaluating the
policies learned by only choosing actions epsilon greedy is very high as well. Furthermore,
no learned policy reached many avoid states, independent of the number of blocks and
the evaluation set. Besides very few exceptions, the number of avoid states is 0. The only
very noticeable exception from this fact is the evaluation of cost-ignoring neural networks
on 4 blocks. Here, the evaluation where the policy is ignored and the network always
chooses actions epsilon greedily reaches between 6 and 10 avoid states in the 72 states
evaluated in total (Figure A.20).

We now look at the evaluation on the set used for training, so the set of start states
defined by Vinzent et al. [16]. In Blocks World instances with 4 and 6 blocks, most
shaping functions enable the policies to avoid stalling states almost entirely. Only the
shaping function punishing actions leading to blocks being stacked in the wrong order
has a policy as a consequence, which evaluated encounters some stalling states in the cost
ignoring instance with 6 blocks (Figures A.11 – A.14). On the cost-aware training set with
8 blocks, applying reward shaping lets the policies reduce the number of stalling states
by about 80 percent compared to the networks given by Vinzent et al. [16]. On the same
set ignoring the cost, several networks learned using reward shaping encounter the same
number of dead ends as the networks from Vinzent et al. [16] (487 – 1347 reached stalling
states in 4139 start states evaluated). Still, there are shaping functions that produce
neural networks with the below 200 stalling states reached in evaluation, for example,
Φb2 . Similar to the cost-aware set with 8 blocks, on the set with 10 blocks applying
reward shaping during the learning of policies leads to fewer stalling states reached than
not applying reward shaping. On the cost-ignoring set, only the network with 64 neurons
per hidden layer learned under Φb2 is able to reach fewer stalling states than the networks
trained by Vinzent et al. [16]. The other policies end up in stalling states in about 25 to
30 percent of the evaluated states (Figures A.15 – A.18).

Looking at the evaluation on the separately generated test set for block world, we get
the following results with regard to reached stalling states:

For 4 blocks during the evaluation of both the cost aware as well as the cost ignoring
evaluation, the networks by Vinzent et al. [16] do not reach any of those states. All other
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policies evaluated are not able to achieve this (Figures A.19, A.20). For 6 blocks the
networks from Vinzent et al. [16] do not achieve this anymore, but they still reach fewer
such states than the other policies during evaluation (Figures A.21, A.22). The same
holds for the evaluation on 8 and 10 blocks (Figures A.23 – A.26).

4.6 Performance of the Learned Policies – Measured

in the Number of Reached Goal States

On n-puzzle, there are almost no goal states reached at all (Figures A.1 – A.6). So solving
a n-puzzle using policies learned through the settings given appears to not be possible,
independently of whether reward shaping is applied or not.

For the Transport task, the policies are at least able to reach some goal states. One
can also see that the number of reached goal states is higher if reward shaping is applied
than if it is not. Still, there are never more than 27 goal states reached by a policy in
1000/5000/10000 states the policies are evaluated on (Figures A.7 – A.10). From this, we
can say the neural networks still perform poorly on Transport tasks if reward shaping is
applied.

The only significant increase in performance of the neural networks learned can be
seen in the Blocks World domain. We once again start by looking at the training set
first.

For 4 blocks, most policies learned by applying shaping functions manage to perform
very well and reach goal states in every evaluated start state. But also policies by Vinzent
et al. [16] and those obtained not applying reward shaping manage to solve all 14 start
states considered (Figures A.11, A.12). For 6 blocks we get similar results. The policies
with the same approaches still perform well, although there is no policy able to solve
all considered start states. We also see that there are more cost-aware networks able to
perform this well than there are cost-ignoring ones (Figures A.13, A.14). Then, when we
are looking at the Blocks World instances with 8 blocks, we see that besides one exception,
neither the policies by Vinzent et al. [16] nor the policies obtained not applying reward
shaping during learning are able to reach a large number of goal states. In opposite to
this, there are still several neural networks trained through the usage of Φb1 , Φb2 and Φb4

that are able to get to a high percentage of goal states. We can therefore say that the
application of reward shaping here leads to policies superior to those obtained without
reward shaping (Figures A.15, A.16). Similar results can be observed for 10 Blocks.
Policies without reward shaping are not able to reach any goal states anymore while some
of those learned through reward shaping still do. From those ignoring costs, only the
neural network learned using Φb2 is able to perform well and reach a high percentage of
goal states (Figures A.17, A.18).

We now look at the evaluation of the policies on the newly generated test set of start
states.

On the smallest Blocks World instance, the neural networks by Vinzent et al. [16] are
able to solve all start states. From the newly learned networks, there are none able to
make it to half of the goal states of this set (Figures A.19, A.20). For 6 blocks, some of
the networks trained by Vinzent et al. [16] are still able to perform very well, while all
other networks perform poorly (Figures A.21, A.22). On all other test sets, all networks
are not able to reach a significant amount of goal states (Figures A.23 – A.26).
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Chapter 5

Conclusion

This Chapter begins with a summary of the work done in this bachelor thesis. Afterward,
an outline of what additional topics may be looked into in this area of research is given.

Our work on reinforcement learning with reward shaping starts with constructing
potential-based reward shaping functions for the planning domains we consider. We then
learn policies applying these reward shaping functions in learning for different configu-
rations. In addition to comparing the learned policies to each other, we also take other
policies into account, obtained without using reward shaping.

With regard to the results from the experiments from Chapter 4, we state that the
performance of manual reward shaping depends on the planning domain as well as on the
start state set the deep neural networks are evaluated on. Although the main benchmarks
we are interested in are the start states compactly described by Vinzent et al [16], the
following can be stated concerning the separate test sets. On every domain, when looking
at the test states, so those which are not used for learning, the performance of the shaping
function is bad. Also on the domains Transport and n-puzzle, manual reward shaping
does not lead to a significant improvement over not applying manual reward shaping.
In Transport, this bad performance probably originated from the size of the state space
combined with the fact that the manual shaping functions provide too little and too
imprecise guidance. Although some shaping functions give a reward in every state of a n-
puzzle instance, the complexity of solutions of such instances predominates the guidance
the shaping functions provide.

With regard to Blocks World and the domain instances from Vinzent et al. [16],
the neural networks learned by applying the shaping functions from chapter 3 perform
significantly better than the neural networks retrieved without reward shaping on the
instances with 8 and 10 blocks. Since the policies by Vinzent et al. [16] already perform
very well on Blocks World instances with 4 and 6, applying reward shaping there does
not lead to an improvement. Still, the policies learned through reward shaping perform
on a similar level to the ones by Vinzent et al. [16] do.

5.1 Future Work

As a consequence of the progress made in the research area of reinforcement learning
recently, this technology may hold the potential to bring forth good policies on planning
domains.
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Due to the fixed set of start states used for learning and evaluation together with
the episode and time limit, the results may improve when changing such parameters.
Furthermore, there are more planning domains, such as Rovers, Visit All, or Sokoban,
where Manual Reward Shaping might be applied. For the instances taken into account
in this work, extending the encoding by additional parameters might make it possible to
create more complex shaping functions in order to obtain better learning results.

Besides only applying manual reward shaping, there are other possibilities for improv-
ing the learned networks. One of them is the possibility of guiding epsilon greediness
during the learning process. This means every time the agent chooses an action epsilon
greedy during the learning progress, choosing this action according to certain rules instead
of epsilon greedy. For the guidance of epsilon greediness, policy greediness might be an
option. This means we manually define a (maybe incomplete) policy for solving a task
(which for for instance Blocks World or Transport is relatively easy for humans) and then
every time the agent chooses an action epsilon greedy, the action is chosen according to
this manually defined policy. As another option for guiding epsilon greediness, one can
adapt heuristics from classical planning to the task. As a result, every time the agent
chooses its action epsilon greedy, the action with the lowest or best heuristic value is se-
lected. Generally, it may be possible to use other reinforcement learning techniques, such
as entropy regularization [9], count-based exploration bonuses [3] and prediction based
exploration bonuses [1] [5].

Instead of using heuristics only for the guidance of epsilon greediness, they might also
be applicable in potential-based reward shaping. Heuristics estimate the distance from a
state to some goal state. By using the estimated distance as a negative potential in reward
shaping, it might be possible to guide the agent toward learning good policies. Using
heuristics particularly yields the advantage that each state would have some potential,
so the agent would get feedback and learn from it for every action performed. This risk
of misguiding the learning progress through bad estimation exists, but since heuristic
search yielded good results in classical planning, for example, the Fast-Forward Planning
System [10] using delete relaxations, there should be heuristics leading to good results.
Heuristics also have the advantage of being applicable independent of the task, so learning
neural networks in other domains should be possible with little effort.
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[11] Maximilian A. Köhl, Michaela Klauck, and Holger Hermanns. Momba: Jani meets
python. In Jan Friso Groote and Kim Guldstrand Larsen, editors, Tools and Algo-
rithms for the Construction and Analysis of Systems, pages 389–398, Cham, 2021.
Springer International Publishing.

41



[12] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, DaanWierstra, Shane Legg, and Demis Hassabis. Human-
level control through deep reinforcement learning. Nature, 518(7540):529–533, Febru-
ary 2015.

[13] Andrew Y. Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward
transformations: Theory and application to reward shaping. In In Proceedings of the
Sixteenth International Conference on Machine Learning, pages 278–287. Morgan
Kaufmann, 1999.

[14] Martin Riedmiller. Neural fitted q iteration – first experiences with a data efficient
neural reinforcement learning method. In In 16th European Conference on Machine
Learning, pages 317–328. Springer, 2005.

[15] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018.

[16] M. Vinzent, M. Steinmetz, and J. Hoffmann. Neural network action policy verification
via predicate abstraction. 2022.

[17] M. Vinzent, M. Steinmetz, and J. Hoffmann. Neural network action policy verification
via predicate abstraction technical report. 2022.

42



Appendix A

Total Results

The following section gives a complete overview of the safety and performance of the
learned policies.
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Figure A.1: Performance of the learned networks:
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Figure A.2: Performance of the learned networks:
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Figure A.3: Performance of the learned networks:
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Figure A.4: Performance of the learned networks:
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Figure A.5: Performance of the learned networks:
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Figure A.6: Performance of the learned networks:
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Figure A.7: Performance of the learned networks:
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Figure A.8: Performance of the learned networks:
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Figure A.9: Performance of the learned networks:
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Figure A.10: Performance of the learned networks:
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Figure A.11: Performance of the learned networks:
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Figure A.12: Performance of the learned networks:
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Figure A.13: Performance of the learned networks:
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Figure A.14: Performance of the learned networks:
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Figure A.15: Performance of the learned networks:
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Figure A.16: Performance of the learned networks:
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Figure A.17: Performance of the learned networks:
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Figure A.18: Performance of the learned networks:
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Figure A.19: Performance of the learned networks:
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Figure A.20: Performance of the learned networks:
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Figure A.21: Performance of the learned networks:
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Figure A.22: Performance of the learned networks:
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Figure A.23: Performance of the learned networks:
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Figure A.24: Performance of the learned networks:
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Figure A.25: Performance of the learned networks:

+1

+1

68



Figure A.26: Performance of the learned networks:
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