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Abstract
Deep reinforcement learning (DRL) has made promising advances in recent years solving com-
plex sequential decision-making problems, e.g. by beating the grandmasters in the game of Go,
predicting protein folding or speeding up matrix multiplication. However, applying DRL to
new problems successfully requires careful tuning and adaptation to find a suitable algorithm.
This was demonstrated by the creators of MoGym, a tool which allows training DRL agents on
any problem formulated as Markov decision process in the JANI specification language. They
applied Deep Q-learning (DQN) on a set of problems of the Quantitative Verification Bench-
mark Set (QVBS) to test their tool and noticed that the DRL algorithm could not successfully
learn on some instances. This thesis aims to find the main challenges of such instances loaded
with MoGym, provide the community with DRL algorithms and techniques to address these
issues and especially aims to contribute to the community by improving on existing approaches.

It is shown that the DQN agent was likely unable to learn due to an exploding action-space
(as a result of loading a problem using MoGym) and the lack on sophisticated exploration
during training. Description-based Q-learning is proposed as a possible solution to replace
DQN, because this variant can mitigate the effect of the action-space dimension by learning
state-values instead of action-values. To solve the exploration problem, the thesis proposes a
new version of the Go-Explore framework called Stochastic Go-Explore. The new variant drops
some limiting assumptions on the training environment, providing the DRL community with a
powerful exploration technique that is applicable to a larger variety of training environments
than its predecessor. The experiments show that this new technique is the only one of all
tested exploration techniques which enables the agents to learn on all tested problems. In
addition, DBQL is extended to use n-step learning, which aims to improve sample efficiency by
proposing three new n-step DQBL agents. Experiment findings establish their feasibility and
provide some evidence to show that their use can lead to sample efficiency gain. However, the
experiment results further suggest that this improvement might lead to higher training times.
A discussion on when to use n-step learning when training time is a limiting factor is included.
All findings are based on experiments made on a subset of QVBS problems and are evaluated
using deep statistical model checking (DSMC) and training returns. It is shown that there
exists a discrepancy in the measurements of both approaches, hinting that DSMC can be a
valuable tool for the DRL community when evaluating experiments.
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Chapter 1
Introduction

Deep learning (DL), especially deep reinforcement learning (DRL), has become a very promis-
ing field to solve sequential decision-making problems in recent years. Starting with Deep
Q-learning (DQN) [1], reinforcement learning (RL) in combination with deep neural networks,
known as deep reinforcement learning, has shown to be capable of finding good policies in
very complex tasks, e.g. in playing games like Atari games [1, 2], Chess or Go [3, 4]. Apart
from games, DRL achieved further advances in the field of robotics [5] or in scientific problem
settings, e.g. by solving the protein folding problem [6] or speeding up matrix multiplica-
tion [7]. However, careful engineering and tuning of DRL algorithms is needed in order to
either achieve the desired results or to solve such problems at all. MoGym [8] is a framework
which enables training any (D)RL algorithm on problems described in the JANI format [9],
e.g. from the Quantitative Verification Benchmark Set (QVBS) [10, 11]. Although well es-
tablished algorithms like DQN can be successfully applied to complex problems, like playing
Atari games, the authors of MoGym show that applying DQN on some QVBS benchmarks is
unsuccessful [8]. This research aims to identify and address the challenges of such unsolvable
benchmark instances. In addition, it aims to provide DRL algorithms which make use of the
unique properties of MoGym and recent advancements in DRL literature to solve most QVBS
benchmarks. This chapter provides a high level background of reinforcement learning, planning
as well as quantitative verification and briefly states how these research fields are connected to
this thesis. Then an outline of the research problem, the research aim, objectives and questions,
the significance of this work as well as an outline of the thesis is given.

1.1 Research Background

In our world, we are often faced with sequential decision-making problems. When playing chess
for example, we have to decide which move to make to win the game, given the current state
of the chessboard. Depending on the problem’s complexity, finding a good strategy to solve
such decision problems can be very hard for us humans and it often takes time and practice
to achieve good performance. Thus, sequential decision-making is a key challenge addressed
by the artificial intelligence (AI) research community [12], which develops formal methods
to solve such problems. In recent years, computer programs were developed that can reach
superhuman level of gameplay in e.g. Chess and the game of Go, consistently beating the
human grandmasters of the respective games [3]. Other areas include training AI programs to
play computer games, most prominently Atari games, where similar techniques achieve great
success [4]. More recently, the insights gained by solving games is applied in a more scientific
context e.g. by solving the problem of protein folding [6] or speeding up matrix multiplication
in software to make better use of the available hardware [7].

Due to starting from different assumptions, two AI communities have emerged which address
sequential decision-making problems: the AI planning community and the reinforcement learn-
ing (RL) community [12, 13]. The most successful AI advances of the recent years, like the
Alpha Zero AI beating the grandmasters of Go [3], are a product of combining planning and
learning techniques [13]. Planning is a huge research area with many methods [14, 15]. This
thesis focuses on state-space planning which includes methods to “[...] search through the state
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CHAPTER 1: INTRODUCTION

space for an optimal policy or an optimal path to a goal” [16]. The focus is on non-deterministic
problems where the outcome of an action is paired with a probability. Such probabilistic prob-
lems can be modeled as Markov decision processes (MDPs), which are also the base for RL
algorithms and thus enables the mixing of both techniques [16].

To test the performance of state-of-the-art planning algorithms, benchmarks have been devel-
oped which provide a fixed set of well-defined planning tasks. MoGym [8] is a framework which
provides a Python interface resembling the OpenAI interface, the most common interface to
train (D)RL algorithms. This allows applying reinforcement learning on planning benchmarks
without rewriting each benchmark to be usable for (D)RL training, thus bringing both com-
munities closer together. However, the planning benchmarks must be available in the JANI
format [9] before they can be used with MoGym. The QVBS [10] is a benchmark set originally
designed for quantitative verification but it includes many famous planning benchmarks in this
format, e.g. the PRISM [17] benchmark set.

Quantitative model checking is concerned with the analysis of quantitative models on specified
properties. A quantitative model checker, such as PRISM [17], can analyze MDPs which allows
model checking of planning tasks. Statistical model checking is a form of quantitative model
checking and can answer questions such as “What is the probability of reaching a goal state from
a start state of the MDP?” [18]. This is interesting, as it allows reasoning about the underlying
MDP on which an (D)RL agent trains on, especially since the MDP is readily available in the
QVBS and not implicitly hidden in an environment written in Python or any other language.
In addition, MoGym provides an interface for deep statistical model checking (DSMC), which
allows checking “reach-avoid” properties of DRL agents and deep neural networks [19]. Thus,
DSMC is used to evaluate the experiments of this thesis.

1.2 Research Problems and Questions

While the authors of MoGym could show that DQN [1], one of the most prominent RL algo-
rithms, can be successfully trained on some instances of the QVBS, there are instances where
the DQN agent is not able to learn at all [8]. The paper does not explore why this is the case,
however it states that these agents where able to see the goal during training [8]. This is prob-
lematic because DQN can be successfully applied to complex problems such as playing Atari
games [1]. Consequently, this could indicate that either planning tasks are especially hard to
solve using DQN and other standard DRL algorithms or that loading the planning tasks using
MoGym makes the problems harder than the original problems. Furthermore, it might also
be the case that the DQN agent is not properly tuned to solve the benchmarks or that any
possible combination of the problems is true. This thesis aims to find the reasons why some
benchmarks are not learnable using DQN, by discovering challenges to overcome using MoGym
on those benchmarks. Moreover, the thesis provides the reader with DRL agents and solutions
to address the challenges by improving on existing approaches. We think that this is an impor-
tant contribution to bridge the gap between planning and (D)RL further, demonstrating that
combining ideas from both communities is worthwhile.

In particular, we think that the key challenges for DRL agents trained on planning benchmarks
using MoGym are (1) the action space explosion, which results from converting a MDP to a RL
environment, and (2) the lack of sophisticated exploration techniques. Compared to the original
planning problems, the exploding action space for the DRL agents makes the tasks much more
difficult to learn. It is well known that DQN struggles with large action-spaces [20]. The reasons
for the action-space explosion are covered in Section 2.6. For this thesis Description-based Q-
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CHAPTER 1: INTRODUCTION

learning (DBQL) [21] is used as a DQN agent variant which is not affected by the action-space
explosion problem. To test if the aforementioned challenges are the two main limitations for
DRL on hard, unsolvable tasks using the DQN of MoGym, this thesis covers the following
research questions:

Research Question 1.1 Is the action-space explosion the main factor for the unsolvability of
some planning tasks?

Research Question 1.2 Is exploration a key factor when learning fails, even if the agent ac-
counts for the action-space explosion?

This thesis also aims to provide the reader with DRL agents as a solid basis to learn other, here
unaddressed, planning benchmarks using MoGym. For this purpose, the thesis introduces an
adapted version of an exploration framework called Go-Explore [22] which drops constraints of
the environment used and makes the approach applicable to a broader set of training environ-
ments. Thus, we hope to provide the reader with tools to apply this exploration technique to
similar problems compared to the ones presented in this thesis. Another aim of the thesis is to
improve on existing approaches to these problems. In particular, we try to improve on DBQL
by adding n-step learning. Since this is the first attempt to n-step DBQL, three new n-step
DBQL algorithms are proposed, one of which is based on existing DQN adaptions. N-step
learning can lead to faster learning if tuned correctly [2, 16], and several n-step DQN imple-
mentations have shown that this can also be achieved with DRL [2, 23–26]. N-step learning
is interesting in the scope of DBQL because this algorithm can make use of its knowledge of
the environment’s transition function while most DRL algorithms do not have this advantage.
Typically, the underlying MDP is treated as a black box by the (D)RL agents and is not
available during training. With MoGym, since it loads a description of an MDP to create an
environment, the MDP is explicitly known. Thus, MoGym allows a (D)RL agent to see the
outgoing transitions of a state. The n-step learning algorithms proposed abuse this feature to
improve their learning capabilities. A disadvantage of this approach is that the proposed agents
are reliant on environments which can provide the underlying transition function. The thesis
answers the following research questions:

Research Question 2.1 Does n-step learning increase sample efficiency?

Research Question 2.2 Does n-step learning lead to faster learning with regard to training
time?

By proposing three new n-step DBQL agents the effect of planning ahead using real-world
data in form of the MDP’s transition function can be tested. While model-based reinforcement
learning has similar approaches already by trying to learn the underlying MDP, the access to the
actual transition function is such a unique property that these algorithms are a unique mixing
between planning and reinforcement learning which is not broadly studied. Due to this, we
think it is worthwhile to test this approach by testing the possible advantage of sample efficiency
increase while also looking at the potential disadvantage of high complexity and training time.

3



CHAPTER 1: INTRODUCTION

1.3 Limitations and Thesis Structure

Since the research questions are very broad, in the scope of this thesis, certain limitations are
necessary. For the exploration experiments, we limit experiments to three hard benchmarks
from the QVBS and use them to generalize our findings. Lots of exploration techniques have
been developed in recent years, and it is impossible to test all of them. The thesis limits itself
to a few techniques that we think cover the main ideas in the field. For the n-step experiments,
we limit the number of n-steps trained to two simple benchmarks to save time. Furthermore,
since DRL algorithms are very sensitive to the hyperparameters used, it is not possible to find
the best hyperparameters for each agent on each benchmark. However, hyperparameter tuning
is used to at least choose some good configurations. The results of the experiments are also
dependent on randomness. To account for this, we set three different seeds for all random
generators used to make the results reproducible.

The thesis is structured as follows: First the theoretical background is covered which includes
a brief introduction to reinforcement learning. This is followed by an introduction of Deep
Q-learning (DQN) because DBQL, on which we improve, can be seen as an extension of DQN.
Afterwards a distinction of two update types, which can be used by DBQL, is outlined before
introducing DBQL and the concept of n-step learning. The chapter ends with an outline of
causes of the action-space explosion problem when porting QVBS instances to an environment
using MoGym and a brief introduction of deep statistical model checking (DSMC), which is
used to evaluate the experiments. After the theory is covered, the thesis is positioned in related
work in the literature review chapter. In this chapter related work with regard to n-step learning
is introduced and the all necessary exploration techniques used for the set of second research
questions are outlined. The fourth chapter introduces three DBQL agents using n-step learning
for the first set of research questions while the fifth chapter describes the exploration technique
Go-Explore and introduces and contrasts the new Stochastic Go-Explore variant developed
for this thesis. The sixth chapter describes in detail which experiments are made, why these
experiment designs were chosen and how their findings can be used to answer the research
questions. Chapter seven discusses the experiment results. Finally, the last chapter draws a
final conclusion and provides an outlook on future work.
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Chapter 2
Theoretical Background

2.1 Reinforcement Learning

In reinforcement learning a decision-making entity, typically called agent, interacts with an
environment, which represents everything outside of the agent. The agent continuously observes
the current state of the environment, decides which action to take and then observes a numerical
reward based on the action and the next state of the environment. This interaction is done in
discrete time steps [16]. The reinforcement learning process is summarized in Figure 2.1, which
is an illustration from Barto and Sutton [16].

Figure 2.1: Diagram depicting the interaction between a RL agent and the environment as shown in
the book of Barto and Sutton [16].

The interaction process of an agent with an environment is formally modeled as a finite Markov
decision process (MDP).

Definition 1. Let D(S) denote the set of probability distributions over a non-empty set S. A
Markov decision process (MDP) is a tuple M = 〈S,A,R, T, µ〉 consisting of a finite set of states
S, a fine set of actions A, a partial transition probability function T : S×A ⇀ D(S), a reward
function R : S × A× S → R and an initial distribution µ ∈ D(S) [21, 27].

In some environments, an agent cannot perform every action in every state. Actions that can
be taken in a state are called applicable.

Definition 2. An action a ∈ A is applicable in a state s ∈ S if the transition function T (s, a)
is defined. Act(s) ⊆ A denotes the set of applicable actions in a state s [21].

To act in an environment, RL agents have to decide which action to take given an observation
of the environment. A policy resolves this decision-making problem by stating the probability
of the agent taking an action in a state. We say that an agent follows a policy.

Definition 3. A policy π : S × A → [0, 1] is a probability distribution over all actions a ∈ A
given a state s ∈ S, denoted π(a|s) [16].

This notation already hints that a policy is only dependent on the current state and not on
any previously seen states. The agent’s goal is to learn a policy which maximizes the overall
expected (discounted) return. This policy is called the optimal policy, denoted π∗. The reward
function must thus be chosen to encourage the agent to learn the desired behavior.

5



CHAPTER 2: THEORETICAL BACKGROUND

The discounted return is the accumulated, discounted reward an agent receives when interacting
with an environment, starting in the current time step t until the end of an episode T . The
discount factor γ ∈ [0, 1] ensures that the discounted return has a finite value given that γ < 1
and that the reward function is bounded [16].

Definition 4. Let Gt denote the discounted return an agent receives starting in time step t.
Let γ ∈ [0, 1] be the discount factor and Rt be the reward received at time step t. Then the

discounted return is defined such that Gt =
∑T

k=t+1 γ
k−t−1Rk [16]. Note that T denotes the

total number of time steps needed to end an episode. In some cases the agent is limited to a
maximum of allowed time steps during training while in other cases an episode is infinite such
that T =∞.

RL agents typically use value functions which estimate how good it is for an agent either to be
in a state or to take an action in a state with regard to maximizing the expected return [16].
There are two kinds of value functions, the state-value function and the action-value function.
The state-value function vπ(s) represents the expected return if the agent follows a policy π
when starting in a state s ∈ S at time t.

Definition 5. Let s ∈ S be a state and t ∈ N be the current time step of the current episode.
Then the state-value function v : S → R is defined such that vπ(s) = Eπ[Gt|St = s] [16].

The action-value function qπ(s, a) describes the expected return when taking an action in a
state under the assumption that the agent follows policy π afterwards.

Definition 6. Let s ∈ S be a state, a ∈ A(s) be an applicable action of s and t ∈ N be the
current time step of the current episode. The action-value function Q : S × A → R is defined
such that qπ(s, a) = Eπ[Gt|St = s, At = a] [16].

Value functions satisfy a recursive relationship, a fact which is used to obtain good estimates
of value functions using dynamic programming. This recursive relationship is often expressed
using the Bellman equations [16]. The idea is to split the return Gt into the rewards Rt

received for a transition from the current state and the return Gt+1 of the successor state of
the transition. This is a direct result from Definition 4.

Definition 7. Let π be a policy such that π(a|s) is the probability of choosing action a in state
s. Further, let T (s, a)(s′) be the probability of transitioning to state s′ when starting in state
s and taking an action a and r be the reward associated with this transition in the underlying
MDP. Then

vπ(s) = Eπ[Gt|St = s]

=
∑

a∈Act(s)

π(a|s)
∑
s′∈S

T (s, a)(s′)[r + γvπ(s′)]

recursively defines the state-value function for policy π. The equation is called the Bellman
equation for vπ [16].

Definition 8. Similar to Definition 7,

qπ(s, a) = Eπ[Gt|St = s, At = a]

=
∑
s′∈S

T (s, a)(s′)[r + γ π(a′|s′)
∑

a′∈Act(s′)

qπ(s′, a′)]

recursively defines the action-value function for a policy π. This equation is called the Bellman
equation for qπ [16].

6
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Notice that these equations describe the respective value function when following any policy
π. Since the agent tries to find the optimal policy, the associated value function is especially
important as finding the optimal policy can be solved by finding the optimal value function.
The Bellman equations for the optimal policy are called Bellman optimality equations.

Definition 9. The Bellman optimality equation for the state-value function

v∗(s) = max
a
Eπ∗ [Gt|St = s, At = a]

= max
a
E[Rt+1 + γv∗(St+1)|St = s, At = a]

= max
a

∑
s′,r

T (s, a)(s′)[r + γv∗(s
′)]

can be derived using the definition for the state-value function (see Definition 5) where the
discounted return is defined recursively using the optimal state-value function [16].

Definition 10. Similar to Definition 9,

q∗(s, a) = E[Rt+1 + γ max
a′∈Act(s′)

q∗(St+1, a
′)|St = s, At = a]

=
∑
s′∈S

T (s, a)(s′)[r + γ max
a′∈Act(s′)

q∗(s
′, a′)]

defines the Bellman optimality equation for q∗ [16].

The main difference in these equations is that the policy probability terms π(s, a) are replaced
by a maximization, as the optimal policy is the one that maximizes the expected return.

2.2 Deep Q-learning

One of the most well-known (D)RL algorithms is the DQN algorithm, which is based on the
tabular Q-learning algorithm. To understand the differences of Description-based Q-learning
and DQN, the mathematical intuition of the latter is briefly outlined.

Recall that the goal of an agent is to find the optimal policy π∗ which maximizes the ex-
pected return. The action-value function for the optimal policy, called the optimal action-value
function, is denoted q∗. Following Definition 6, the equation

q∗(s, a) = Eπ∗ [Gt|St = s, At = a]

expresses the optimal action-value function mathematically.

If the agent knows q∗(s, a) for all state-action pairs, following the optimal policy is easy, as it
suffices to take the action with highest action-value in every state. This ensures that the agent
always chooses actions with the highest expected return.

If the agent can learn q∗ it thus has learned π∗. This is the main idea of Q-learning, which
starts with a random action-value function q and continuously improves its estimates of the
action-values to eventually match q∗. The Bellman optimality equation for action-values q∗
(Definition 10) is used to improve the value estimates.

As the agent interacts with the world, it gains information about the current state s ∈ S, the
state of the next time step s′ ∈ S after taking an action a ∈ Act(s) and the reward r ∈ R.

7
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This n-tuple will be referred to as trajectory (s, a, r, s′) from now on. With each trajectory, a
temporal difference (TD) target

y = r + γ max
a′∈Act(s′)

qπ(s′, a′)

can be constructed which combines an actual reward r and an estimation of the future action-
value. By including the actual reward, the target is grounded in reality and thus the target is
used to update our current estimate qπ(s, a).

In Deep Q-learning, the action-value function is represented as neural network (NN) with
parameters θ. The notation Qθ(s, a) indicates that this is an action-value estimated by the NN.
Updating the current q-value estimate towards the target is the same as optimizing the Mean
Squared Error (MSE) between the two [1]. This is done by minimizing the loss function

L(θi) = Eθi [((r + γ max
a′

Qθ(s
′, a′))−Qθ(s, a))2]

using stochastic gradient descent.

This loss function is updated in every iteration i where θi denotes the weights of the NN in the
i-th iteration. Note that the loss function is an expectation. Looking at the Bellman equation
of Definition 10, it would be possible to directly compute this expectation if the agent had
knowledge of the transition function T and the reward function R. Such updates are called
expected updates [16]. DQN does not assume knowledge of the underlying MDP, hence it is
a model-free RL algorithm which treats the environment as a black box. Updating based
on a sample successor state instead of using all outgoing transitions is considered a sample
update [16] (see Section 2.3 for a more detailed discussion). To optimize this expectation, the
agent has to ensure that it sees and updates all state-action pairs infinitely often [16]. In other
words, the agent has to keep exploring instead of just following the best policy it has currently
found.

Estimating the action-value function Q (or value functions in general) with non-linear approx-
imators like deep neural networks can make learning unstable. In some cases, the estimated
value function even diverges [1]. The DQN paper by Mnih et al. [1] states that this is due to
the agent learning on correlated observations and the fact that even small changes of the value
function can significantly change the policy. By changing the policy, the agent obtains differ-
ent observations and thus the data distribution has also changed significantly. One common
measure to mitigate these problems is the use of experience replay, where the agent stores each
experienced trajectory (the current observation, the action taken, the reward observed and the
next observation seen) into a replay buffer. The neural network is trained by sampling randomly
for the buffer. If the buffer is large, this reduces correlation between the sampled trajectories.
Another problem is that the computed target values and the corresponding value estimate,
which is to be updated, are also correlated. TD target values bootstrap using q-value estimates
of possible future observations. Updating q-value estimates using a deep neural network can
also change the estimates for similar observations, thus the target values do not remain fixed
which can cause divergence. Mnih et al. use a different network to estimate q-values for the
target computation called a target network [1]. This network copies the parameters of the
learned neural network every few steps and keeps the parameters fixed in-between. Instead
of copying the parameters every few steps, it is also possible to update the parameters of the
target network in every step slightly in the direction of the parameters of the learned value
network [20]. Let τ ∈ (0, 1) be the update factor for the target network, θ be the parameters of
the learned network and θ′ be the parameters of the target network. In every step the formula
θ′ = τθ + (1− τ)θ′ is used to update the target network [20].
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2.3 Expected vs Sample Updates

RL algorithms, which estimate a value function, need to update their estimates based on ex-
periences gathered by interacting with an environment to improve their current policy and
eventually learn an optimal policy. This thesis is focusing on Temporal Difference (TD) Learn-
ing, where estimates are used in combination with gathered experience (rewards) to compute a
new estimate of the value function, called a TD target. The target is calculated by computing
the Bellman optimality equation. Recall for example the Bellman optimality equation for q∗
from Definition 10

q∗(s, a) = Eπ∗ [Gt|St = s, At = a]

=
∑
s′∈S

T (s, a)(s′)[r + γ max
a′∈Act(s′)

q∗(s
′, a′)]

which recursively defines the expectation over all returns when following policy π∗. Instead of
unrolling this equation completely, TD learning makes use of bootstrapping. The idea is that
the value function q∗(s

′, a′) is substituted with the agents current estimate of the value at some
point of the computation. In the simplest case, the equation is not unrolled and q∗(s

′, a′) is
estimated immediately. Note that bootstrapping has the benefit of computing targets without
playing out full episodes, but it also introduces estimation error. The TD target does not
replace the current estimate. Instead, the current estimate is corrected in the direction of the
target. If a neural network is used as estimator, this is often done by minimizing the MSE
between target and current estimate.

Multiple ways of computing TD targets exist which are based on different assumptions. Assume
an agent wants to update its state-value estimate of state s. One update idea is to directly apply
the Bellman equation of the state-value function (Definition 9). To compute the expectation, the
agent must require knowledge of the transition function and the reward function. (Technically,
we can only compute the expectation if we know v∗. In the following we say that we compute
the expectation to say that we calculate the sum over all transitions using estimates for v∗).
Updates, which directly compute the expectation over all possible next states are called expected
updates [16]. In RL, the environment is often assumed to be a black box and thus the underlying
MDP is assumed to be unknown. In this case, sample updates [16] can be used.

Sample updates consider only a single successor state per state. Instead of summing over all
possible next states, the agent takes one action per state and uses the seen rewards along the
way to compute an update [16]. In other words, sample updates use a single transition path
instead of all outgoing transition paths for the target computation. Due to not knowing the
environments transition function, sampling a single trajectory by interacting with the environ-
ment is often the only possibility. If all trajectories are sampled infinitely often, the agent can
still compute a good estimate of the expectation and thus of the optimal value. Figure 2.2
illustrates the difference of both updates. Sample updates are also used by the DQN algorithm
which uses only the seen successor state and the seen reward after taking an action to update
a state. While expected updates suffer from estimation error due to bootstrapping, sample
updates in addition also suffer from a sampling error [16].
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Figure 2.2: Difference between expected update and sample update to compute a target for vπ(s) [16].

2.4 Description-based Q-learning

Description-based Q-learning (DBQL) as introduced by Gros et al. [21], learns the state-value
function V (s) instead of the action-value function Q(s, a). This makes the agent’s learning less
dependent on the size of the action space, as fewer values need to be estimated. The state-
value is then used to compute the q-values for all applicable actions in the state. From these
the policy is reconstructed again by always choosing the action with the highest q-value (see
Section 2.2). This requires knowledge of the transition function T , an unusual case in a RL
setting but not in the planning domain. One common approach between planning and RL is
dynamic programming (DP), where state-value estimates are updated with expected updates by
constantly iterating over the complete state-space. This is a core difference to RL agents, which
interact with the environment to generate trajectories, which are then used to update the value
function estimates. Real-Time Dynamic Programming (RTDP) is an algorithm which performs
expected updates like DP but uses trajectories sampled by interacting with the environment [16,
28]. This makes RTDP an RL algorithm which makes use of the know transition relation, in
contrast to e.g. DQN. The Description-based Q-learning paper [21] introduces a novel version
of RTDP, which can use non-linear function approximators, like neural networks, for the value
function. This is achieved by using the same ideas which have already enabled Q-learning to
be a deep learning algorithm.

The optimal action-value function

q∗(s, a) = E[Rt+1 + γv∗(St+1)|St = s, At = a]

can be formally expressed with the optimal state-value function [16]. The optimal state-value
function

v∗(s) = Eπ∗ [Gt|St = s]

is defined analog to the optimal action-value function and follows directly from the value-
function definition [16]. Just like DQN, this algorithm also bootstraps using TD learning.
Recall that DQN uses sample updates to compute a target since this does not require knowledge
of the transition function or a resettable environment on which simulations can be run to get
this knowledge. The same TD method can be used to update the state-value function. In its
simplest form,

yθ(s) = r + γVθ′(s
′)− Vθ(s)

10
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defines the TD target. The adapted loss function

L(θi) = Eθi [((r + γVθ(s
′))− Vθ(s))2],

which is used to optimize in every iteration, remains the MSE of the target yθ(s) and current
estimate of the value function vθ(s).

If the agent has access to the true transitions in the MDP of the environment, an expected
update is possible. Recall from Section 2.3 that an expected update computes the expectation
of the used Bellman equation instead of using a single successor state as a sample of the
expectation. A TD-target based on this equation will be referred to as expected target. If
this target is used to compute the MSE-Loss, the agent optimizes for the transition-based loss
function [21]

L(θi) = Eθi [(( max
a′∈Act(s′)

∑
s′∈S,r

T (s, a)(s′)(r + γVθ(s
′)))− Vθ(s))2]

in each iteration. The full Description-based Q-learning algorithm shown in Algorithm 1 high-
lights the differences between both approaches in different colors. If DBQL uses sample updates
to compute the TD-target, the algorithm will be denoted as DBQLS to distinguish both ideas.
While DBQLS stores trajectories in the replay buffer which the agent has actually seen, the
agent using expected updates needs to store all possible transitions from the states it visits
(line 14). Apart from that, the main difference between DBQL and DBQLS remains the com-
putation of the TD target. The code specific to DBQLS is highlighted in blue and is replaced
with the code highlighted in orange for the full DBQL version with expected updates.

Algorithm 1 Description-based Q-learning

1: Initialize replay buffer D
2: Initialize value network Vθ and target network Vθ′ where θ and θ′ are the network parameters
3:

4: for episodes i=0 to M-1 do
5: Reset environment to start state s
6: for step t=0 to T-1 do
7: with probability ε:
8: Select random action at ∈ A(st)
9: else with probability 1− ε:

10: Compute Qθ(s
′, a) using Equation 2.4

11: Select at = argmax
a∈A(st)

Qθ(s, a)

12: end with
13: Execute at, observe rt+1 and st+1

14: Store

{
(st, at, rt+1, st+1)

(st, at, T (st))
in replay buffer D

15: every C steps do
16: Sample a minibatch of samples (sj , aj , rj+1, sj+1) from D

17: Set target yi =

{
rj+1, sj+1terminal state

rj+1 + γ · Vθ′(sj+1)− Vθ(sj), otherwise

18: Set target yi =

{
rj+1, sj+1terminal state

max
a′

∑
s′,r T (s, a)(s′)[r + γVθ′(s

′)], otherwise

19: Optimize using gradient descent on loss (yj − Vθ(sj))2
20: Update target network weights θ′ = (1− τ) · θ + τ · θ′
21: end every

11
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2.5 N-step Learning

N-step learning modifies an existing algorithm based on value-function estimation by changing
the update function to use multiple environment rewards before bootstrapping of value function
estimates [16]. Due to the recursive definition of the value function in the form of the Bellman
equations, the latter can be unrolled multiple times. If the update considers only the immediate
successors of a state, thus looking only one step into the future to learn from rewards before
bootstrapping, this is considered a 1-step TD learning update, sometimes also abbreviated as
TD(0) [16]. Updates do not need to rely on bootstrapping. An agent can play out or simulate
a whole episode and use the real return of the finished episode for the update. Methods that do
this are called Monte Carlo (MC) methods. MC methods need to play out full episodes, which
is more time-consuming than looking only one time step into the future. It also introduces
higher variance, as there can be a lot of episodes which start in a state and the episodes can
have very different returns. N-step learning is a compromise between 1-step TD methods and
MC methods. The idea of n-step learning is to look only n time steps into the future and gather
multiple rewards for the update computation before relying on a value estimate.

Figure 2.3: Trajectories used for sample updates. For n-step TD updates, the trajectories end after
n steps, even if the state is not terminal. Monte Carlo updates use full trajectories until an episode
ends.

Recall from Section 2.3 that TD updates compute a TD target estimate using the Bellman
equation of the associated value function. In 1-step TD learning, the update bootstraps by
substituting the value function for the successor states after one transition with estimates. In
2-step learning, the Bellman equation is unrolled one time, such that estimates are used after
two rewards are collected on each outgoing path from the current state. A n-step return unrolls
the Equation n−1 times, such that bootstrapping occurs after collecting n future rewards. This
is illustrated in Figure 2.3 for sample updates. In case of Q-learning, the Bellman optimality
equation

q∗(s, a) = Eπ∗ [Gt|St = s, At = a]

=
∑
s′∈S

T (s, a)(s′)[r + γ max
a′∈Act(s′)

q∗(s
′, a′)]

is utilized. If sample updates are used, the agent samples the return Gt from the expectation
and uses it as the TD target. In 1-step TD learning, Gt is approximated with the formula

G1
t = Rt+1 + γ max

a∈Act(St+1)
q∗(St+1, a),

where every appearing q-value is substituted using estimates.

The n-step TD target approximates Gt, which is based on n returns, before bootstrapping. The
n-step sample return for Q-learning and Description-based Q-learning is the following:
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Definition 11. [16] Let Rt denote the reward received by the agent at timestep t and let γ ∈ [0, 1]
be the discount factor. The n-step sample return for Q-learning is defined such that

Gn
t = Rt+1 + γRt+2 + ...+ γn−1Rt+n + γn max

a∈Act(St+n)
q∗(St+n, a).

Definition 12. [16] Let Rt denote the reward received by the agent at timestep t and let γ ∈ [0, 1]
be the discount factor. The n-step sample return for Description-based Q-learning is defined
such that

Gn
t = Rt+1 + γRt+2 + ...+ γn−1Rt+n + γnv∗(St+n).

Expected updates do not sample returns from the expectation over the returns when following
a policy. Instead, the target directly computes the expectation. The update principle remains
the same: unrolling the Bellman equation multiple times before bootstrapping. Hence, the
n-step target is the associated Bellman equation unrolled n-1 times. For a 2-step update in
Transition Learning, the target computation

v∗(s) = max
a∈Act(s)

∑
s′,r

T (s, a)(s′)[r + γv∗(s
′)]

= max
a∈Act(s)

∑
s′,r

T (s, a)(s′)[r + γ max
a′∈Act(s′)

∑
s′′,r

T (s′, a′)(s′′)[r + γv∗(s
′′)]]

approximates the Bellman optimality equation for v∗ (Definition 9) unrolled once. It cannot
equal the equation as the true optimal value function is unknown.

N-step learning for sample updates requires the agent to keep track of n states and the transition
rewards during the interaction with the environment. With expected updates, the agent needs
to keep track of the whole tree of all possible successor states and rewards for n-steps in the
future before being able to perform an update. With each additional step, a n-step expected
update is getting exponentially more expensive. The parameter n has to be chosen such that
the additional computational overhead is not having a negative effect on the learning time of
an agent. Compromise between full expected n-step updates and n-step sample updates, like
e.g. proposed by the n-step tree backup algorithm [16], can ease this problem.

To give a complete picture, it is worth noting that this thesis focuses only on n-step learning
which looks into the future to perform an update. Based on the same idea of n-step learning, it
is also possible to look at the states visited in the past during interaction with the environment
and update them based on the rewards seen. This can be done with eligibility traces [16], a
concept that is not introduced here because this backward view works well with sample updates
only. For expected updates which use an expectation over the full state distribution of the
successor states, looking only at a single traces of states visited in the past by taking single
actions is not useful.

2.6 Action-space Explosion

This section outlines the reasons why the action space might explode when porting a JANI
MDP from e.g. the Quantitative Verification Benchmark Set (QVBS) to an RL environment
using MoGym. The problem is best explained with an example. Assume a (D)RL agent controls
a robot walking in a simple gridworld, where each cell corresponds to a state of the environment
and the underlying MDP respectively [16]. In each cell, the agent can move north, south,
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Figure 2.4: A simple gridworld where the agent starts in the cell with a green S and has to reach the
goal cell marked with an orange G. There are some walls on the map, marked in brown, to make the
problem more interesting.

(a)

(b)

Figure 2.5: (a) MDP schematic of the gridworld described in Section 2.6. In each state four actions
(north, east, south, west) can be chosen. (b) MDP without action labels where it is not possible to
match transitions to the general actions of the problem.

east and west to enter an adjacent cell. This makes a total of four general actions. The agent’s
goal is to reach a specified cell, the goal cell. To add stochastic behavior, there is a small chance
that an action can fail, e.g. that the agent decides to go north but stays in the cell with 10%
probability. See Figure 2.4 for a visualization of an example gridworld environment.

A schematic of the MDP describing the gridworld environment is depicted in Figure 2.5a,
which shows one state of the MDP and its outgoing transitions to the immediate successor
states. There are only four actions in each state. We know that there are only four actions as
described in the previous paragraph, so each transition can be labeled with the corresponding
action. Now suppose the MDP does not provide the action labels for each transition. In this
case, there is no way to know whether a transition of state s1 ∈ S corresponds to taking the
same action of a transition of another state s2 ∈ S. It is also possible, that the agent cannot
perform the same set of actions in each state. Suppose the agent is at the left bottom corner
of the gridworld, which is surrounded with walls. Then the agent cannot take action west and
south. But potentially on this state, it can also take a unique action mark to leave a sign in the
current cell. The resulting MDP without labels (see Figure 2.5b) has lost all of this information
described because the transitions cannot be mapped back to the general, applicable actions.

The JANI format specifies that information about the action of an edge in the MDP is optional.
It is also optional to provide all general actions available in the whole MDP [29]. If these optional
cases are missing, the action space explodes to the number of transitions in the MDP as each
edge is considered a unique action. In the gridworld example, given that the gridworld has
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6 · 6 = 36 cells and four general actions, the MoGym environment interprets this as 36 · 4 = 144
unique actions if the necessary action information in the MDP is not provided.

2.7 Deep Statistical Model Checking

Throughout this thesis deep statistical model checking (DSMC) [19] is used to evaluate learned
policies of DRL agents. Statistical model checking (SMC) is a version of probabilistic model
checking (PMC), both of which can determine the probability with which an MDP satisfies a
property considering all possible action policies [19, 30]. While PMC uses exact methods to
infer the probabilities, SMC is based on Monte Carlo simulation and hypothesis testing and
provides an estimation of the probability together with some statement of the error, e.g. by a
predefined error-bound or by providing a confidence interval [18, 30]. Statistical model checking
has the advantage over PMC that its memory consumption is not dependent on the state-space
of the MDP. However, the amount of samples needed for the simulation to fulfill some error
bound might explode for some rare events of a property [18, 19].

Deep statistical model checking, in contrast to statistical model checking in general, calculates
probabilities for properties in a MDP given a single policy instead of reasoning over all policies.
The policy used is neural network which resolves the non-determinism of the MDP by choosing
an action in a state, thus inducing a Markov chain on which stochastic model checking is
performed [19]. In the scope of deep reinforcement learning, the agent uses its learned policy
network for decision-making. DSMC allows answering questions like “What is the probability
of reaching a goal state?”. Such probabilities can be used to compare policies with each other.
Note that DSMC (and PMC in general) is also capable of estimating expectations instead of
probabilities [19], such that it also enables answering questions like “What is the expected
return when following this policy?”.
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Chapter 3
Literature Review

3.1 N-step Learning

Reinforcement learning agents need to be trained on lots of data before their policy converges
to an optimal policy. Faster learning can be achieved if agents can build more accurate value
function estimates to update their policy [24]. This is why n-step returns are very popular,
especially in tabular settings. In DRL, where computing value estimates through neural net-
works is computationally expensive compared to table lookups and an experience replay buffer
is often needed for off-policy learning, n-step methods can be less efficient if not designed care-
fully [25]. If training time is not crucial, n-step returns still play an important role in DRL. A
very prominent example is AlphaZero [3], which uses Monte Carlo tree search (MCTS) as an
approximation technique for n-step returns to achieve remarkable results in e.g. the game of
Go.

On environments where simpler algorithms like DQN are able to successfully learn a good policy
in much less time than e.g. AlphaZero, it is crucial that the disadvantage of longer computation
times for n-step value estimates does not outweigh the advantage of faster convergence. Thus
a careful implementation of n-step methods, e.g. for DQN, and the choice of the parameter n
is important.

Replay-based methods are problematic for n-step return computation since sampling random
mini-batches does not allow re-using computations from previous steps. Daley and Amato [25]
propose an adapted replay memory which stores the n-step return, in this case the λ-return,
together with the corresponding transitions. The return is computed recursively while the agent
interacts with the environment. They also propose dropping the need for a target network by
partitioning their replay buffer into blocks which can be efficiently updated using the non-target
value network. A similar idea is used in RainbowDQN [2], a DQN variant which also uses an
adapted replay buffer for n-step learning. Their replay buffer has a build in cache of size n,
which is used to automatically compute the n-step return using recursion. The return, together
with the state, the action taken and the final state after n steps is then stored in the buffer
once the return is computed internally. This moves the task of keeping track of the last n
rewards and the computation of the n-step reward from the agent to the buffer. In addition,
the RainbowDQN agent also keeps a 1-step replay buffer from which it samples. These samples
together with the corresponding samples in the n-step buffer are used for learning. This is done
to reduce variance as there is no off-policy correction mechanism. The RainbowDQN buffer
will be tested with the sample-update based Description-based Q-learning algorithm. Both of
the given solutions require an online algorithm based on sample updates like DQN.

Since MoGym provides the agent information of the complete transition function, computing
n-step returns with expected updates is the main focus of n-step learning in this thesis. Because
knowledge of the full transition function is not common in (D)RL, to the best of our knowl-
edge, there is not much related work which tries to make computation of such expected n-step
returns efficient with replay buffers in DRL literature. In the tabular case however, multi-step
updates for Real-Time Dynamic Programming (RTDP) has been investigated e.g. by Efroni
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et al. [31]. Due to this, the two approaches proposed for Description-based Q-learning using
n-step expected updates are not based on any prior work.

3.2 Exploration

RL methods, which rely on value estimates, need to ensure sufficient exploration. It is important
to see all states or state-action pairs to have accurate value estimates which can then be used
by the agent to act greedily and thus follow an optimal policy. Deciding when to act according
to the currently best known policy and deciding when to explore states and actions, which are
believed to be worse, is called the exploration-exploitation dilemma [16]. A simple way to solve
this problem for agents estimating any kind of value function is acting ε-greedy [16]: with a
small probability ε ∈ (0, 1) the agent chooses a random action in a state and with probability
1 − ε the agent greedily chooses the action with the highest action-value. A variant of this
simple approach was also used in the MoGym paper [8], where the agent is incentivized to
explore a lot at the start of the training and gradually rely more and more on the policy it
learns as the training progresses. To do this, the epsilon parameter starts of with high and is
decayed in every step until it reaches a lower threshold. Thus, this is referred to as ε-greedy
decay.

Providing an intelligent exploration mechanism is especially important in environments where
rewards are sparse. RL agents perform poorly when a large sequence of actions has to be taken
before a non-zero reward is provided [22]. Simple heuristics like ε-greedy are inadequate in
sparse reward settings [32], especially when the action space is large [20]. In this thesis, for
the second research question, more sophisticated exploration techniques are tested on the hard
action-space problems of the QVBS benchmark. Additionally, a new approach is introduced and
tested based on ideas of recent, successful exploration techniques. The aim is to enable learning
on benchmarks which were impossible to learn in MoGym because the agent hypothetically did
not see goal states often enough to learn a good policy.

3.2.1 Count-based Exploration

One intuitive idea to ensure that every state is explored is to keep track how often a state, or
state-action pair, was visited already. This information is used to decide on an action either
directly or by altering the reward in favor of less visited states. This method is often referred
to as Count-based Exploration. In tabular RL, where a value function is represented by storing
the value for each state or state-action pair in a table-like data structure, this approach is
easy to implement. However, explicitly storing value functions makes tabular RL infeasible
to use on problems with large state spaces as such RL agents lack the ability to generalize
learned values to similar, unseen states [1, 16]. In DRL, where value functions are represented
by deep, non-linear function approximators like neural networks, generalizing to non-tabular
visit counts is not straight forward. Furthermore, the effectiveness of count-based methods in
high-dimensional state spaces is questionable since most states are typically not visited more
than once [33, 34].

Nevertheless, several methods have emerged for DRL which are based on the idea of count-
based exploration and achieve good results in sparse reward problems like Montezuma Revenge,
a popular problem from the Atari games benchmark which is often used to compare exploration
techniques [33]. Bellemare et al. introduced pseudo-counts, which are generalized visit counts
derived using a density model over the state space [34] and thus circumvent the need to store
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visit counts for each state. While their implementation with DQN, using a density model called
CTS [35], has shown very promising results in Montezuma’s Revenge, this method requires
choosing an appropriate density model for each environment. Furthermore, implementing a
density model is a challenging task. Other exploration techniques have shown similar or even
better results, generalize easier across different problem domains and are easier to implement.
Thus, pseudo-counts will not be used in this thesis.

Another count-based approach introduced by Tang et al. [33] has shown to be successful in
continuous action spaces and is based on hashing. The idea is to keep track of visit counts on
state-hashes. Through hashing, the large state space is partitioned into a feasible small space
which enables the usage of tabular visit counts again. Similar to pseudo-counts this technique
is difficult to generalize as a suitable hash-function has to be chosen for each environment.

3.2.2 Intrinsic Motivation

Another popular method to tackle exploration in sparse reward settings is through intrinsic
motivation. The agent tries to maximize rewards to complete a task, which is defined through
the specific reward structure of the environment. If the environment rewards are sparse the
agent is exploring aimlessly for long sequences of actions until it receives useful feedback. The
idea with intrinsic motivation is that an agent should not only optimize for the environment
task, but it should also have its own goals which it can additionally pursue to explore the
environment. This is done by letting an agent calculate an additional intrinsic reward based
on its own goals, which it also seeks to maximize. In theory, the agent then optimizes the sum
of both intrinsic and environment reward: r = renv + ri. Achiam and Sastry [32] describe three
of the most used intrinsic motivation goals:

• Empowerment : An agent enjoys the level of control it has about its future.

• Surprise: An agent is excited to see outcomes that run contrary to its understanding of
the world.

• Novelty : An agent is excited to see new states.

Note that novelty and surprise are very similar intrinsic motivations. For this thesis, curiosity-
driven exploration as introduced by Pathak et al. [27] will be used and implemented as a
reference implementation using intrinsic motivation. The idea is similar to the surprise motiva-
tion described by Achiam and Sastry. Two neural networks are used to compute the curiosity
reward. The first NN predicts the next state given the current state and the chosen action by
the agent while the second NN predicts the action taken by the agent given the state prior to
the action and the state the agent has seen after taking the action. By combining the predic-
tion error of both NNs, the agent receives a bigger positive reward the higher the error of the
predictions is. Both NNs are updated constantly during training which ensures that predictions
for states which have often been explored get better over time. This method to compute the
intrinsic reward is abstracted into a structure called Intrinsic Curiosity Module (ICM).

Similar to count-based methods, surprise-based intrinsic reward, e.g. using ICM, enables the
agent to have a measure quantifying which states have not been explored as often. This is
similar to states with a low visit count but with the advantage that storing separate data for
each state is not required. Furthermore, the use of NNs enables generalization to similar states.
An ICM module is independent of the underlying environment which makes it a good alternative
solution to count-based methods. However, a benchmark study from Bellemare et al. [36] has
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shown that Random Network Distillation (RND) [37], another intrinsic reward technique based
on novelty, performs even better on the notorious Montezuma’s Revenge environment. The idea
is that the intrinsic reward is the loss between a randomly initialized target network t : S → Rk

and a predictor network p : S → Rk. The predictor network is trained on the expected mean
squared error (MSE) between the output of the target network and the predictor network itself.
Thus, it learns the function t, getting more accurate for states which are visited often by the
agent, thereby decreasing the corresponding loss and hence giving an agent less incentive to
visit such states again. The authors claim that, by learning a deterministic function t instead
of predicting observations, RND is more robust to the noisy TV problem [37]. In stochastic
settings, predicting observations and using the error of such predictions as indication for novelty
can be troublesome. An example is an agent standing in front of a TV showing random pixels.
Predicting the next observation cannot be learned due to the randomness of the environment,
hence the agent is stuck watching TV as its curiosity never reduces.

3.2.3 Random Networks

By adding an intrinsic reward to the environment reward, which the agent seeks to maximize,
the processes of exploration and finding a policy for the reward structure of the environment
are not decoupled anymore. Without careful consideration, intrinsic rewards can thus alter the
optimal policy for the combined reward such that it is not optimal for the pure environment
reward function [22, 38]. Additionally, using neural networks for prediction tasks to compute
intrinsic motivation requires the agent to see lots of samples. NoisyNet [38] is a technique which
tries to avoid these pitfalls. By adding noise to the parameters of a neural network representing
a value function, an agent can use its value function directly to act in the environment. This
is different to e.g. ε-greedy strategies, where the agent would not act greedily with respect to
its value function with probability ε.

A linear layer of a neural network has the form y = wx+ b, where y is the output vector, w is
the weight vector of the layer, b is a bias vector and x is the input to the layer. With NoisyNet,
the network has at least one noisy layer where w = µw + σw � εw and b = µb + σb � εb [38].
Both, weight vector and bias vector are compromised of learnable parameter vectors µ and σ,
while ε is a noise vector. Note that � represents element-wise multiplication. By minimizing
the loss of the networks estimated value function, the noise parameters of the noise layers are
also trained. This is a key distinction to methods adding noise to the value estimations after
a forward pass through a network. The noise vector ε can be sampled e.g. from a (factorized)
Gaussian distribution and is held constant in between learning.

NoisyNet can be implemented independent of the environment and algorithm used and has only
little computational overhead. It has shown promising results on the Atari benchmark [38] and
was implemented in RainbowDQN [2], a DQN agent using multiple techniques to improve upon
the base DQN algorithm as it was first introduced [1]. For these reasons, NoisyNet seems a
good non-intrinsic reward technique which can be tested on hard exploration instances of the
QVBS loaded with MoGym.

3.2.4 Planning and Exploration

While intrinsic motivation utilizes the fact that RL agents seek to maximize their expected
reward, adding an intrinsic reward is an indirect exploration method. A more direct, plan-
ning based exploration approach, called Go-Explore, has shown a huge improvement in hard
exploration environments like Montezuma’s Revenge [22]. The idea behind this method is to
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remember interesting states such that an agent returns to these states before further explo-
ration begins. The authors state that intrinsic motivation methods suffer from two problems
they call detachment and derailment [22]. Go-Explore is specifically designed to avoid these
problems.

Detachment states that an agent might explore interesting states until the intrinsic reward is
smaller than for other states. Since the agent acts greedily, maximizing the combined intrinsic
and extrinsic expected reward, it might never return to these states again, hence being detached
from high intrinsic reward frontiers.

If an agent discovers an interesting state, it is desirable to return to this state again. This is often
done by acting out the same (or slightly updated) policy which has lead to this state. In most
exploration methods, the policy is mixed with some stochasticity, e.g. by adding random noise
to the network (see NoisyNet) or by sometimes acting randomly instead of greedily (ε-greedy).
The added stochasticity, and the fact that the environment itself might have stochastic behavior,
often prevents an agent to return to promising states. This problem is called derailment.

As a high level description of Go-Explore, an agent stores the paths to newly discovered,
interesting states in a buffer. Then the agent samples from said buffer and follows the same
actions as stored in the sampled path to return to the promising state. Once the state is reached,
the agent can start exploring using any exploration technique. Note that the algorithm also uses
a form of imitation learning to make the algorithm more robust in stochastic settings. For a
more detailed description of the specific implementation, the interested reader is referred to the
original paper by Ecoffet, Huizinga et. al. [22], as only the intuition is relevant for this thesis. In
their paper, the authors suggest that this specific version of the algorithm needs an environment
which can disable stochasticity during the return phase or allows resetting to a chosen state [22].
Alternatively, a deterministic simulation environment can be used. The authors left whether
this idea works in purely stochastic training environments and a corresponding adaption of
Go-Explore for future work [22]. The thesis tries to fill this research gap by introducing a new
stochastic version of Go-Explore which we call Stochastic Go-Explore. It is based on the same
basic principle of letting an agent return to interesting states first before explicit exploration
starts, but it skips the imitation learning phase of the original algorithm.

Other algorithms using the Go-Explore principles exist which allow training a policy while
training in stochastic environments. The authors of Go-Explore published policy-based Go-
Explore in later revisions of their original paper [39] and another team of researchers developed
a similar algorithm called Diverse Trajectory-conditioned Self-Imitation Learning (DTSIL) [40].
Both approaches train goal-conditioned policies, include a supervised learning loss (SIL) and
use a concept called soft-trajectories. Since Stochastic Go-Explore does not rely on any of these
concepts, we think that our approach is an interesting alternative and a valuable contribution
to the DRL community. A distinction of the three algorithms and a further discussion on the
topic can be found in the appendix (see Section 9.2).
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Chapter 4
N-step Description-based Q-learning

Both the sample update and the expected update version of DBQL as introduced in Section
2.4 can be extended to use n-step updates. In the scope of this thesis, three new agents are
proposed for this purpose. One new agent extends DBQLS and is based on an implementation
of a n-step DQN agent. For DBQL with expected updates, two agents are introduced: DBQLnDP
which uses dynamic programming and DBQLnM which uses matrix operations to compute the
n-step updates.

4.1 Sample Description-based Q-learning

The n-step DBQLS, denoted DBQLnS, uses a special buffer which allows for an efficient update
computation. This type of n-step buffer was introduced in RainbowDQN [2, 41] and is referred
to as NBuffer from now on. It computes the discounted n-step return Gt:t+n which is used
to compute the sample n-step update target. Recall from Section 2.5 that the n-step sample
target for DBQL equals the return approximation

Gn
t = Rt+1 + γ2Rt+2 + ...+ γn−1Rt+n + γnv∗(St+n).

Gn
t uses n future rewards until v∗(St+n) is used to approximate the return from timestep t+ n

onward. Since the agent does not know the true optimal state-value function v∗, the agent
uses its current best estimate. The subscript θ indicates that v∗ is approximated, where θ
are the current weights of the approximator. Note that the accumulated reward prior to the
value function estimate does not change during training, while the agent wants to use the most
accurate estimate of the value function. The accumulated n-step reward is defined as [2]

Rn
t =

n−1∑
k=0

γkRt+k+1

such that the n-step agent minimizes the loss

L(θ) = [Rn
t + γn Vθ′(St+n)− Vθ(St))]2

using gradient descent with the help of a target network to estimate V (St+n).

Since the agent samples a single trajectory of length n to compute this return, the agent could
sample by looking into the future and compute Rn

t directly. Instead of sampling from the
future, the agent can withhold the computation of the n-step reward for n steps and use the
experienced trajectory, gained by acting out its current policy, as a sample. This has the
advantage that the agent does not need to know the underlying MDP to plan ahead. In RL,
the agent often treats the environment as a black box which makes sampling from the future
impossible. While MoGym, the environment used for this thesis, enables the agent to use both
kinds of sample strategies, gathering experiences by interacting with the environment is much
faster than building a n-step lookahead tree to sample from.
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The NBuffer computes the n-step reward using an internal cache of size n, which stores the last
n trajectories (st, at, rt+1, st+1, ..., st+n) of the current episode. In each step, the agent stores
the current trajectory (s, a, r, s′) in the NBuffer, which will insert it into the cache using the
first-in-first-out principle. If the cache is full, the buffer then computes the associated n-step
reward Rn

t and stores the trajectory (st, at, R
n
t , st+n) in the buffer itself. The agent can then

sample trajectories from the NBuffer and use them to calculate the target value which equals
Gn
t .

The pseudocode for DBQLnS is depicted in Algorithm 2 which highlights the new changes
compared to 1-step DBQLS in orange. Note that the NBuffer of the DBQLnS agent does not
replace the replay buffer of the 1-step DBQLS agent. Both buffers are used in conjunction to
reduce variance of the n-step loss [41]. The agent still computes the 1-step TD target with the
help of the replay memory, which equals G1

t , just like in the 1-step DBQLS version. By the
definition of the discounted return (Definition 4), the return calculated using G1

t and Gn
t , the

1-step and n-step targets, are the same if the optimal state-value function v∗ is used. Thus, the
agent can minimize the sum of both n-step and 1-step loss as a total loss

L(θ) = ([Rt + γ Vθ′(St+1)− Vθ(St)] + [Rn
t + γn Vθ′(St+n)− Vθ(St)])2

as it should converge to zero if the optimal value function is found.

Algorithm 2 N-step sample DBQL (DBQLS , DBQL)

1: Initialize state-value network and target network Vθ and Vθ′

2: Initialize NBuffer N and replay buffer D
3:

4: for episodes i=0 to M-1 do
5: Reset environment to start state s
6: for step t=0 to T-1 do
7: with probability ε:
8: Select random action at ∈ A(st)
9: else with probability 1− ε:

10: compute Qθ(s
′, a) using equation 2.4

11: select at = argmaxa∈A(st)Qθ(s, a)
12: end with
13: Execute at, observe rt+1 and st+1

14: Store (st, at, rt+1, st+1) in replay buffer D
15: Store (st, at, rt+1, st+1) in replay buffer N
16: every C steps
17: Sample minibatch (si, ai, ri+1, si+1) of D

18: Set target yi =

{
ri+1, si+1terminal state

ri+1 + γ · Vθ′(si+1)− Vθ(si), otherwise

19: Sample minibatch (si, ai, R
n
i , si+n) of N

20: Set target yni =

{
Rni , si+1terminal state

Rni + γn · Vθ′(si+n)− Vθ(si), otherwise

21: Optimize using gradient descent on loss (yi − Vθ(s))2+(yni − Vθ(s)))2
22: Update target network weights θ′ = (1− τ) · θ + τ · θ′
23: end every
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4.2 Recursive Description-based Q-learning

The Description-based Q-learning agent uses expected updates to compute a target state-value.
In the 1-step case, the target is computed as

yi = max
a

∑
s′,r

T (s, a)(s′)[r + γVθ′(s
′)]

which approximates

v∗(s) = max
a

∑
s′,r

T (s, a)(s′)[r + γv∗(s
′)]

by bootstrapping without unrolling the Bellman optimality equation. To use n-step updates, the
equation has to be unrolled n−1 times. The resulting equation considers the tree of all outgoing
paths of length n starting in the state s, for which the value function is estimated. Every state
which can be reached in at most n steps is a node of this tree. Since the Bellman optimality
equation is recursively defined, the final value can be obtained using dynamic programming.
At each leaf node state the value of the function is estimated using the agent’s value function
estimator. In deep reinforcement learning, the estimator is typically a deep neural network.
The estimate is then propagated to the parent node, which solves for Equation 9 and propagates
the result back to its parent. This is done until the value of the current state is computed.
Figure 4.1 visualizes this tree computation for a 2-step expected update.

Figure 4.1: Illustration of a 2-step expected target computation using the Bellman optimality equation
for v∗(s) (see Definition 9). In this example, the agent can take two actions in each state. For each
leaf-node state the state-value is estimated. For each subtree of the first level state nodes, the Bellman
optimality equation is applied. The resulting values are used when applying the Equation again for
the root node state. For each increasing step size, the computation tree increases by one level. The
state-values are backed-up to the next higher level where the highest value is chosen (here marked in
red) as state-value of the subtree. The process continues until the value for the root is found.

If the agent has knowledge of the transition probability function T (s, a) and the reward function
R(s, a, s′) of the environment, it can calculate the expected n-step update using dynamic pro-
gramming as shown in Algorithm 3. Since MoGym provides us with the necessary information,
it allows implementing a n-step DBQL agent using this method, which will be referred to as
DBQLnDP . The pseudocode for this agent is depicted in Algorithm 4, where the agent specific
code is highlighted in blue. Since the agent has access to the transition and reward function
of the environment at any time, the only information needed to compute the expected n-step
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return using the dynamic programming procedure (Algorithm 3) is the state for which the value
function should be updated. Thus, in line 15, only the visited states are stored in the replay
buffer. Line 18 indicates that Algorithm 3 is used to compute the target using the sampled
states from the buffer. Note that this requires to build the corresponding search tree and invoke
the DP method for every sampled state before the batch update to the neural network can be
made.

Algorithm 3 Recursive procedure to compute n-step expected updates

1: procedure DP(s ∈ S, n ∈ N)
2: if n = 1 then
3: return max

a∈Act(s)

∑
s′∈S T (s, a)(s′)[R(s, a, s′) · Vθ(s′)]

4: else
5: return max

a∈Act(s)

∑
s′∈S T (s, a)(s′)[R(s, a, s′) ·DP (s′, n− 1)]
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4.3 Matrix Description-based Q-learning

Since building a search tree and applying DP to calculate an n-step expected update is ex-
pensive, an agent is proposed which uses matrix arithmetic to compute updates for a batch
of states more efficiently. Unrolling the Bellman optimality equation for v∗ using DP has two
disadvantages: (1) it requires the agent to build the same search tree for a state every time it is
sampled and (2) it requires as many forward passes through a neural network as the search tree
has leaf nodes. It is noted that both problems can be eased by using caches. However, caches
do not eliminate the problem entirely and introduce memory overhead. TLnM is an agent which
tries to solve the two issues mentioned by (1) saving the search tree for a state in the buffer
and (2) using a single forward pass through the NN to compute all value estimates of the leaf
nodes at once.

Algorithm 3 computes the update target by unrolling the Bellman optimality equation using
recursion on the computation tree of depth n. The unrolled equation consists of multiple
maximization steps. This can be seen in Figure 4.1 and in the equation

v∗(s) = max
a∈Act(s)

∑
s′∈S

T (s, a)(s′)[R(s, a, s′) + γ[ max
a′∈Act(s′)

∑
s′′∈S

T (s′, a′)(s′′)[R(s′, a′, s′′) + γv∗(s
′′)]]],

which is the 2-step unrolled Bellman equation serving as an example in the following paragraphs.
Instead of taking the maximum at each level in the computation tree, it is also possible to
move all maximization steps to the beginning of the formula. Applying this reformulation to
the running example results in

v∗(s) = max
a∈Act(s),a′∈Act(s′)

∑
s′∈S

T (s, a)(s′)[R(s, a, s′) + γ[
∑
s′′∈S

T (s′, a′)(s′′)[R(s′, a′, s′′) + γv∗(s
′′)]]].

The main problem with this equations are the summations as they must be computed in order,
from the innermost summation outwards. Thus, when using this formula in a non-recursive
algorithm, one has to keep track which results must be summed together. Consequently, this
results in tedious and possibly complex computational overhead. As a result, the matrix agent
uses a trick which is also used in the sample update DBQL agent DBQLnS. Recall from Sec-
tion 2.3 that sample updates do not compute the expectation by summing over all outgoing
transitions. Instead, a single transition from the expectation is sampled to compute the update
target. This is only possible if all transitions are encountered infinitely often during training
to ensure a good approximation of the expectation. The n-step DBQL agent of Section 4.1
relies on exploration techniques to meet this assumption. The matrix DBQL algorithm uses
n-step sample updates like DBQLnS, but it samples every possible outgoing path of transitions
of length n instead of a single transition path. Once the sample n-step update target is com-
puted for every outgoing n-path, the highest target value is chosen as the state-value estimate
for the state. This novel update target does not equal the update target represented by the
Bellman optimality equation and a discussion if the resulting policy converges to the optimal
policy is left for future work. While the vague theoretical foundation of the proposed update
is a disadvantage, it has the advantage of being easier to compute and potentially reducing
training time while still converging faster than 1-step DBQL methods to good policies. The
quality of the found policies is subject of the experiments of this thesis. The following serves
as an intuitive justification for this novel n-step update.

Recall that the optimal state-value can be formulated as an expectation over returns when
following a policy (Definition 9). The return Gt can be substituted by the n-step return Gn

t of
Definition 12, such that
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v∗(s) = max
a
Eπ∗ [Gt|St = s, At = a]

= max
At,...,At+n

Eπ∗ [G
n
t |St = s, At = a]

= max
At,...,At+n

Eπ∗ [Rt+1 + γ2Rt+2 + ...+ γnv∗(St+n)|St = s, At = a]

expresses the optimal state-value using the n-step return [31].

By computing the n-step sample return Gn
t for every possible outgoing trajectory of state s,

the agent obtains m n-step returns. In the following, the subset i ∈ {0, ...,m− 1} indicates the
i-th n-step return calculated for this update. Then let

Gn
t,i = Rn

t,i + v∗(St+n,i)

be the n-step return and let Rn
t,i be the n-step reward as defined in Section 4.1. Let R denote

a m× 1 matrix containing the n-step rewards and S denote the m× 1 matrix of all successor
states St+n,i. The associated n-step returns can be computed in one addition as a m×1 matrix
G using equation

G = R + Vθ′(S)

⇔


Gn
t,0

Gn
t,1
...

Gn
t,m−1

 =


Rn
t,0

Rn
t,1
...

Rn
t,m−1

 + Vθ′(


St+n,0
St+n,1

...
St+n,m−1

).

Note that Vθ′ represents the target neural network which approximates v∗ and returns a m× 1
matrix of estimations for v∗(St+n,i) when given a batch of m states. With G available, the
target value v∗(St) is the highest return for any action sequence At, ..., At+n over a set of
states St, ..., St+n. Taking the maximum return instead of the maximum over expectations
of returns is used to approximate the state-value efficiently. The resulting target update is
v∗(St) ≈ max(G). Calculating the n-step update by using this equation compared to the exact
dynamic programming approach of TLnDP has the disadvantage that maximizing over returns
instead of expected returns leads to overestimation. Assume for example a small MDP where
one transition after taking an action a is very unlikely, e.g. the transition has a probability
of 0.01 but a very high reward of e.g. 100, while the only other transition has probability
1− 0.01 = 0.99 with reward 1. For simplicity, in the example there is only one other action a′

from the start state with two transitions. Both transitions have probability 0.5 and a reward
of 10. Assume further that the MDP only has terminal states after one transition. The MDP
is depicted in Figure 4.2. The expected return for action a is 0.01 · 100 + 0.99 · 1 = 1.99 and
the expected return of action a′ is 10. Now the update target using the expected update is
v∗(S) = max(1.99, 10) = 10. The matrix agent computes the returns G = [100, 1, 10, 10]T and
thus the update target v∗(S) = max(G) = 100.

To reduce the overestimation, the known transition function is used by weighting the rewards
with the cumulative probability of the associated transition when taking the sequence of actions
At, ..., At+n starting in state St (for which the update target is calculated). The n-step unrolled
Bellman optimality equation can be formulated as
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Figure 4.2: Example MDP where a matrix agent overestimates the value of a state compared to a
dynamic programming agent.

v∗(s) = max
At,...,At+n

[[
t+n∑
k=t

γk−t
k∏
j=t

(T (Sj, Aj)(Sj+1))R(Sk, Ak, Sk+1)]+γ
n

t+n∏
k=t

(T (Sk, Ak)(Sk+1))v∗(St+n)].

For reference, the 2-step example formula can be retrieved by setting n to two. Ignoring the
summation symbol as we sample a transition from the equation, the formula is weighting the
rewards and is the basis of the matrix n-step backup. Let R̂n

t be the weighted n-step reward
such that

R̂n
t =

t+n∑
k=t

γk−t
k∏
j=t

(T (Sj, Aj)(Sj+1))R(Sk, Ak, Sk+1).

Let Ĝn
t,i be the weighted return, which uses the weighted rewards and also weights the state

value estimate by its transition probability such that formula

Ĝn
t,i = R̂n

t,i + γn
t+n∏
k=t

T (St+n−1, At+n−1)(St+n)v∗(St+n,i)

defines the weighted return. Furthermore, let G and R be the weighted matrices of the n-step
return and reward. To compute the discounted return Ĝn

t,i, the state-value is also weighted
with its transition probability. Let Cn

t,i be the probability used to estimate the final state-value,
such that

Cn
t,i = γn

t+n∏
k=t

T (St+n−1, At+n−1).

Let C be the m × 1 matrix storing these state-value weights for all outgoing transition paths
of length n from St, then G can be computed with the equation

G = R + C � Vθ′(S)

⇔


Gn
t,0

Gn
t,1
...

Gn
t,m−1

 =


Rn
t,0

Rn
t,1
...

Rn
t,m−1

 +


Cn
t,0

Cn
t,1
...

Cn
t,m−1

� Vθ′(

St+n,0
St+n,1

...
St+n,m−1

),

where � is the row-wise matrix multiplication. The remaining target update is the maxi-
mum weighted return, which can be expressed as v∗(s) = max(G). Algorithm 4 depicts the
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pseudocode for the n-step matrix algorithm, where the algorithm specific parts are colored in
orange.

Algorithm 4 N-step expected DBQL (DBQLnS , DBQLn)

1: Initialize replay buffer D
2: Initialize value network Vθ and target network Vθ′ where θ and θ′ are the weights
3:

4: for episodes i=0 to M-1 do
5: Reset environment to start state s
6: for step t=0 to T-1 do
7: with probability ε:
8: Select random action at ∈ A(st)
9: else with probability 1− ε:

10: Compute Qθ(s
′, a) using equation 2.4

11: Select at = argmaxa∈A(st)Qθ(s, a)
12: end with
13: Execute at, observe rt+1 and st+1

14: Rt,Ct,St ← update matricies(st)

15: Store

{
(st)

(st,Rt,Ct,St)
in replay buffer D

16: every C steps do

17: Sample minibatch of samples

{
sj

(sj ,Rj ,Cj ,Sj)
from replay buffer D

18: Set target yj =

{
DP (sj)

max(Rj + Cj � Vθ′(Sj))
19: Optimize using gradient descent on loss (yi − Vθ(s))2
20: Update target network weights θ′ = (1− τ) · θ + τ · θ′
21: end every
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Chapter 5
Go-Explore

In this section, the stochastic version of Go-Explore is introduced. First, the original Go-Explore
framework is outlined as it was introduced in the initial paper of Go-Explore [22]. Afterwards
the main changes in the new stochastic version are explained and finally implementation details
for the Stochastic Go-Explore DBQL agent, which is the agent used for this thesis, are specified.
Note that the explanation in this chapter does not include policy-based Go-Explore which was
introduced in subsequent revisions of the original paper [39], because Stochastic Go-Explore
was developed on the base of the original Go-Explore framework. While there are existing
approaches which address the same issue as Stochastic Go-Explore, they differ in the concepts
used. A discussion can be found in the appendix (see Section 9.2).

5.1 Original Go-Explore

Go-Explore is an exploration framework which can be split into two distinct phases during
training: (1) the exploration phase and (2) the robustification phase. The main exploration
ideas of Go-Explore are addressed in the first phase whereas the second phase is used to train
policies by applying self-imitation learning (SIL) on the best trajectories found in phase one
to make them more robust in stochastic environments. Figure 5.1 extracted from the paper
introducing Go-Explore [22] illustrates an overview of the framework. Note that no policy is
trained in the exploration phase [39] of the original algorithm.

5.1.1 Exploration Phase

The exploration phase consists of four high level steps which are continuously repeated. First,
at the start of an episode, the agent samples a state from an archive. The archive is a buffer
which stores interesting or promising states together with instructions on how to reach them.
A heuristic is used to assign each state a value indicating how interested the agent is to return
to this state. This value is also stored in the archive and is used to ensure that states with a
higher value have a higher probability to be sampled.

In the second step, the agent tries to go to the sampled state by using the additional information
stored in the archive. The information could be a concrete sequence of actions to perform to
reach the state. By applying the stored actions, the agent is only guaranteed to reach the
sampled state again if no form of stochasticity is present during this phase. This includes any
form of random exploration mechanisms and the stochasticity of an environment. Due to this,
the original Go-Explore framework assumes that either a deterministic version of the problem
environment exists during training, e.g. a simulation environment, or that the environment
allows resetting to any specified state [22]. Note that this assumption is dropped in later
versions, e.g. for policy-based Go-Explore [39].

Once the agent has reached the state of interest, the third step of the phase begins. For the
following actions, the agent uses an arbitrary exploration technique to finish the episode and to
keep exploring the state space. Any newly encountered states are evaluated with the heuristic
and are added to the archive. The archive also updates states where the newly generated
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Figure 5.1: Original Figure from the Go-Explore paper [22] presenting a high-level overview of the
algorithm.

trajectory is “better” than the one stored. What constitutes a better trajectory is a design
choice. The authors propose that possible criteria could be e.g. the trajectory length or
the cumulative reward [22]. Updating the buffer represents the fourth and final step. The
exploration step and the archive update step are intertwined and cannot be clearly separated
from each other. The exploration phase of Go-Explore is specifically designed to mitigate the
problems of derailment and detachment.

Derailment is a situation where the agent has discovered a promising state from which it wants
to explore further but is unable to return to it [22]. The authors of Go-Explore claim that RL
agents typically try to return to such states by re-enacting the policy that led to the interesting
state but with some sort of exploration perturbations, e.g. through acting ε-greedy or also
following intrinsic motivation [22].

Detachment describes a problem occurring with agents using intrinsic motivation (IM) as an
exploration strategy. IM agents which discover multiple high intrinsic reward areas may se-
quentially explore each area for a while. During the exploration the agent continuous to lower
the intrinsic reward (IR) of each area until another area is more interesting. Detachment occurs
if an agent is not able to rediscover the first high IR areas encountered even though exploring
them further would still yield high rewards [22].

5.1.2 Robustification Phase

In the first phase the environment is explored either on a completely deterministic version
of the environment or the stochasticity was at least deactivated in step two when the agent
returned to a promising state sampled from the buffer. Note that policies are only trained
in the robustification phase. Since the agent explored a simplified environment with relaxed
assumptions, the trajectories found might not perform as well in the stochastic environment.
To obtain a more robust policy, the authors of Go-Explore [22] suggest using a form of imitation
learning after the exploration phase. Given a few of the best trajectories found in phase one, the
agent is trained to mimic or even improve on them while training in the stochastic environment.
The imitation learning algorithm used in the paper is the Backward Algorithm from Salimans
and Chen [42], but can be substituted by any other algorithm. The paper remarks that the
robustification phase may not be needed if a policy obtained in the first phase is already robust
to stochasticity. This is an important observation used in the stochastic version introduced in
Section 5.2.

5.2 Stochastic Go-Explore

The Stochastic Go-Explore agent implemented for this thesis drops some concepts proposed in
the original paper as well as the assumption that a deterministic or resettable environment is
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needed during the training of phase one. One big concept which is not used in the implemented
Stochastic Go-Explore agent is the robustification phase. The original paper states that this
phase might not be needed if the trained policy in the first phase is already robust with regard
to stochasticity of the environment [22]. Since in this proposed stochastic version of Go-Explore
the agent is directly training on a stochastic environment rather than training on a deterministic
environment, this is the case. Note that applying the robustification phase might still improve
the found policy but any discussions or experiments regarding this are beyond the scope of this
thesis.

Since Go-Explore was designed to solve hard, sparse-reward Atari benchmarks, where the obser-
vations of the environment include images, the authors suggest to use cell representations [22]
to lower the high state-space dimension. The idea is to group similar states together while
keeping “meaningfully different” states separate [22]. Cell representations change for each en-
vironment, which results in the need to tune this concept for each environment before training.
In very high state-space dimensions using images as observations, the training speed-up justifies
this pre-training overhead. In the context of training QVBS benchmarks using MoGym, which
does not use images as observations, the benefit of having a more generally applicable agent
when dropping the concept of cell representations outweighs potential training speed-ups. It
is also not trivial to design good cell representations by using only the information extracted
from the MDP loaded through MoGym without any further knowledge of the original problem
description. Thus, the implemented Stochastic Go-Explore agent trains on the original state
space.

5.2.1 Stochasticity During Training

Apart from dropping some minor concepts and the robustification phase, the main abstract
steps of phase one do not change much when adapting Go-Explore to exclusively use a stochastic
environment. The agent still samples a state from the archive at the beginning of an episode in
the first step. As a second step, the agent then aims to go the sampled state by following the
stored information in the archive. The agent has to account for the fact that it might not be
able to imitate the steps from the archive due to environment noise, which is a main difference
to the original framework. If the agent could not completely imitate the stored trajectory, it
has to start step three (the exploration step) earlier. Updating the archive remains the same
as in the previous fourth step.

One of the main motivations for developing the Go-Explore framework was to mitigate the
problem of derailment and detachment. Recall that derailment describes the inability of the
agent to return to a promising state. By using a stochastic environment in step two, derail-
ment is still possible, which was the reason why the authors of Go-Explore advocated to use
deterministic environment or an environment which can reset to the desired state directly [22].
A discussion about the feasibility of using a stochastic environment during step two was left
unanswered by the authors in the original paper [22], but addressed in subsequent publications
with the introduction of policy-based Go-Explore [39]. The experiments of this thesis also
indicate that the idea of Go-Explore remains a powerful approach, even in a fully stochastic
setting.
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5.3 Implementation Details

Go-Explore is a framework instead of a precise algorithm. This is why implementations of
agents using the Go-Explore framework can differ in various aspects. There are key design
choices which have to be made. They include:

• The data structure used for the exploration archive and the way it is updated.

• The method used to return to a sampled state. Popular choices are e.g. a stored sequence
of actions, which can be imitated, or storing a copy of the policy network.

• The heuristic used to determine interesting and/or promising states.

• The imitation learning method used in the robustification phase.

• The exploration technique used to discover new states.

5.3.1 Exploration Archive

The exploration archive is a buffer which stores information about how to get back to a state.
In this case it stores a full trajectory and an interesting state together with some priority value
indicating how interested the agent should be to return to the stored state. The data structure
representing this archive must provide functionality to sample a state and the corresponding
trajectory based on a probability distribution over the stored priorities. Sampling a single
trajectory is done roughly every episode, which requires sampling to be efficient. The archive
must also be able to update the priority for entries efficiently as this is also done frequently
during training. The same requirements are needed when using prioritized experience replay
(PER), a technique first introduced by Schaul et al. [43]. In their paper a sum-tree data
structure is used which enables efficient sampling and updating. The same data structure is
used for the implementation of the Stochastic Go-Explore agent for this thesis.

The choice of storing trajectories in the archive instead of a sequence of actions or a policy
network is a direct consequence of using a stochastic environment for training. As outlined in
Section 5.2.1, an agent can only try to return to a sampled state. Due to the noisy environment,
taking an action does not always result in the agent visiting the same successor states. The agent
needs to be able to realize that it cannot reach the stored state by imitating the same actions as
before. If the agent is only provided with a sequence of actions to follow, this realization is only
possible after all actions are performed by checking if the agent has reached the sampled state
or any other state. Furthermore, if the agent has gone off-path, the stored actions might not
be applicable in the new states encountered. An agent which has access to the full trajectory
can check at each time step if the current state matches with the corresponding state stored
in the trajectory. In case of a mismatch, the agent can thus start with random exploration
(step three) earlier. A similar argument can be made against storing a policy network. One
disadvantage of storing trajectories is that they can vary in length. The archive must be a data
structure which supports this. This is the case with the sum-tree used for this implementation.

5.3.2 Heuristic

As a heuristic to determine which states are interesting and should be revisited either the
Intrinsic Curiosity Module (ICM) [27] or Random Network Distillation (RND) [37] is used. The
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advantage of using ICM is that it is very easy to implement and curiosity is a general heuristic
which is suitable for most environments. The same applies for RND, thus the experiments
include a Stochastic Go-Explore agent for each of the two. One big disadvantage of both
heuristics is that they require a forward pass through a neural network each time a state is
evaluated. The computational overhead of heuristic evaluation must be carefully considered as
multiple states are evaluated in every episode during the third and fourth step.

The choice of a suitable heuristic function is not trivial. It is not obvious if curiosity by itself
is a good choice for Stochastic Go-Explore. Once a goal state was found in a sparse-reward
stochastic environment the agent should be interested to see the goal state again and again,
such that it can update its policy accordingly. Since neural networks require multiple backward
propagation runs until a good approximation is learned, it is desirable to sample goal reaching
trajectories multiple times, even when their curiosity value is already low. This is especially the
case if the trajectories that reach a goal are long because imitating them completely in stochastic
environments might be unlikely. Incorporating the cumulative reward into the heuristic value
could help to increase the priority of such trajectories permanently and provide a threshold
such that the priority for high rewarding trajectories is never reduced to zero. During step
three and four, the agent constantly adds new trajectories to the archive. The priorities of old
entries encountered during an episode are updated.

5.3.3 Exploration Technique

The distinct idea of Go-Explore is that an agent should not always explore blindly, but should
first return to promising states before exploring. However, it does not specify how it should
explore from there. The implemented Stochastic Go-Explore DBQL agent uses an ε-greedy
policy for exploration. Note that any other exploration technique is also feasible but intrinsic
motivation methods are arguably a bad choice because Go-Explore tries to mitigate the problem
of detachment. By letting the agent optimize for a combined intrinsic and extrinsic reward,
the main principles on which Go-Explore is build on is necessarily compromised. A suitable
alternative to intrinsic motivation methods and the rather simple ε-greedy strategy would be
e.g. NoisyNet. Using ε-greedy for exploration is preferred for this thesis to demonstrate that the
concept of Stochastic Go-Explore is powerful enough to enable learning on difficult instances
of the QVBS without adding another, more powerful exploration technique.
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5.3.4 Pseudocode

Algorithm 5 shows the pseudocode for Stochastic Go-Explore. Due to the size of algorithm, we
limit the pseudocode to the DBQL variant using ICM as heuristic. All lines which remain from
the original DBQL algorithm are shown in gray to highlight the new parts of Go-Explore.

Algorithm 5 Stochastic Go-Explore with DBQL using ICM as heuristic

1: Initialize replay buffer B and exploration buffer E
2: Initialize ICM module
3: Initialize value network Vθ and target network Vθ′ where θ and θ′ are the weights
4:

5: for episodes i=0 to M-1 do
6: s← Reset environment to start state
7: Set explore to true with probability (1-ε) or if number of samples in E less than P
8: if not explore then
9: trajectory ← Priority-sample trajectory [(si0, a

i
0, s

i
1), ..., (s

i
n−1, a

i
n−1, s

i
n)] from E

10: steps done ← Initialize list to keep track of trajectories done in current episode
11: for step t=0 to T-1 do
12: if trajectory was imitated successfully (t > n) then
13: Set agent to explore

14: if explore then
15: at ← Choose action using simple exploration technique, e.g. ε-greedy
16: else
17: at ← Choose action ait from sampled trajectory

18: Execute action at and observe rt+1, st+1

19: Store (st, at, T (st)) in replay buffer D
20: Store (st, at, st+1) in steps done
21: if explore then
22: p← Compute intrinsic motivation for st, at, st+1, using ICM
23: Store steps done in E with priority p
24: else if st = sit and end of sampled trajectory was reached (t = n) then
25: p← Compute intrinsic motivation for st, at, st+1, e.g. using ICM
26: Set priority of trajectory in E to p

27: every C steps do
28: Sample a minibatch of samples (sj , aj , rj+1, sj+1) from D

29: Set target yj =

{
rj+1, sj+1terminal state

rj+1 + γ · Vθ′(sj+1)− Vθ(sj), otherwise

30: Optimize using gradient descent on loss (yj − Vθ(sj))2
31: Update target network weights: θ′ = (1− τ) · θ + τ · θ′
32: Compute inverse loss Li and forward loss Lf of ICM
33: Optimize ICM module using gradient descent on β Lf + (1− β) Li
34: end every

35: Update buffer (Optionally introduce a small penalty each time a trajectory is executed)

34



Chapter 6
Methodology

This chapter provides an overview of all experiments made to answer the research questions and
provides reasoning why the specific experiment designs are chosen. Recall from Section 1.2 that
this thesis aims to find the reasons why some QVBS benchmarks are not learnable using DQN,
thereby discovering challenges to overcome using MoGym on those benchmarks. In addition,
the thesis aims to provide the reader with DRL agents and solutions to address the challenges
by improving on existing approaches. In particular, recall that the hypothesis of this thesis
is that the main two challenges of hard benchmarks are (1) the action space explosion, which
results from loading a MDP and converting it to an environment, and (2) that sophisticated
exploration is required.

To test this, the thesis proposes to use DBQL, a DQN variant which mitigates the action-space
explosion problem, in combination with several exploration techniques like Random-Network
Distillation, ICM or NoisyNet and the newly introduced Stochastic Go-Explore. The thesis aims
to answer two research questions (RQs) related to this hypothesis, namely RQ 1.1 and RQ 1.2
defined in Section 1.2. Another objective of the thesis is to improve on DBQL by extending it
to use n-step learning, which is why three new algorithms are introduced in Chapter 4. These
are used to answer research questions RQ 2.1 and RQ 2.2, which ask whether n-step learning
leads to faster learning with regard to sample efficiency and training time.

In this chapter, first general methods used for all experiments regardless of the specific research
questions are outlined. This is done by first discussing the scope of the experiments and then the
limitations of deep reinforcement learning. After that the experiments and methodology for the
first set of research questions (RQ 1.1 and 1.2) and for the second set of research questions (RQ
2.1 and 2.2) are discussed in separate sections. Finally, a short summary of all the experiments
is given.

6.1 General Methods and Limitations

The time constraints of the thesis have a direct impact on the possible depth of the experiments
to answer the research questions. If not planned carefully, trying to prove or disprove the claims
of the research questions can become very time-consuming. Thus, the scope of the experiments
has to be limited carefully and limitations in regard to typical challenges of deep reinforcement
learning have to be addressed first.

6.1.1 Scope of Experiments

The QVBS has over 25 benchmark instances which can be used to answer the research ques-
tions [10, 11]. This is infeasible given the time constraints and hardware access for the thesis.
Consequently, experiments for each set of research questions are made on a small subset of
benchmarks and the findings are then used to generalize and answer the research questions.
The quality of the generalization depends on the choice of benchmarks used. To test the hy-
pothesis stating that the action-space explosion as well as exploration are the main challenges
of unlearnable instances (RQ 1.1 and 1.2), we decided on three benchmarks: Elevators, Firewire
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and Blocksworld. The first two were benchmarks where the DQN agent of the MoGym paper
failed to learn. Thus, they provide a good baseline to check if the discussed approaches en-
able learning on hard instances. The search space of Elevators consists of 909 states [11] and
41 actions while Firewire has 290017 states [11] and 24 actions. While Firewire has a huge
state-space, both environments have a rather low action-space. Thus, to test the impact of
action-space explosion we decided to include Blocksworld as more extreme example which has
1125 [11] states and 260 actions. To test the introduced n-step agents of DBQL, we decided
to use two environments called Cdrive and Racetrack. These environments are chosen because
the DQN agent of the MoGym paper was able to learn on them [8], which indicates that the
DBQL agents can learn on them as well with the same simple exploration technique called
ε-greedy. Note that only Cdrive is a benchmark from the QVBS which is unproblematic as
research questions RQ 2.1 and RQ 2.2 are only concerned with the general properties of the
n-step agents. No other environment is considered as we expect the n-step agents to have a
much higher training time with increasing n-steps compared to e.g. the exploration agents.

Environments For completion, the following is a short outline of the environments. For
more information on the QVBS benchmarks the interested reader can visit the official QVBS
website [11]. In Blocksworld an agent tries to rearrange blocks on a table from a starting
configuration to a goal configuration. An agent can only move a block which has no block
placed on top of it, and it can only place it on other blocks with no block on top of it. In the
version used for the experiments five blocks are present in the environment (blocksworld.5.jani).
In Elevators, a number of elevators must carry coins to predefined levels. The version used in the
experiments has three levels and three coins (elevators.a-3-3.jani). Stochasticity is introduced
as an elevator can fail and fall down a level. In Firewire, more specifically firewire dl, the Tree
Identify Protocol for the IEEE 1394 High Performance serial bus is modeled, which transports
media data across a network. The environment allows to set two properties before loading. For
the experiments we set delay to 3 and deadline to 800 because this induces a high state-space
and was one of the suggested configurations on the QVBS website [11]. In Racetrack the agent
controls a car which is driving on a racetrack. The racetrack is a gridworld, where the agent
starts in starting cells and has to reach goal cells. In each cell, nine actions can be performed.
The agent can accelerate in each direction (including diagonals) or decide not to accelerate.
The current velocity is changed based on the direction of the acceleration. The problem is
interesting as the agent can reach velocities where it cannot come to a standstill after taking
a single action. Furthermore, on the noisy variant of Racetrack, there is a small probability
that the action fails and the agent cannot change its current velocity. For the experiments, the
map barto-small is used to create the environment. In Cdrive the agent drives a car around a
city with 6 locations (cdrive.6.jani). Roads with traffic lights connect the locations. The goal
of the agent is to reach a specified location without an accident [11]. Note that the authors of
MoGym have used a simplified variant of Cdrive with only two locations [8]. This version is
not used here as it is expected that the 1-step agents can already learn this environment with
very few episodes of training [8] such that recognizing learning improvements becomes difficult.

6.1.2 DRL Limitations

Hyperparameters Drawing general conclusions on the performance of a DRL agent is com-
plicated because DRL agents are very sensitive to the hyperparameters used for training and
for each environment the hyperparameter configuration to achieve the best performance can
vary [44, 45]. This means that ideally, one wants to find the best hyperparameters for each
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environment tested for each agent before comparing the performance of different agents. To
evaluate if a certain configuration of hyperparameters is better than another, the agent needs
to train on an environment as there is no way to infer this otherwise. In addition, some pa-
rameters itself might vary on a continuous scale and are dependent on other parameters. This
makes searching the best hyperparameters infeasible in most cases. This problem is well known
in the DRL community and the deep learning community in general [45, 46]. We address this
problem by applying hyperparameter tuning to find, among a predefined set of values for each
parameter, a configuration that works reasonably well and assume that the performance differ-
ence to better configurations is not significant for the results. Further information on this can
be found in Section 6.1.3.

Randomness Another problem is randomness during training as the environment itself is
noisy and additionally an agent can use randomness, e.g. for exploration, during training.
Due to this, for each experiment the random number generators used are set to a specified
seed. This makes the experiments replicable and allows interested readers to verify the results.
Since an agent might perform better on one seed than another, each experiment is done over
multiple seeds. With each additional seed the number of experiments grows exponentially as
this adds an experiment for each agent on each environment (and each n-step). Consequently,
the experiments are limited to three random seeds, although more seeds are desirable.

Reward Structure The reward structure is an important aspect of the experiments because
the DRL agents’ goal is to maximize the expected return. Since agents are trained on multiple
environments for each research question, we fix the reward structure used for training. This
has two advantages: (1) comparing the results of experiments is easier as they do not need to
be normalized and (2) the reward structure is not optimized for specific environments which
reduces design bias. However, it allows only for a simple reward structure that can be applied
to all problems. This neglects the fact that results could improve on some environments with
different rewards. Nevertheless, the ability to compare the results more easily is more important
for this thesis than finding the best policies on each environment. For all experiments, the
agents receive a positive reward of 100 for reaching a goal state and a negative reward of −20
for reaching a bad state. For any intermediate action which does not result in ending the
episode either by winning or loosing, the agents receive a reward of 0. This specific reward
structure was chosen because it has worked well for training various agents in projects outside
this thesis. It would also be reasonable to set the positive reward to 1 and the negative reward
to −1, which is not done here due to personal preference.

Neural Network Since this thesis uses deep reinforcement learning, the specifc neural network
used to represent the learned policy influences the learning capability and training performance
of the agents. Analogue to the reward structure, we decided to use the same basic neural
network structure for each agent and experiment. The network is a multilayer perceptron
(MLP) consisting of two hidden layers with 64 nodes each. The size of the input layer varies
depending on the state representation of the used environment. Since DQN estimates action-
values, the output layer equals the action dimension of each environment, e.g. for Racetrack
the output layer consists of nine nodes. DBQL estimates state-values such that the output
layer always consists of one node. Every layer except the final output layer passes their results
through a ReLu (Rectified Linear Unit) activation function. The network is learned through
backpropagation using Adam [47] as optimization algorithm.
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Performance Evaluation When training (D)RL agents, it is difficult to evaluate how well the
trained agent can actually perform the task it is supposed to learn. Recall that the main goal
of (D)RL agents is to find policies that maximize the expected return received when interacting
with the environment. To measure if an agent is learning, the returns received during training
are tracked. If the average returns received increase the agent is learning something. However,
the reward structure can be difficult to define in a way that an agent learns the actual, abstract
problem it is supposed to solve. Sparse-reward functions like the one used for this thesis tend to
lead the agent to learn the desired problem. However, they can be problematic as exploration
is a problem if the agent gets no useful feedback (zero reward) for a long period of time [48,
49]. With that in mind, we can say that an agent is learning to solve a problem by looking at
the training rewards. Deep statistical model checking (DSMC) can help to assess the (training)
performance of an agent independent of the training rewards. To do this, policies are saved
during training. DSMC is a rather new technique used in the scope of DRL. Furthermore, the
discrepancy between correctly maximizing a reward structure and solving the actual abstract
problem makes comparing training returns and DSMC results both challenging and interesting.
Consequently, the training returns are valued higher in the evaluation as the DSMC results.

Still, using the extracted training returns and DSMC evaluations directly to evaluate the train-
ing performance of an agent is not very useful. This is due to the high variance of the measure-
ments. (D)RL agents want to learn policies maximizing the expected return received. Even
for good policies, there might be episodes with a very low return and in the next episode the
agent receives a high return due to e.g. exploration and environment noise. To account for
this variance and the initial goal to maximize expected return, usually one averages the returns
using a simple moving average (SMA) first to evaluate the training process. A SMA calculates
the current average by summing up the previous k returns (or all data points if less then k are
available) and dividing the result by the amount of data points used for the computation. For
this thesis the parameter k = 100 is used. Similarly, the DSMC evaluations for the extracted
policies can also have a high variance. However, due to sparser data availability since far fewer
policies than training returns are extracted and evaluated, applying SMA does not seem ap-
propriate. Thus, we decided to use regression to smooth the data and evaluate the training
process of agents using DSMC. To do this, locally estimated scatter plot smoothing (LOESS) is
used which is a local regression algorithm [50].

6.1.3 Hyperparameter Tuning

Deep reinforcement learning is sensitive to the hyperparameters of the algorithms [44, 45].
Since training a DRL agent takes a significant amount of time, tuning many hyperparameters
remains a difficult task in reinforcement learning. Consequently, in the scope of this thesis, not
all hyperparameters are tuned. Since DQN and DBQL are very similar, the common hyper-
parameters are tuned by using DQN on Racetrack as DQN needs less time to train the same
amount of episodes as DBQL. No hyperparameters are tuned by using n-step agents. Tuning is
done by sampling 20 configurations of predefined parameter values and evaluating the policies
using DSMC. Only the best policy for each configuration is used for comparison. After that a
stochastic DBQL Go-Explore agent is tested with the chosen parameters of the DQN tuning
experiments and is trained on Elevators to tune the size of the exploration buffer1. Similarly,
a DQN agent using ICM and RND for curiosity driven exploration is trained on Racetrack

1Go-Explore is not based on DQN for tuning in contrast to the other agents because implementing Go-Explore is
difficult and error-prone. Due to this, it was decided to use the final DBQL Go-Explore agent to tune the archive
size. Go-Explore as implemented works only if the environment has a single initial state. Thus, tuning is not done on
Racetrack as the used Racetrack version has issues when specifying a specific start state.
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to tune the exploration specific parameters. This is also done by sampling 20 configurations
from predefined parameter ranges. Each agent trained for tuning trains for a total of 100, 000
steps on an environment and on a single seed for the random number generators. The final
hyperparameters can be found in Section 9.1 in the appendix.

6.2 First Research Question

Recall that research question RQ 1.1 asks whether the action-space explosion is the main fac-
tor for the unsolvabililty of some benchmarks of the QVBS. Similarly, RQ 1.2 asks whether
exploration is a key factor if learning fails even after accounting for the action-space explo-
sion. To test both questions, DBQL agents with different exploration techniques are trained
on Elevators, Firewire and Blocksworld. The exploration techniques are ε-greedy, RND, ICM,
NoisyNet and Stochastic Go-Explore in two variants: one with ICM and with RND as priori-
tization heuristic. The ε-greedy variant is important to verify RQ 1.1 because the DQN agent
of MoGym is also using this simple technique for exploration. By using it in conjunction with
DBQL which tries to mitigate the influence of the action-space size, it allows drawing conclu-
sions for the direct influence of the action-space explosion without exploration. As a baseline,
DQN using ε-greedy is trained on each environment as well. For each experiment the agents
train for 100, 000 episodes, extracting policies every 1, 000 episodes for DSMC evaluation in
addition to all training scores received.

If an agent is receiving a constant average training score above zero from some time onward, we
say that the agent was able to learn on an environment. In particular, to answer the research
questions it is not important that agents can learn an optimal policy, although comparison
between the quality of the agents might be interesting. As a secondary measure, the extracted
policies are evaluated using DSMC for two criteria: (1) the expected return and (2) the goal-
reaching probability (GRP). The expected return is closely related to the training scores and can
give direct insight into the quality of a policy in regard to the agent’s objective to maximize
the expected return. The GRP gives insight into the quality of the policy in regard to the
underlying abstract problem that should be solved by stating how often an agent reaches a
goal-state when starting in any starting state of the environment. Since DSMC provides only
estimates we specify that the estimation of returns can at most be wrong by 1 and the GRP
estimate by 0.01 with a confidence of 95%. Similar to the training score, an agent is able to
learn if it learns policies with an expected return and a GRP higher than zero from some time
point onward.

6.3 Second Research Question

Research questions RQ 2.1 and RQ 2.2 ask whether n-step learning leads to faster learning.
To compare the learning of two agents, the quality of a learned policy is put in relation to the
time needed to learn a policy. We say that an agent learns faster, or that learning improves,
if it is able to obtain a better policy in the same amount of time as another agent. There are
two timescales we use for this comparison: (1) the episodes needed during training to obtain
a policy and (2) the execution-time needed for the training to finish. This is also reflected in
both research questions because RQ 2.1 asks if sample efficiency increases with higher n-step,
which consequently uses episodes as timescale, while RQ 2.2 asks if agents can learn policies
faster concerning training time. The quality of a policy can also be classified using two different
measures: (1) The average expected return and (2) the goal-reaching probability. In both cases,
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higher values are better. Due to this, whenever we say learning improves it must be denoted
which timescale and performance measure is used.

To answer RQ 2.1, first a definition of sample efficiency is needed. If an agent learns better
policies than another agent given a fixed amount of episodes to train on, we say that it is more
sample efficient because it can use the provided data in a more efficient way for learning good
policies. In the ideal case, every agent considered finds an optimal policy. Thus, the average
returns received during training should converge eventually. This should also be noticeable
using DSMC as evaluation method, where the expected return or expected GRP of the extracted
policies converge. Thus, we can also say that sample efficiency increases if the policy of an agent
converges faster than the policy of another agent. This definition can only be applied if both
policies converge to the same limit. Research question RQ 2.2 is reasoning about a similar
concept to sample efficiency, where we want to check whether an agent learns better policies
than another agent given a fixed amount of time. We call this concept time efficiency in this
thesis and note that this is not a common term in DRL literature to our knowledge. To be able
to reason about learning improvements more precisely, we define that learning has improved
strictly if it has improved for each extracted policy found until convergence. If learning only
improves on a training section, e.g. the first 30, 000 episodes, we say that training improves
partially. An example is given in Figure 6.1. Note that learning can improve partially while it
may not improve in total. This allows a more fine-grained analysis of the results. The same
definition is applied when using training returns as evaluation measurement instead of DSMC
evaluations. We say learning improves strictly if the average return is constantly higher during
training until convergence compared to the training of another agent. If the average return is
only higher during some time periods, we say that learning improves partially. Note that due
to the high variance of the received training return we use a sliding mean for this comparison
and similarly, the regression line for comparing DSMC results, again due to the high variance.
The choice of the mean window and regression function can thus influence the results, but
due to the high variance of the measurements, the definitions provided would make no sense
otherwise. We fix the window size of the sliding mean as well as the regression function used
before evaluating any experiment (see Section 6.1.2) to make sure that both are not chosen in
favor of desired results.

(a) Learning strictly improved with regard to ex-
pected return and episodes trained.

(b) Learning improved partially for the first 30,000
episodes but not in total.

Figure 6.1: Example plots to distinguish whether we say that learning has improved in total, strictly
or partially. In this case improvement is analyzed with regard to the average expected return and the
episodes trained for the same agent on the same environment using different n-step parameters.
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Recall that this thesis introduces three new DBQL n-step agents. The first agent, denoted
as DBQLnS, uses sample updates and a n-step replay buffer as proposed for RainbowDQN [2]
(see Section 4.1). The second agent is DBQLnDP (Section 4.2) which computes expected n-step
updates using recursion. It stores only visited states in its replay buffer and computes the
entire n-step update during learning. The third agent is DBQLnM (Section 4.3) which also uses
n-step expected updates. It stores all n-length transitions for each state observed in its buffer
while acting with the environment. This is done to save time when computing the expected
n-step return during learning. This agent only approximates the Bellman target update and
suffers from overestimation bias (see Section 4.3 for more details). Due to this, it is unclear if
this agent can learn at all.

To investigate the effect of n-step learning on sample efficiency (RQ 2.1), the n-step agents
are trained on Cdrive and Racetrack for a fixed amount of episodes. Since the DQN agent of
the MoGym paper [8] is capable of learning an optimal policy within 10, 000 episodes on these
environments using an ε-greedy exploration strategy and DBQL is an improvement of DQN, the
training episodes are fixed to 10, 000 and the n-step agents also use ε-greedy for exploration. To
test whether time efficiency improves (RQ 2.2) the agents are trained on the same environments
but for a fixed amount of time instead of a fixed amount of episodes. Deciding on a timeout
for the experiments is not trivial because the n-step agents are expected to differ significantly
in the average execution time needed to train on a single episode. For example, the matrix
agent DBQLnM is designed to have a faster target computation than DBQLnDP and the sample
agent DBQLnS is not using the known transition function to plan ahead which should boost
its training speed for a single episode. However, since n-step DQBL agents should improve on
their plain (1-step) DBQL counterpart (either with sample or expected updates), we decided
to train the base DBQL algorithms on both environments and use the time needed for these
agents until their policies converge. The aim of the n-step agents is to converge faster than
their non n-step base algorithm.

Figure 6.2: The training returns (using sliding moving average) of DBQL using expected updates on
both Cdrive and robustification. These plots are used to set a timeout for DBQLnDP and DBQLnM .

Both DBQLnDP and DBQLnM are based on DBQL using expected updates. To figure out the
timeout on each environment for both agents the base DBQL agent is trained on Cdrive and
robustification for 10, 000 episodes on a single seed, extracting the execution time every 500
episodes. Figure 6.2 plots the mean training returns received by the base agent on Cdrive
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and Racetrack. For Cdrive, the returns have converged after approximately 5000 episodes
which equals an execution time of about 283 seconds. On Racetrack the returns converge after
approximately 7500 episodes which equals an execution time of 1404 seconds. For both the
matrix (DBQLnM) and the DP agent (DBQLnDP ) the timeout experiments use these convergence
times as threshold on Cdrive and Racetrack respectively.

Figure 6.3: The training returns (using sliding moving average) of DBQLS using sample updates on
both Cdrive and Racetrack. The plots are used to set a timeout, but show that the agents were only
able to learn a suboptimal policy.

The remaining n-step agent DBQLnS is based on DBQL using sample updates and thus this
agent is trained on both environments to infer which timeout to use. The agent is not able
to learn on both environments even after 100, 000 episodes. Figure 6.3 shows the average
training returns of the sample agent on both environments. While it shows that returns are
increasing, the agent has not learned a good policy and therefore needs even more episodes to
train on. We decided to drop the tests for the sample agent due to two reasons: (1) the time
needed for the base algorithm to learn and (2) the novelty and usefulness of this approach. As
DBQLnS is the only n-step agent proposed, which is based on an already existing n-step DQN
counterpart (RainbowDQN [2]), and it does not make use of the known transition function
which makes n-step learning interesting in this context, we don’t think the possible insights
of the experiments justifies the amount of time needed to execute them. Consequently, all
experiments for DBQLnS are dropped. The other two agents are trained on each environment
using three n-steps (n ∈ 1, 2, 3) and for each n-step on three random seeds. We decided to
limit the n-steps to three as the DBQLnDP agent is expected to become very slow with higher
n-steps. Additionally, the n-steps used are enough to reason about the effect of higher n-steps
to sample and time efficiency.

The returns received during training are stored for every experiment. In case of the sample
efficiency experiments, policies are extracted every 500 episodes and for the timeout experi-
ments the policy extraction time is chosen such that 25 policies are gathered each experiment.
Additionally, timers keep track of the average execution times needed for various parts of the
algorithms. Both training returns and extracted policies are used to infer if the novel agents
are able to learn and to test if sample or time efficiency improves depending on the experiment
set used. The timers can help reasoning about time efficiency differences by outlining the time
needed for specific parts of the agents’ algorithm depending on the n-step parameter.
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6.4 Summary

To summarize the experiments, for each research question some DRL limitations are addressed.
This includes using hyperparameter tuning, using the same neural network for every agent
and using the same reward structure for each experiment for comparability. To make the
experiments replicable each agent is trained on each environment with multiple fixed seeds for
the random generators. In addition, since the time and the resources for this thesis are limited,
experiments are run only on a subset of environments and the results are generalized. On a high
level, the experiments are split into two sections: the exploration experiments used to answer
RQ 1.1 and RQ 1.2 and the n-step experiments used to answer RQ 2.1 and RQ 2.2 where the
latter experiments are again split into experiments for each research questions by either using
a timeout or by training for a fixed amount of episodes. Figure 6.4 provides an overview of all
experiments made for the evaluation chapter.

Exploration Experiments Summary

Environment: Cdrive, Racetrack

Agents :
DBQL + {ICM, RND, ε-greedy, NoisyNet,
Stochastic Go-Explore + {ICM/RND}},
DQN + ε-greedy

N-step: 1
Seeds: 1,2,3
Data: Training returns, policies
Time-scale: Episodes
Number of Episodes: 100,000
PET: 1,000
Timeout: None
Research question: RQ 1.1 and RQ 1.2

N-step Experiments Summary

Environment: Cdrive, Racetrack
Agents : DBQLnDP , DBQLnM
N-step: 1
Seeds: 1,2,3
Data: Training returns, policies, timers

Timeout vs No-Timeout experiments

Research question: RQ 2.1
Timescale: Episodes
Episodes: 10,000
Policy extraction: every 500 episodes
Timeout: None

Research question: RQ 2.2
Timescale: Time
Episodes: -

PET:
Cdrive: 11s
Racetrack: 56s

Timeout:
Cdrive: 283s
Racetrack: 1404s

Figure 6.4: Summary of all experiments made for this thesis.
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Chapter 7
Results and Evaluation

This chapter provides an overview of all findings of the experiments described in the method-
ology chapter. The findings are used to answer the research questions while the next chapter
discusses the relevance of the findings and draws final conclusions. The chapter is structured to
answer the research questions in order, similar to the methodology chapter. Consequently, first
the results of the exploration experiments are presented and discussed answering RQ 1.1 and
RQ 1.2. Then the findings of the n-step experiments are outlined, starting with the experiments
designed to test the effect of varying the n-step parameters on the sample efficiency (RQ 2.1)
and followed by the n-step timeout experiments which enable reasoning about time efficiency
of the n-step approaches (RQ 2.2). Finally, the timer data is used to gain further insight in the
reasons of the respective time efficiency of the algorithms.

7.1 Action-space Explosion and Exploration

Recall that the thesis aims to identify the challenges of hard QVBS benchmarks which made
learning for DQN impossible in the MoGym paper [8]. More precisely, the thesis hypothesis
is that the two main problems are the action space explosion and the lack of sophisticated
exploration techniques, which results in the first two research questions:

Research Question 1.1 Is the action-space explosion the main factor for the unsolvability of
some planning tasks?

Research Question 1.2 Is exploration a key factor when learning fails, even if the agent
accounts for the action-space explosion?

The objective of the thesis, after establishing the main problems of hard instances, is to provide
the reader with tools to overcome these obstacles by suggesting and improving on existing
approaches. Due to this, DBQL is used as a DQN extension addressing the action-space
explosion and is mixed with several exploration techniques, one of which is a newly adapted
version of Go-Explore. With this new Stochastic Go-Explore the DRL community is provided
a powerful and less confined version of the Go-Explore framework for which we hope to verify
its feasibility. To test the hypothesis and Stochastic Go-Explore, we trained agents on three
environments for 100, 000 episodes. The results for each environment are analyzed separately,
first using DSMC and then using training returns.
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7.1.1 DSMC Evaluations

Figure 7.1, 7.2 and 7.3 plot the results for each agent on each environment for each seed.
DSMC is used to evaluate the mean return achieved by the extracted policies every 10, 000
episodes. Similarly, Figure 9.2, 9.3 and 9.4 plot the same data but using GRP as DSMC
evaluation criteria and can be found in the appendix. Both criteria show a high correlation.
Due to this, in the following, whenever the score plots are referenced, the same effect can also
be observed in the plot of the GRP counterpart. The analysis confines itself mostly to the plots
using the return criteria such that the GRP plots can be put in the appendix to prevent them
from cluttering this chapter due to their size.

Elevators Figure 7.1 shows that on Elevators the DQN agent using ε-greedy as well as the
ICM, RND and NoisyNet DBQL agents are not able to learn. In contrast, both Stochastic
Go-Explore variants can learn on this environment. DBQL using the simplest exploration
technique, ε-greedy, is also successful while the plain DQN agent is not. This is a first indicator
that the action-space explosion is a major challenge for DQN, because DBQL uses the same
exploration as DQN but mitigates the effect of large action spaces. Since all other agents are
based on DBQL and add a more sophisticated exploration technique than ε-greedy, it is rather
surprising that only the new Stochastic Go-Explore agents can learn on Elevators. Moreover,
plain DBQL has on average better policies, meaning they achieve higher average returns (and
GRP), than the Go-Explore variants.

Figure 7.1: DSMC evaluation of experiments on Elevators using expected return as criterion.
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Firewire The plots for Firewire presented in Figure 7.2 (and 9.3) show that all agents except
the DQN agent can learn successfully on this environment. Compared to Elevators, Firewire
has a much larger state-space with 290017 states compared to the 909 states of Elevators and
a lower action-space of 24 to 41 actions which makes the findings of Elevators seem surprising
at first thought. Intuitively, Firewire is a much harder exploration problem due to the larger
state-space and thus if ICM, NoisyNet and RND can learn successful here they should be able
to learn on Elevators as well. Note that this interpretation is error-prone. Firstly, a larger
state-space does not equal a harder exploration problem if goal states are plentiful and easy
to reach and secondly, it is not trivial to understand how intrinsic motivation agents like RND
and ICM behave on different environments. We conclude from the results that Firewire is an
easier exploration problem than Elevators but the improvements of DBQL over DQN are the
significant factor that enable learning on both environments. In other words, the invariance of
DBQL to the action-space explosion seems to be a crucial factor to be able to learn on some
instances of the QVBS which affirms research question RQ 1.1.

Figure 7.2: DSMC evaluation of experiments on Firewire using expected return as criterion.

Blocksworld Figures 7.3 and 9.4 show that only Stochastic Go-Explore using ICM as priori-
tizing heuristic is able to learn on Blocksworld. This indicates that exploration is a key factor
when learning fails, even if the agent accounts for the action-space explosion, and thus confirms
research question RQ 1.2 because in this case both DBQL and DQN using the same explo-
ration technique were not able to learn. In addition, since Stochastic Go-Explore using ICM is
able to learn successfully on all three environments we can confirm that this newly proposed
variant of Go-Explore remains a powerful and feasible exploration technique, even though it
drops a core principle of the original framework. However, by observing that for one random
seed Stochastic Go-Explore cannot learn, it seems that the success of the agent is still affected
by the randomness of the environment and the exploration method used.
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Figure 7.3: DSMC evaluation of experiments on Blocksworld using expected return as criterion.

7.1.2 Training Returns

As mentioned in the methodology chapter in Section 6.1.2, DSMC is a new technique for
DRL analysis and there can be a discrepancy between the DRL agents goal to find policies
that maximize the expected return and the goal to learn the actual abstract problem. This
discrepancy occurs if the used reward structures are poorly designed. Thus, in this thesis we
value the training returns higher than the DSMC evaluations if they show different results.
Recall that a sliding mean (SMA) is applied to the training returns to analyze the training
performance. Figures 7.4, 7.5 and 7.6 show the mean returns received during training on an
environment for each agent and seed. This is similar to the DSMC plots prior.

Elevators By comparing the training return plots for Elevators of Figure 7.4 to the DSMC
plots of Figure 7.1 using the score criteria, the results are mostly the same. Still, only the
DBQL agent using ε-greedy as well as both Stochastic Go-Explore agents can learn on the
environment. While the DSMC evaluations suggest that the DBQL agent has learned the
policies with the highest expected return, the training returns show that the RND variant of
Stochastic Go-Explore converges to the same, if not slightly better, average training return.
It is not trivial to infer the meaning of this finding for both analysis methods. One possible
explanation is that the DSMC regression line is fitted to a sparse data vector with only 100
DSMC evaluations per experiment which might be insufficient to show the training performance
accurately. Another theory is that policies can change quickly and that the neural network is
very unstable during training, such that DSMC evaluation results suffer from a high variance.
Extracting and evaluating more policies would help to plot potentially smoother training curves.
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Figure 7.4: Training returns of experiments on Elevators.

Firewire For Firewire the training return plots (Figure 7.5) and the DSMC plots (Figure 7.2)
show very similar results. However, while the extracted policies of DQN are estimated to have
a mean return of zero using DSMC, the agent constantly receives a training score above zero.
This could be a result of exploration in the beginning leading an agent to receive positive returns
without having learned anything. However, as the exploration factor epsilon decays until the
agent exploits its learned policy with probability 0.95 in each step, the constant positive returns
at the end of training suggest that exploration is likely not the main cause of this discrepancy
(especially if the environment is hard to explore). Furthermore, the DSMC estimations could
be too inaccurate. Another observation is that the estimated expected returns for the extracted
policies tend to be higher than the received rewards during training. For both Stochastic Go-
Explore variants, the training returns converge to be between about 15 and 25 while the DSMC
evaluations indicate that the policies learned to achieve an estimated average return between 35
and 60, or on average slightly above 40. This further indicates that the training score can be an
inaccurate measure for the quality of the learned policies and learning in general, as mentioned
in Section 6.1.2. The likely cause for a lower mean training score is exploration, as agents are
forced to explore during training while for DSMC, only the learned policy is exploited.

48



CHAPTER 7: RESULTS AND EVALUATION

Figure 7.5: Training returns of experiments on Firewire.

Figure 7.6: Training returns of experiments on Blocksworld.
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Blocksworld Comparing the training return plots of Figure 7.6 with the DSMC plots of
Figure 7.3, no differences in the results can be identified. Both DSMC regression lines and the
mean training return lines match well except that, as already mentioned for Firewire, DSMC
estimations converge to a higher expected return than the mean training returns.

Negative Rewards The reward function used for training specifies that an agent receives a
positive rewards of 100 if a goal state is reached and −20 if a bad state or a dead end is reached.
For any intermediate step the reward is zero. For all exploration experiments, observe for all
DSMC plots that no policy is estimated to have a negative expected return nor do any training
return plots show returns below zero, although rewards were set correctly for the experiments.
Consequently, the only explanation is that the agents did not reach dead or bad states during
training, they simply could not reach a goal state in the worst case. This makes the problems
even more difficult because useful feedback by rewards being different from zero is even more
sparse compared to environments were agents can get negative feedback often, e.g. on Cdrive
and Racetrack for the n-step experiments.

7.1.3 Conclusion

Independent of the performance measure used, be it DSMC using expected returns, GRP or
the extracted training returns, the same conclusion can be made. First, research question RQ
1.1, asking whether the action-space explosion is a major factor which leads to DQN not being
able to learn on some QVBS benchmarks, is confirmed. The experiments show that for Firewire
and Elevators the DQN agent is not able to learn in contrast to the DBQL agent using the
same exploration technique as DQN. Since DBQL is a DQN extension designed to mitigate
the performance dependency on the size of the action-space, we conclude that this must be
the main reason for its success in contrast to plain DQN. Research question RQ 1.2, asking
whether exploration is a key factor when learning fails, even if the agent accounts for the action-
space explosion, is also confirmed. This can be observed with the experiments on Blocksworld,
were only Stochastic Go-Explore using ICM as prioritizing heuristic is able to learn. Since for
all environments at least one DBQL agent is able to learn while DQN cannot learn on any
environment, we accept our hypothesis that the two main challenges for hard QVBS instances
are the action-space explosion and exploration. Furthermore, we demonstrated that Stochastic
Go-Explore remains a feasible and powerful exploration framework. Apart from the research
questions, the experiments also hint that tracking training returns and evaluating policies using
DSMC show similar results, but the mean training score tends to be lower than the estimated
returns using DSMC. This can be explained by the agents constant need for exploration during
training and which results in suboptimal behavior. In contrast, DSMC measures the expected
return by exploiting the learned policy completely without any added exploration applied. Note
that a proof for this hypothesis remains for future work.
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7.2 N-step Experiments

One objective of this thesis is not only to apply existing approaches to the problem of hard
instances of the QVBS, but also to improve on them. Although Description-based Q-learning
itself is a new algorithm, the thesis extends it to use n-step learning by providing three new
algorithms. Apart from testing their feasibility, the potential advantage in sample efficiency is
tested while their usefulness in regard to training time is examined by answering the following
two research questions:

Research Question 2.1 Does n-step learning increase sample efficiency?

Research Question 2.2 Does n-step learning lead to faster learning with regard to training
time?

In this section, the n-step experiments with a fixed number of episodes for training are evaluated
to test whether sample efficiency increases with higher n-steps (RQ 2.1). Next, the experiments
with a timeout are evaluated to check if n-step agents can learn faster than their 1-step counter-
part or if the 1-step base agents are more suitable for training in a time-constraint setting. For
both experiment sets, first DSMC evaluation is used for the analysis and then the extracted
training returns are used. Finally, additional insights into the time efficiency and affects of
the n-step parameter are presented using the timer data gathered during training of all n-step
agents.

7.2.1 Sample Efficiency

Recall that DBQLnDP and DBQLnM are trained on Cdrive and Racetrack for 10, 000 episodes
with n-steps 1, 2 and 3 to test the sample efficiency gain of the algorithms related to the n-step
parameter. Further recall that sample efficiency increases if an agent learns better policies than
another agent given a fixed amount of episodes to train. Additionally, we say that sample
efficiency increases if the policy of an agent converges faster than the policy of another agent.
Similar to the exploration experiments, the DSMC plots using expected return as measurement
and using GRP correlate well together, which is why the GRP plots can be found in the
appendix and are only referenced here for the interested reader. Every insight gained using the
DSMC plots with the expected return criterion can also be gained by analyzing the GRP plots.
While the interested reader can verify this, this section is much more readable if the GRP plots
are not shown here.

Figure 7.7 plots the DSMC evaluation using the expected return criterion for the fixed episode
experiments on both Racetrack and Cdrive for each n-step and agent. Since for each agent
and n-step three experiments were made (one for each random seed), each data point shown in
the plot is the mean over the DSMC return evaluated for the corresponding policy of the three
experiments. Consequently, the plots show a mean performance of an agent for the specified
n-step on each environment. The corresponding GRP plots are shown in Figure 9.5 in the
appendix.

Looking at DBQLnDP on Racetrack, the policies for all n-steps converge and the policies with
a higher n-step converge faster. Thus for the DP agent on Racetrack, sample efficiency in-
creases. For the matrix agent on Racetrack, the policies do not converge within the trained
10, 000 episodes. However, with increasing n-step learning improves for the first 3000 episodes
which indicates that sample efficiency also increases for the matrix agent. On Cdrive, learning
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Figure 7.7: Mean expected return of both n-step agents plotted by n-step and environment, estimated
using DSMC on the extracted policies.

improves for each agent with increasing n-step. While learning improves nearly strictly for the
DP agent except at the very end of training between n-step one and two, training improves only
partially for the matrix agent because for n-step two the agent is not performing better than
the 1-step matrix agent between episodes 3000 and 6000. That said, the experiments confirm
that sample efficiency does increase with higher n-steps for both agents, thereby confirming
research question RQ 2.1.

An interesting observation is that DBQLnDP learns better policies than DBQLnM on Cdrive,
while the opposite is true for Racetrack. It seems rather surprising that the DP agent’s policies
converge to zero because the agent has found policies with a higher expected return at the start
of training. In addition, the DQN agent of MoGym seems to be able to learn better policies and
DBQL is thought to be an extension of DQN. This could indicate that DBQL does not always
outperform DQN. A precise answer to this is difficult because the experiments of this thesis do
not use the same random seeds and the exact same ε-greedy parameters as in MoGym. Further
investigations are needed to support this claim, which is outside the scope of this thesis and
its research aims. Apart from answering research question RQ 2.1, the experiments show that
both proposed n-step agents are able to learn, which is especially interesting for the matrix
agent because the target update does not follow the Bellman equations and a proof that the
agent can converge to optimal policies is not given. However, at least on Racetrack the agent
can find seemingly optimal policies, e.g. after about 5000 episodes of training with n-step three.

Figure 7.8 plots the returns received by the agents during training for each agent on each
environment for every n-step. For each experiment a sliding mean is applied to the training
returns first to account for high variance. The plots show the average return over all three
seeds for each episode. This is done by taking the mean return for each corresponding return
of every seed by episode. Looking at the results on the plots for Racetrack first, the mean
training return converges faster the higher the n-step for both agents. This confirms the results
of the DSMC evaluation and thus we say that on Racetrack sample efficiency increases, noting
that the effect is more noticeable for the DP agent. On Cdrive, tendency of increased sample
efficiency with higher n-steps can also be observed. However, for the DP agent learning improves
only partially. For the Matrix agent, the policies seem to converge to different levels but it is
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Figure 7.8: Average training return of both n-step agents on both Cdrive and Racetrack plotted for
every n-step for fixed episode experiments. The returns are averaged over the random seeds.

uncertain if the policies converge to the same level when trained for more episodes. All in all
the training return plots seem to correlate well with the DSMC plots but the same issue as
noticed for the exploration experiments can be seen: the training returns converge to lower
limits in the training plots compared to the DSMC plots. Again, the difference is likely due to
the agent being forced to keep exploring during training while for DSMC the learned policies
are exploited fully. To summarize, the training returns support the findings using DSMC that
sample efficiency increases with higher n-steps in general.

7.2.2 Time Efficiency

To test whether timeout efficiency increases or decreases for the proposed n-step agents, exper-
iments on Cdrive and Racetrack were made where the agents could train for a fixed amount of
time instead of a fixed amount of episodes. Recall that we say that time efficiency increases
if an agent learns better policies than another agent given a fixed amount of time. Research
question RQ 2.2 is confirmed if time efficiency increases. If the aim is to learn good policies
as fast as possible, increasing sample efficiency is only beneficial if the benefit of needing fewer
episodes to train on to achieve policies of the same quality is not mitigated by the increase in
training time needed to train a single episode. By answering RQ 2.2, we aim to reason about
this trade-off and provide advice when to use the newly introduced n-step agents. In an optimal
case, higher n-steps should not only induce a higher sample efficiency but also a higher time
efficiency.
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Figure 7.9: Mean expected return of both n-step agents plotted by n-step on Racetrack, estimated
using DSMC on the extracted policies. The agents trained for a fixed amount of time.

Figure 7.10: Mean expected return of both n-step agents plotted by n-step on Cdrive, estimated using
DSMC on the extracted policies. The agents trained for a fixed amount of time.
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Figure 7.9 depicts the expected return, estimated using DSMC, for the extracted policies for
each n-step, grouped by agent and on Racetrack. The corresponding plots for Cdrive are shown
in Figure 7.10. The plots are split into two figures because a different timeout was used for the
environments. For Racetrack, learning does not generally improve for both agents. For the DP
agent, it seems that the 1-step variant has learned the best policies by the end of training, then
the 3-step agent follows and the worst policies where found by the 2-step agents. This pattern is
not the same for the matrix agents. Although the 1-step variant has learned good policies fast,
the 2-step agent has learned better policies at the end of training while the three-step agent
performs the worst by a large margin. A similar pattern applies to the DP agent on Cdrive,
where the 1-step agent is also learning the best policies fast but the 2-step agent can catch up at
the end of training. Again the 3-step agent performs worst. In contrast to this and in contrast
to the matrix agents trained on Racetrack, the matrix agent on Cdrive time efficiency increases
clearly with each n-step. Consequently, there is no general answer to research question RQ 2.2
as time efficiency might increase with each n-step on some benchmarks for the matrix agent
while on others it does not. The experiments suggest that for the DP agent, choosing the 1-step
agent seems to be the most time efficient, while for the matrix agent on Racetrack, the 1-step
agent is also a good choice until a certain training time threshold. It appears that the specific
timeout set also influences how to answer of RQ 2.2, again making a general answer difficult.

As mentioned above the DSMC plots using GRP as criteria correlate to the plots using the
expected return criteria and can be found in the appendix (Figure 9.6 and 9.7). Figure 7.11
and 7.12 plot the mean training returns for the agents on Racetrack and Cdrive, again averaging
over the random seeds for each n-step. The main observation is that the higher the n-step for
each agent the fewer episodes could be trained until the timeout was reached. This effect is
stronger for the DP agent as for the Matrix agent but it holds on both environments and for
both agents. On the same environment, the matrix agent can train for much more episodes
than the DP agent for the corresponding n-step. This is not surprising because the matrix agent
is designed to have faster target computations than the DP agent. Moreover, on Racetrack the
difference in episodes trained between each n-step seems to be bigger than for Cdrive for the
Matrix agent. The higher action-space dimension of Racetrack could be the cause of this and
will be investigated further in the next section where the available timer data is analyzed.
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Figure 7.11: Average training return of both n-step agents on Racetrack plotted for every n-step for
timeout experiments. The returns are averaged over the random seeds.

Figure 7.12: Average training return of both n-step agents on Cdrive plotted for every n-step for
timeout experiments. The returns are averaged over the random seeds.

7.2.3 Conclusion

The experiments confirmed that sample efficiency does increase with higher n-steps. Neverthe-
less, answering research question RQ 2.2 remains difficult and no general answer can be given as
learning does not generally improve with each higher n-step given a time-constraint. However,
the experiments suggest preferring the 1-step DP agent over its higher n-step counterparts if
sample efficiency is not as important as learning good policies as fast as possible. For the matrix
agent, the 1-step agent is either a good or the worst option and the same applies for the 3-step
matrix agent. If the matrix agent cannot be tested for each n-step on an environment, which
is advised due to the inconclusive results, we advise using the 2-step variant.
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7.3 Timer Data Analysis

In this section, the data gathered by multiple timers of the n-step agents is used to investigate
the impact of the added complexity of increasing n-steps to the learning process in regard to
training time. The aim of this is to get a better understanding of the differences between the
DP and the matrix agent and to infer when to use which n-step if training time is a limiting
factor. Note that the research questions are answered in the previous sections and that this
section just provides additional insights into the newly introduced n-step agents. If not stated
otherwise, all plots of this section are created only with the n-step experiments with a fixed
amount of training episodes. The reason for this is the usage of buffers in both agents which
affect the training time. In the timeout experiments buffers are not used to their full potential
which would affect the results of this section. The interested reader is referred to the appendix,
where this issue is outlined in more detail in Section 9.5.

Figure 7.13: Bar charts plotting the average execution time of both n-step agents for training on a
single episode, dependent on the n-step parameter and environment used.

On a high level, the difference of training time between both agents can be seen when looking
at the average time needed for each agent and n-step to train on a single episode. The barcharts
of Figure 7.13 show that the average time per episode is dependent on the environment. For
Cdrive, the DP agent using n-step three has the longest average execution per episode with
about 13 ms while the time for the same agent on Racetrack increases roughly by factor 100.
Apart from that, the added complexity by increasing the n-step parameter can clearly be seen
by the increase in execution time needed to train a single episode for the DP agent. On
Cdrive, the effect seems to be linear while on Racetrack the execution time follows a seemingly
exponential increase per n-step. In contrast, the execution time per episode for the matrix
agent on Cdrive seems unaffected by the n-step parameter. On Racetrack, a sudden increase is
noticeable from n-step two to three. The differences in the amount of episodes trained between
the matrix agent and the DP agent on each environment given the same timeout (which can
be seen in Figure 7.11 and 7.12) can be broken down to the execution time differences needed
for each agent to train a single episode. The less time is needed to train a single episode, the
more episodes can be trained until the timeout is reached. The matrix agent is faster for each
n-step in each environment and additionally the effect of higher n-steps is not as big as for the
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DP agent. Thus, it is able to train on more data than the DP agent. Note that training on
more episodes does not equal learning better policies. On Cdrive, while the 1-step DP agent
only trained on roughly a third of the episodes of all matrix agents, the DSMC evaluation (see
Figure 7.10) indicates that the better sample efficiency of DP still leads to the agent learning
better policies than the matrix agents. That said, the plots raise two questions which need
further investigations:

1. What is the main cause for the increasing execution time per n-step?

2. What is the cause for the sudden increase of matrix agent from step two to three?

Each agent constantly performs two high level steps while interacting with the environment for
each episode during training. First, the agent decides on an action to take based on its current
policy and environment observations, executes that action and observes the environment state
and reward. We refer to this as the acting parts of the algorithm. After that, the agent uses
its action decision and the gathered reward to update its policy. This part is very algorithm
specific and is referred to as the learning step in the following paragraphs and plots. Since
acting is the same for both the DP and the Matrix agent and independent of the choice of the
n-step parameter, the difference in execution time has to be caused in the learning step part of
the algorithms. For this analysis it suffices to provide evidence of the claim that the time for
acting is independent of the agent and n-step used. This can be seen in Figure 7.14. Note that
on Racetrack, while there are differences for the matrix agent and n-steps, the differences can
be neglected as the times vary only at most 2 ms which does not affect the overall execution
time. By looking at Figure 7.13, the episode time for the matrix agent on Racetrack increases
slightly from n-step one to two, while the average acting time decreases. Thus, the main cause
of the time differences must be in the algorithm specific learning part.

Figure 7.14: Bar charts plotting the average execution time of both n-step agents for choosing an
action and interacting with the environment dependent on the n-step parameter and environment
used.
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A learning step includes updating any buffers and the replay memory, as well as training the
policy network by computing targets, performing backpropagation and soft-updating target
networks. The time for anything related to learning should increase for higher n-steps, as the
target computation gets more complex for both agents. Figure 7.15 plots the average time
spend for a learning step for each n-step agent for each environment. The time differences
between the n-steps for each agent correlate well with the time differences for each episode
shown in Figure 7.13. Again, the step times for the matrix agents are much lower than for the
DP agent. To understand this, the learning step is broken down into comparable parts for both
agents.

Figure 7.15: Bar charts plotting the average execution time of both n-step agents for agent specific
learning steps, dependent on the n-step parameter and environment used.

Recall from Chapter 4 that each n-step agent computes a n-step target which is used to update
the current policy by minimizing a loss function. One crucial difference between the n-step
agents presented is the way this target is computed. Thus, the differences in execution time are
likely caused by the target computation and the policy update. Figure 7.16 and 7.17 illustrate
the time for learning, including the target computation, backpropagation and soft-updating
the target networks for both agents on either Racetrack and Cdrive. The DP agent spends
a significant amount of time in the learning procedure while the time spend by the matrix
agent is negligible small. Note that the average learning time for DP is even higher than the
corresponding average episode time. This is possible because both agents learn only every few
episodes. However, for DP learning times per n-step seem to correlate well with the episode
times, showing the same pattern on both environments. For the matrix agent, this is not the
case as the learning time on Racetrack for the 3-step agent does not increase in contrast to the
episode times (see Figure 7.13).

This is due to the difference in the way both agents compute their targets. The DP agent
computes targets during learning by building a whole search tree with depth n and then traverses
it recursively to compute a target. The deeper the tree (higher n-step) the more complex this
operation and the more time is needed to compute the targets. This is done whenever the policy
is updated, which is every few steps. In contrast, the Matrix agents target computation is rather
easy by design, as it samples “the search-tree” from its buffer as a matrix of transitions of size
n. It then just has to perform a simple max operation. The advantage of sampling transitions
from a buffer is that sampling during learning is fast, especially as learning involves computing
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Figure 7.16: Bar charts plotting the average execution time of both n-step agents on Racetrack for
target computation, backpropagation and soft-updating the target networks.

Figure 7.17: Bar charts plotting the average execution time of both n-step agents on Cdrive for target
computation, backpropagation and soft-updating the target networks.
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multiple targets. However, the transition matrices have to be computed outside the learning
process in every single step. Although in every step only one transition matrix is build and
saved to a buffer, this remains the most expensive operation. Since the most expensive part
of the target computation for the matrix agent is outsourced from the learning process, it
makes sense to compare the time needed for the target computation of the DP agent shown
in Figure 7.18 with the time needed for building the n-transition matrices of the matrix agent
shown in Figure 7.19.

Figure 7.18: Bar chart plotting the average execution time of DP agent for target computation,
dependent on n-step and environment used.

Figure 7.19: Bar chart plotting the average execution time of matrix agent needed to build the n-
transition matrix in every step, dependent on n-step and environment used.

Note that the time needed for building the transition matrix correlates well to the episode time
increase per n-step. While we established that the main cause for increased execution time
is the target computation for the DP agent and the transition matrix building for the matrix
agent, it remains unclear why the episode times for the latter on Racetrack with n-step three
spikes while this is not the case on Cdrive. One possible explanation for this could be caching.
Both agents make use of caches to speed up training. While the DP agent reduces forward
passes of the policy network during search tree traversal by reusing already existing target
estimations, the matrix agent uses a cache in order to eliminate the need to constantly re-
compute the n-transition matrix when revisiting already seen states. Both buffers are referred
to as v-buffer and its usage for each agent on each environment for each n-step is plotted in

61



CHAPTER 7: RESULTS AND EVALUATION

Figure 7.20. Notice that the usage is only dependent on the environment and independent of
the n-step parameter. Concluding, while the caches are important for the training speed-up,
they cannot explain why the matrix agent’s average training time for a single episode spikes on
Racetrack with n-step three. This question is thus left for future work.

Figure 7.20: Average usage of the v-buffer used by both agents dependent on the agent, environment
and n-step used.

7.3.1 Conclusion

To summarize, for each agent the average time needed to train each episode increases with each
n-step. The effect is most noticeable for the DP agent which is much slower than the matrix
agent due to its need to build and recursively traverse search trees of depth n for the target
computation. The matrix agent, designed to have fast target computation due to loosening its
theoretical foundations, shows to be faster while still being able to learn. However, being able
to train faster does not generally induce that the matrix agent learns better policies, as the DP
agent seems more sample efficient.
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Chapter 8
Conclusion and Future Work

This chapter concludes the thesis by summarizing the most important findings in relation to
the research aims and questions. It shortly outlines what the thesis contributes to the deep
reinforcement learning community, discusses limitations of the study, and it finally provides
some recommendations for future research.

The thesis aimed to find (1) reasons why some benchmarks of the QVBS are not learnable
by the DQN agents like the one used in the paper introducing MoGym, thereby discovering
MoGym specific challenges, and (2) it aimed to provide the DRL community with agents and
solutions to overcome these challenges by improving on existing approaches. With the help
of the experiments, the thesis provides evidence in favor of confirming the hypothesis that the
main challenges for hard QVBS benchmarks loaded with MoGym are the action-space explosion,
which can occur when loading models using MoGym, and lack of sophisticated exploration.

Within this thesis the use of DBQL is proposed, a DQN variant which is less affected by the
action-space dimension and makes use of the special property of the environments created by
MoGym, namely the known transition function. The experiment results indicate that DBQL
with the same exploration technique used as a baseline DQN agent is capable of learning on
environments where DQN is not, highlighting the effectiveness of the approach and the sever-
ity of the action-space explosion problem. The experiments further suggest that exploration
remains an important challenge to solve, because multiple prominent exploration techniques in
conjunction with DBQL are tested on hard QVBS benchmarks but only the newly proposed
Stochastic Go-Explore framework enables learning on all tested environments. More specif-
ically, the thesis includes and tests exploration techniques which either make use of random
exploration (NoisyNet), intrinsic motivation (ICM, RND) or apply a planning like approach
(Stochastic Go-Explore).

The thesis fulfills its aim to improve on existing solutions by improving on the Go-Explore
framework with the newly introduced Stochastic Go-Explore technique, as well as improving
on DBQL to use n-step learning by providing three new n-step DBQL agents. The original Go-
Explore framework relies on the assumption that either the training environment used allows the
agent to reset to any specified state during training or allows temporarily disabling stochasticity
or alternatively, that a deterministic simulation environment is available for training. The
introduced Stochastic Go-Explore framework drops this requirement, providing a more versatile
framework which can be applied to a wider range of problems. The experiments indicate that
Stochastic Go-Explore is not only a feasible extension to the original framework, but it also
remains a very powerful exploration technique compared to the other ones tested. The newly
proposed n-step DQBL agents, DBQLnM , DBQLnDP and DBQLnS, aim to improve the sample
efficiency of the base agents. The study results confirm this for the agents except for DBQLnS,
where the experiments were dropped because the base agent was not able to learn on the
environments for the amount of episodes tested. While the feasibility of the n-step agents is
demonstrated, the agents might not be the best choice when training time is a limiting factor.

Due to the time constraints and scope of the thesis, there are several ideas which are left for
future work. With the main challenges of action-space explosion and need for sophisticated ex-
ploration known, the thesis has limited itself to DQN-like DRL architectures, or more broadly
to value-based DRL algorithms. The effect of these challenges on policy gradient DRL algo-
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rithms, when training on hard QVBS problems using MoGym, remains unaddressed for now.
Similarly, the proposed DBQL agents make use of the known transition function provided by
MoGym environments. While this enables planning on the real-model and is a fundamental
necessity for DBQL to be applicable, this is a rare feature in the world of DRL. Typically, DRL
is applied to black box environments. Thus, it would be interesting to apply DRL algorithms
successfully which do not abuse this advantage but are nevertheless designed to cope with high
state and action spaces. One idea is to train an AlphaZero agent or any model-based reinforce-
ment learning approaches which perform planning on a learned model and not the real one.
More research can also be done on the improvements proposed in this thesis. Since Stochastic
Go-Explore is shown to be a feasible and yet powerful derivation of the original framework, it
would be interesting to quantify the difference in effectiveness of the new approach in sparse
reward settings compared to the original Go-Explore framework and its existing alternatives,
e.g. policy-based Go-Explore and DTSIL. In terms of the matrix n-step agent DBQLnM , while
the experiments show that it can learn, its target computation is not following the Bellman
optimality equation. A proof that this agent can or cannot learn optimal policies, or a proof
that the matrix agent is guaranteed to learn optimal policies given some assumptions is not
provided here and remains an interesting question for future work.

To summarize, the thesis has highlighted the challenge of large action-spaces and exploration for
some instances of the QVBS loaded with MoGym and proposes to apply DBQL in conjunction
with sophisticated exploration techniques to make these instances learnable. Furthermore, the
thesis provides the DRL community with improvements of DBQL by proposing three new n-
step DBQL agents. These agents are shown to increase sample efficiency by increasing the
n-step parameter while this might also lead to higher, sometimes infeasible, training times. In
addition, a new variant of the exploration framework Go-Explore is proposed in this thesis which
is applicable to a wider range of DRL settings due to dropping some limiting assumptions of the
original framework. The study found evidence that this new Stochastic Go-Explore remains a
powerful exploration technique compared to all the other techniques tested. Concluding, the
thesis provides a basis to solve hard problems of the QVBS using value-based DRL algorithms
with the algorithms proposed. However, due to the limitations of the thesis, it remains for
future work how policy-gradient and model-based reinforcement learning methods perform on
the same tasks and if they face the same challenges.
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Appendix

9.1 Hyperparameters

The following hyperparameters where used for the experiments. These are the parameters which
resulted from tuning the hyperparameters. In addition, the random seeds 1, 2 and 3 where used
for each experiment to account for randomness and make the experiments replicable.

DQN/DBQL parameters

α
The learning rate for gradient descend
optimization

0.005

τ
The soft-update coefficient for target
networks

0.005

T Maximal step-length of an episode 100
γ Discount factor 0.99

Number of steps between learning 20
The replay buffer size 106

The batch size used for learning 25

Epsilon-Greedy parameters

εstart The start value of ε 1
εend The final value of ε 0.1

εdecay
The decay factor applied to ε after each
episode until εend is reached

0.999

ICM parameters

η
Factor which balances importance of policy
loss against ICM loss

1.0

β
Factor which balances importance of
forward module loss against inverse module
loss when computing ICM intrinsic reward

0.25

αforward Learning rate of the forward module in ICM 0.005
αinverse Learning rate of the inverse module in ICM 0.005

RND parameters

αRND
The learning rate used to distill the training
network to the random network

0.005
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Go-Explore parameters

(Stochastic) Go-Explore uses the same parameters for ICM or RND, dependent on what is used
as heuristic as the pure ICM and RND agents above.

exp bs The size of the exploration archive 105

exp st
Minimum amount of entries needed in
archive before agent starts to sample from
it.

50

exp icm
If set, ICM is used as heuristic, else RND is
used

-
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9.2 Discussion: Stochastic Go-Explore vs Existing Approaches

This thesis introduces Stochastic Go-Explore in an effort to address the research gap of the
original paper introducing the Go-Explore framework [22]. The originally proposed framework
required a deterministic environment during the exploration phase or the ability to disable
stochasticity or reset to a state for the return step of the exploration phase. This limits
the applicability of this powerful approach to environments which fulfill at least one of these
requirements. Stochastic Go-Explore drops these assumptions by accommodating for stochas-
ticity during the return step which allows directly training agents in purely stochastic environ-
ments. Thereby, the research community is provided with a more widely applicable version of
Go-Explore. However, we emphasize that other approaches emerged which address the same
problem. The Go-Explore authors published an algorithm called policy-based Go-Explore in
later revisions of their paper [39] and another team of researchers published an algorithm
called Diverse Trajectory-conditioned Self-Imitation Learning (DTSIL) [40]. We think that
our approach is still a valuable contribution to the DRL community despite this because it
uses fundamentally different concepts and consequently might be easier to implement. In the
following sections, both policy-based Go-Explore and DTSIL are outlined and the differences
to Stochastic Go-Explore are highlighted. For an in-depth explanation of both algorithms we
refer the interested reader to the original papers. First, the main problem with the return
step of Go-Explore in stochastic environments is outlined. Then, an outline of policy-based
Go-Explore is given which specifies how this algorithm addresses these issues as well as a short
high-level overview of the algorithm concepts. The same is done for DTSIL and finally a short
summary of the discussion is given.

Returning with Stochasticity

In a deterministic environment returning to a state sampled from the archive is easier because
it suffices to apply the same actions which have lead to the discovery of the state. Thus, the
set of actions is stored alongside the state in the archive. In a stochastic setting, applying a
stored action might lead to the agent derailing from its path to the sampled state s.t. the agent
cannot reach the interesting state. This violates the basic concept of Go-Explore which tries
to mitigate derailment to keep exploring interesting frontiers.

Recall that in Stochastic Go-Explore the issue is addressed by storing a trajectory of states
and actions instead of just actions. This allows the agent to check if it is still on the correct
path after every step taken in the environment. If the agent has derailed from the trajectory
it is supposed to imitate, the return phase is ended and the agent can start exploring from
there on. While this does not solve the derailment problem it acknowledges its existence by
applying a best effort strategy. The intuition is that derailment is bound to happen in stochastic
environments, which is why it is useful to explore the state-space around the best trajectories
found and consequently to learn a robust policy which can use the gathered data to learn what
to do in these situations. This is possible because Stochastic Go-Explore trains a policy while
exploring and returning. In contrast, the original framework delayed training a policy to the
robustification phase using self-imitation learning which essentially follows the same principle:
training a DRL agent to imitate the trajectory in a stochastic setting to learn how to react
once derailment occurs.
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Policy-based Go-Explore

In policy-based Go-Explore the problem of derailment during the return phase is also ad-
dressed with a best-effort method. However, while the Stochastic Go-Explore agent immediately
switches to the exploration phase when a derailment is noticed, the policy-based Go-Explore
agent first tries to get back to any state on the trajectory it is supposed to follow which would
allow it to potentially reach the interesting state anyway. To do this, the archive now also pro-
vides a trajectory of states and actions instead of only actions to allow the agent to recognize
derailment. The agent then learns a goal-conditioned policy πθ(a|s, g) where a is an action
available in the current state s and g is a goal state the agent is supposed to reach. While the
goal-state could just be the sampled state from the archive which the agent should return to,
this can be problematic if this state is far away from the current position [39]. Instead, the
agent follows the stored trajectory by setting every state in the trajectory as a subgoal. If it
reaches a subgoal or any other successor state of the subgoal state of the trajectory, it sets
the immediate successor state as a new subgoal until the sampled interesting state is reached.
Every time a goal is reached, the agent receives a small positive reward which encourages the
agent to get back on the trajectory it is supposed to follow. The authors call this process of
roughly following a trajectory, even if derailment occurs, following a soft-trajectory [39].

However, sometimes it is not possible for an agent to reach the specified goal either because
there is no path back to the trajectory or because the policy needs more training. To prevent
agents from getting stuck endlessly roaming the environment, the agents eventually start the
exploration step by aborting the return phase if no progress was made for a specified number of
steps. Thus, this approach can also be considered a best effort method. Once the exploration
phase starts, the agent starts exploring randomly with 50% probability or else it chooses an
exploration which goal it tries to reach by using its policy. If the agent has reached this goal
and continues to find new states another exploration goal is chosen.

While goal-conditioned policies have the advantage that an agent can recover from derailment
instead of just giving up the return phase immediately, it also introduces overhead. The agent
must keep track of the goals for each sampled state during training of the policy and it must
choose goals during exploration to use the policy in the exploration phase which is not straight
forward. Additionally, there must be a notion of progress to decide whether returning still
failed despite the goal-conditioned policy and the reward for reaching a goal or subgoal must
be chosen carefully as this introduces some form of intrinsic reward. This is interesting as
the original paper criticized intrinsic reward to lead to detachement and derailment. Another
important change compared to Stochastic Go-Explore is that the agent still needs to rely on
stored trajectories found during training to execute the trained policy during evaluation because
the policy needs to be conditioned on (sub)goals.

Another major difference between policy-based Go-Explore and Stochastic Go-Explore is the
use of a self-imitation learning (SIL) loss during training which should not be confused with
the self-imitation learning algorithm used in the robustification phase. To train the goal-
conditioned policy, e.g. for a DQN agent, the agent samples from a replay-buffer random
trajectories ((s, g), a, r, (s′, g′)) to calculate the policy loss

Lpolicy(θi) = Eθi [((r + γ max
a′

Q′θ(a
′, s′, g′)−Qθ(a, s, g))2]

by computing a target using the current version of both the target and the policy network,
where θ are the parameters of the q-function approximator and θ′ are the target network
parameters. Note that we insert both the state and the goal to the q-function since we use
a goal-conditioned policy. Since the agents are trained to follow the best trajectories found,
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additionally the agents sample a few of the best trajectories and compute the SIL loss. Given
a sampled trajectory [((s0, g0), a0, r0, s1), ..., ((sT , gT ), aT , rT , sT+1)], the SIL loss

Lsil(θi) =
1

2

T−1∑
t=0

‖ Gt+1 −Qθi(at, st, gt) ‖2,

is the MSE of the known discounted return and the estimation of the estimator at each time
step of the trajectory [52]. Note that the policy-based Go-Explore paper [39] uses proximal
policy optimization (PPO) [53] instead of DQN, but SIL can be extended to q-value based
algorithms [52]. The agent then optimizes for a combined policy and SIL loss with the ability
to weigh the importance of both terms using hyperparameters. The Stochastic Go-Explore
algorithm, which is introduced in this thesis, does not include a SIL loss which further re-
duces the algorithm’s complexity compared to policy-based Go-Explore (and DTSIL) while
still remaining a powerful alternative as shown by the experiment results.

Other distinctions to Stochastic Go-Explore include the heuristic used for sampling states from
the archive, as the policy-based Go-Explore algorithm proposed uses count-based exploration
while our agent uses ICM or RND as a heuristic. Note that this can also be used for policy-
based Go-Explore though and seems to be a design choice of the authors [39]. Furthermore,
policy-based Go-Explore follows a batch learning patterns where multiple agents gather data
to train a single policy. While this is not required, Stochastic Go-Explore is designed for a
single-agent use, although it can be extended to use a batch learning pattern.

DTSIL

The DTSIL algorithm [40] uses the same basic concepts as policy-based Go-Explore because
it also uses a goal-conditioned policy, computes a self-imitation learning loss (SIL loss) and
makes use of soft-trajectories. Due to their similarities, the authors of policy-based Go-Explore
included a discussion of the differences between both approaches [39]. One key difference is
the use of a sequence-to-sequence model with an attention mechanism to represent the policy.
Instead of single goal-states, the policy πθ(at|e≤t , ot, g) is conditioned on a vector of state-
embeddings e≤t = {e1, ..., et} for the states seen so far, the current observation ot and a vector of
goal state-embeddings g = {eg1, ..., e

g
|g|} which is the soft-trajectory the agent should follow [40].

Note that |g| is the length of the trajectory g and the policy is also denoted as goal-conditioned
policy πθ(·|g) [40]. By having access to e≤t and g the model is able to determine which part of
the demonstration was successfully followed and can choose actions accordingly. The goal of
the agent is to find the optimal state-embedding sequences g∗ and the optimal policy πθ∗(·|g)

which maximizes the discounted return, i.e. θ∗ = max
g,θ

Eπθ(·|g)[
∑T

t=0 γ
trt] [40].

Since trajectories are followed softly, the archive is filled with a diverse set of trajectories
the agent can learn from which explore the space around promising trajectories. The main
idea remains the same between Stochastic Go-Explore, policy-based Go-Explore and DTSIL.
Figure 9.1 from the DTSIL paper [40] is a high-level overview of the algorithm. However, just
like for policy-based Go-Explore the introduction of goal-conditioned policies, a self-imitation
learning loss and the usage of a sequence-to-sequence model using an attention mechanism
makes these alternatives more complex than Stochastic Go-Explore.
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Figure 9.1: Overview of DTSIL as shown in the DTSIL paper [40].

Summary

While policy-based Go-Explore, DTSIL and Stochastic Go-Explore all try to deal with stochas-
ticity during the return step by applying a best-effort approach, the algorithms vary in the
concepts used to do this. Both policy-based Go-Explore and DTSIL use a goal-conditioned
policy in combination with soft-trajectories and add a SIL loss in addition to the DRL agents
policy loss. Stochastic Go-Explore does not rely on any of these techniques resulting in less
state-keeping and complexity overhead. The intuition, that learning from trajectories result-
ing from derailment of the promising trajectory is useful, is the same for all three algorithms.
However, policy-based Go-Explore and DTSIL agents put more effort in trying to imitate the
trajectory closely even with derailment. In contrast, the Stochastic Go-Explore agent always
ends its imitation efforts as soon as derailment occurs. The performance difference of the agents
on hard exploration environments is left for future work. Because Stochastic Go-Explore could
train successfully on all training environments of the thesis we conclude that our approach is
a powerful exploration technique despite its simpler structure than the here presented alterna-
tives. Due to this, we think that the reduced complexity might make it easier to deploy on hard
problems and thus provides an interesting alternative to policy-based Go-Explore and DTSIL.
In addition, Stochastic Go-Explore relies on fewer hyperparameters than the other two variants
which is beneficial for hyperparameter tuning.
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9.3 DSMC Exploration Plots using GRP

The following plots serve as additional material to Section 7.1.1 and illustrate the mean goal-
reaching probability (GRP) for each agent used in the exploration experiments for each agent on
a specific environment. Note that these plots have a corresponding plot in Section 7.1.1 where
expected return is used as DSMC criterion. The plots show the same results, s.t. often the only
visible difference is the y-axis scale which indicates a high correlation between both GRP and
expected return criteria for these specific experiments with the specific reward function used.

Figure 9.2: DSMC evaluation of experiments on Elevators using GRP as criterion.
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Figure 9.3: DSMC evaluation of experiments on Firewire using GRP as criterion.
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Figure 9.4: DSMC evaluation of experiments on Blocksworld using GRP as criterion.
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9.4 DSMC N-step Plots using GRP

The following plots serve as additional material to Section 7.2.1 and plot the mean goal-reaching
probability (GRP) for each agent used in the sample efficiency experiments for each agent for
each n-step. Note that these plots have a corresponding plot in Section 7.2.1 where expected
return is used as DSMC criterion. The plots show the same results, s.t. often the only visible
difference is the y-axis scale which indicates a high correlation between both GRP and expected
return criteria for these specific experiments with the specific reward function used.

Figure 9.5: Mean goal-reaching probability of both n-step agents plotted by n-step on Racetrack and
Cdrive, estimated using DSMC on the extracted policies. The agents trained for a fixed amount of
time.

Figure 9.6: Mean goal-reaching probability of both n-step agents plotted by n-step on Racetrack,
estimated using DSMC on the extracted policies. The agents trained for a fixed amount of time.
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Figure 9.7: Mean goal-reaching probability of both n-step agents plotted by n-step on Cdrive, esti-
mated using DSMC on the extracted policies. The agents trained for a fixed amount of time.
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9.5 Timeout Data vs Non-Timeout Data

In Section 7.3, only the timer data from n-step experiments with a fixed amount of episodes to
train on is used. The reason for this is that for the timeout experiments, the caches used by the
agents cannot develop their full efficiency. Thus, including the data of these experiments would
skew the results of the plots in a negative direction. To demonstrate this, compare the plots
of Figure 9.8a which shows the average time for the agents for acting with the environment
including the timeout experiment data to the plots of Figure 9.8b, which excludes the timeout
experiment data. Due to the caches not being filled enough, the execution times including the
timeout experiments are higher on average.

(a) Data excludes timeout experiments. (b) Data includes timeout experiments.

Figure 9.8: Bar charts plotting the average execution time of both n-step agents for choosing an action
and interacting with the environment dependent on the n-step parameter and environment used.
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