
Saarland University

Bachelor’s Thesis

DSMC Evaluation Stages with Restart

Submitted by:

Nicola J. Müller

Submitted on:

October 31, 2022

Supervisors:

Univ.-Prof. Dr. Verena Wolf

Univ.-Prof. Dr. Jörg Hoffmann

Advisor:

M.Sc. Timo P. Gros

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die
Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken, October 31, 2022

Nicola J. Müller

Abstract

Deep reinforcement learning (DRL) increasingly enables the automation of sequential
decision-making problems encountered in numerous real-world tasks. Despite their
many successes, applications of DRL often accept the possibility of agents learning risky
behavior in favor of feasible training time. This safety negligence limits the applicability
of DRL. A remedy to this dilemma is the utilization of DSMC evaluation stages, which
focus the DRL agent’s training on challenging state space regions while preserving
adequate training time. However, the benefit of applying DSMC evaluation stages
depends on how the given task’s initial states are distributed across the state space.
This thesis aims to address this limitation by extending DSMC evaluation stages to
collect additional starting states throughout the training, which we call pseudo initial
states. The resulting algorithms DSMC evaluation stages with restart dynamically
regulate the utilization of pseudo initial states, such that they improve the agent’s
performance. Our experiments demonstrate that DSMC evaluation stages with restart
can focus the training on beneficial state space regions, allowing agents to achieve high
performance regarding safety metrics in the original task and when starting in various
states throughout the state space.

iii

Acknowledgments

I would like to thank Prof. Dr. Verena Wolf and Prof. Dr. Jörg Hoffmann for providing
this exciting topic, for their supervision, and for reviewing this thesis. Furthermore,
I thank my advisor Timo P. Gros for his guidance and feedback during all steps of
conceptualizing and writing this thesis. My deepest thanks go to my friends and family
who supported and motivated me throughout the last 3 years.

v

Contents

1. Introduction 1

2. Background 3
2.1. Sequential Decision-making Problems 3
2.2. Markov Decision Processes . 4
2.3. The Reinforcement Learning Framework 5
2.4. The Racetrack Benchmark . 7

3. Reinforcement Learning Algorithms 11
3.1. Value-based Algorithms . 11
3.2. Deep Reinforcement Learning . 15
3.3. Policy-gradient Algorithms . 20

4. DSMC Evaluation Stages 25
4.1. Safe Reinforcement Learning . 25
4.2. Deep Statistical Model Checking . 26
4.3. DSMC Evaluation Stages . 28

4.3.1. Evaluation-based Initial Distribution 29
4.3.2. Evaluation-based Prioritized Replay 31

5. DSMC Evaluation Stages with Restart 35
5.1. Limitations of DSMC Evaluation Stages 35
5.2. Pseudo Initial States . 36
5.3. Pseudo Initial State Selection Strategies 42

5.3.1. Random Strategy . 42
5.3.2. Crash Strategy . 43
5.3.3. Value Strategy . 44
5.3.4. Novelty Strategy . 45

5.4. Application to Racetrack . 46

6. Results 49
6.1. EIDP

G and EPRP
G Results . 49

6.2. EIDP
R and EPRP

R Results . 58
6.3. PPO as the Basis of EIDP

G . 67
6.4. Using the Single Cell Limit . 75
6.5. Summary . 79

7. Related Work 81

8. Conclusion 85
8.1. Future Work . 86

vii

Contents

Appendices 93

A. Appendix 93
A.1. Hyperparameters . 93
A.2. Configurations of the Best-performing Agents 95

viii

1. Introduction

Various applications of artificial intelligence require repeatedly making decisions where
each may influence future situations, so-called sequential decision-making problems. For
instance, an autonomous car will need to assess with every driving action whether it
will later be able to stay on the road or avoid obstacles. Reinforcement learning (RL) is
concerned with developing algorithms that solve sequential decision-making problems,
making it a focal point of current innovation and research [8, 10, 25, 29].

The RL framework models sequential decision-making problems as Markov decision
processes (MDP), called environments, in which an agent uses a policy π to execute
actions that influence the environment’s state. For each action taken, the agent receives
a reward, which is a numerical feedback signal of the action’s quality. The agent’s
objective is to learn an optimal policy π∗ that allows it to take actions that maximize
the accumulated rewards, called the return.

Value-based RL algorithms like Q-learning [34] attempt to solve sequential decision-
making problems by learning for every possible state-action pair (st, at) an approximation
of the return that can be earned when taking the action at in the state st, called the
Q-value Q(st, at). These algorithms then construct a policy π that returns the action
with the highest Q-value for each state. However, learning the Q-values of all state-action
pairs becomes intractable when dealing with MDPs that have gigantic state spaces.
Thus, value-based deep reinforcement learning (DRL) algorithms like DQN [23] and
DQNPR [28] use deep neural networks (DNN) to learn a function that computes the
Q-values of any given state-action pair. Policy-gradient RL algorithms represent a
different approach to solving sequential decision-making problems since they try to
learn the parameters θ of a parameterized policy πθ instead of constructing a policy
from learned Q-values. Policy-gradient DRL algorithms like PPO [31] parameterize
their policies using a DNN.

In practice, sequential decision-making problems often involve critical situations in
which DRL agents must obey pre-defined safety constraints to ensure that damages
to objects and people are avoided. However, approaches that train DRL agents to
behave safely often fail to achieve satisfactory performance since they make the agent’s
objective too difficult to optimize [11]. Gros et al. developed a technique called DSMC
evaluation stages (DSMC ES) [16], which circumvents this challenge by keeping the
objective unaltered and instead focusing the training on state space regions where the
agent exhibits the most extensive safety deficiencies, which forces it to improve its
behavior. To do so, they partition the task’s initial states into a manageable number
of initial state regions, where the agent’s policy is regularly evaluated. The results are
then passed to an underlying training algorithm, and the training is focused on the
initial state regions with the poorest evaluation.

1

CHAPTER 1. INTRODUCTION

The original case studies of DSMC ES were run on the Racetrack [12] benchmark, where
the goal is to drive a car on a two-dimensional map from a starting point to a goal line
without hitting a wall. The car’s velocity defines in which direction and how far the car
will drive between successive time steps, and the agent can adjust the velocity at each
time step. The Racetrack benchmark is well suited for developing and evaluating DRL
algorithms since it can simulate various scenarios using different maps and allows for
insightful visualizations of the agent’s behavior [4, 14, 15, 16, 17].

The disadvantage of DSMC ES is that it requires the initial state regions to cover a
significant part of the state space. Otherwise, it may fail to focus the training on the
state space regions where the agent’s policy is most deficient. This thesis proposes to
make DSMC ES generally applicable by storing certain visited states, which we call
pseudo initial states, and using them to define additional initial state regions. This has
the consequence that a portion of the training episodes starts in pseudo initial states
instead of the task’s initial states, and therefore we call the resulting method DSMC
evaluation stages with restart (DSMC ESR). We will investigate selecting pseudo initial
states according to different properties, such that the training can be focused on the
state space regions where the agent can gather the most beneficial experiences. Another
crucial part of DSMC ESR is that it dynamically adjusts how often pseudo initial states
are utilized, such that the agent does not forget how to act when starting in the original
initial states.

In our experiments, DSMC ESR agents were trained to drive on three Racetrack maps
that vary in their challenges. DQN and PPO were used as the underlying training
algorithms for DSMC ESR. We examine on which map areas DSMC ESR focused the
training process and whether it could achieve higher safety performance than the DQN,
DQNPR, and PPO baselines.

2

2. Background

This chapter establishes the mathematical foundation of this thesis and introduces a
sequential decision-making problem called Racetrack.

2.1. Sequential Decision-making Problems

Sequential decision-making problems are characterized by the fact that every decision
made at a particular time step t can influence situations in future time steps t + k.
A multitude of real-life applications can be viewed as such problems, for instance,
autonomous driving [20]. Figure 2.1 shows a simplified version of autonomous driving
with two cars. The car at the top does not change its direction in the first time step,
making a collision with the cat inevitable in the third time step, whereas the car at the
bottom drives upwards, allowing it to later drive past the cat. Even though both cars
execute the same drive action in the second time step, only the car that drove in the
correct direction in the previous time step will be able to avoid a crash. This challenge
of needing to make decisions with foresight motivates the development of algorithms
that are specialized to solve sequential decision-making problems.

Figure 2.1 Two autonomous cars. The agents drive from left to right and may
either steer upwards, downwards or not at all. The goal is to avoid crashing
into a cat.

3

CHAPTER 2. BACKGROUND

2.2. Markov Decision Processes

Markov decision processes (MDP) are mathematical constructs that can be used to
model sequential decision-making problems.

Definition 2.1 (Markov Decision Process [16]). Finite Markov decision processes are
defined as tuples M = ⟨S,A, T , µ⟩, where S is the set of states s, A is the set of actions
a, T is the transition probability function, and µ is the initial state distribution.

The states s ∈ S model the different instances of the corresponding sequential decision-
making problem, where the initial instances are represented by the initial states s0, which
are sampled from the initial state distribution µ ∈ D(S). We will refer to the set of initial
states as I = {s ∈ S|µ(s) > 0}. Furthermore, a subset of states s ∈ S are terminal
states from which no transitions to other states are possible. Thus, they represent the
end of the sequential decision-making process, which is reached either by solving the
problem or by failing to find a solution. The actions a ∈ A represent the decisions that
must be made at each time step t. To model the effects of making decisions, we use the
partial transition probability function T : S × A ⇀ D(S), which given a state-action
pair (st, at) allows us to sample from a probability distribution over the states D(S) the
successor state st+1. For every state st the applicable actions at ∈ A(st) ⊂ A correspond
to the actions for which T (st, at) is defined. Additionally, we define for an MDP M a
reward function r : S × A × S → R that maps state transitions st −→

at
st+1 to rewards

rt+1, which are numerical values that specify the quality of the state transition with
respect to the goal of solving the sequential decision-making problem.

Since we only require the current state st and an action at to compute the next state
st+1 using T , we can follow that states encountered before the time step t do not affect
the state transition st −→

at
st+1. This feature is called the Markov property.

To decide which actions to take in each state, we use a policy π.

Definition 2.2 (Deterministic Policy [32]). A deterministic (history-independent) policy
π is a function π : S → A that, given a state st, returns an applicable action at ∈ A(st).

Figure 2.2 shows how we can model a simple sequential decision-making problem as a
finite MDP, by visualizing the MDP as a graph consisting of state and action nodes. The
outgoing edges of state nodes are connected to action nodes, representing the applicable
actions at ∈ A(st) in the corresponding state st. From these action nodes, outgoing
edges to other state nodes represent the possible state transitions st −→

at
st+1 caused by

executing the respective action at. Each edge is annotated with the earned reward rt+1
and, in the case of probabilistic state transitions, with the transition probability.

4

2.3. THE REINFORCEMENT LEARNING FRAMEWORK

Figure 2.2 Part of an MDP’s graph. In this exemplary task, the car may either
drive to the left or the right. Both drive actions will fail with a probability
of 10%.

2.3. The Reinforcement Learning Framework

The objective of RL is to train an entity, called the agent, to solve a given task
corresponding to a sequential decision-making problem. The task is formalized as an
MDP, called the environment, in which the agent starts in an initial state s0 ∈ I and
has to find a sequence of state transitions st −→

at
st+1 that earns a high accumulated

reward, also called the return

Gt =
T∑

k=t+1
Rk,

which corresponds to solving the task. Figure 2.3 depicts how we can realize this process
as an iterative agent-environment interaction. Based on the environment’s current state
st, the agent queries an action at = π(st) from its policy π and executes it, which causes
the environment to change its state. Afterward, the agent receives a new observation
(st+1, rt+1) from the environment, which contains the new state st+1 and the reward
rt+1 earned for executing the previous action at. This process then repeats until the
agent reaches a terminal state, and the resulting sequence of states, actions, and rewards
is called an episode. We conclude that to solve the task as well as possible, the agent
needs to learn an optimal policy π∗, which enables it to take actions at that earn a
maximum return Gt.

For every action they take, RL agents need to assess which future rewards it will enable
since any decision made in a sequential decision-making problem can have long-lasting
effects. However, we might want to reduce the importance of future rewards and put
more weight on rewards earned in immediate time steps. To do so, we introduce the

5

CHAPTER 2. BACKGROUND

Figure 2.3 Agent-environment interaction.

discount factor γ into our definition of the return, giving us

Gt =
T∑

k=t+1
γk−t−1Rk.

Because γk−t−1 gets smaller the larger k gets, rewards earned at later time steps will
contribute less to the return Gt than rewards earned earlier. This effect increases the
smaller we choose γ. Therefore, we can use γ to trade-off the importance of immediate
and future rewards.

To evaluate an agent’s expected return in a given state st, we can use a state-value
function vπ(st).

Definition 2.3 (State-value Function [32]). The state-value function

vπ(s) = Eπ

[∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s

]
, for all s ∈ S,

is a function vπ : S → R that computes the expected return when starting in the state s
and then following the policy π. vπ(st) is called the state-value of st.

Alternatively, we can evaluate an agent’s expected return for a given state-action pair
(st, at) using an action-value function qπ(st, at).

6

2.4. THE RACETRACK BENCHMARK

Definition 2.4 (Action-value Function [32]). The action-value function

qπ(s, a) = Eπ

[∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s,At = a

]
, for all s ∈ S, a ∈ A,

is a function qπ : S × A → R that computes the expected return when starting in the
state s, taking the action a and then following the policy π. qπ(st, at) is called the
action-value or q-value of (st, at).

The advantage of utilizing an action-value function qπ is that it indicates whether taking
an action a in a state st leads to a higher return Gt than following our current policy
π, allowing adjustments. For an optimal policy π∗, we can define the corresponding
state-value and action-value functions as the optimal state-value function

v∗(s) = max
π

vπ(s),

and the optimal action-value function

q∗(s, a) = max
π

qπ(s, a).

2.4. The Racetrack Benchmark

Racetrack is a commonly used benchmark in the RL community [4, 14, 15, 16, 17, 32]
that has originally been conceptualized as a pen and paper game [12]. The agent drives
on two-dimensional maps consisting of driveable free cells and cells hosting walls, an
example of which can be seen in Figure 2.4. Additionally, each map has a predefined
starting and goal line. Depending on the setting, each game may either start with equal
probability on any cell of the starting line or any free map cell (random restart setting).
The goal is then to drive to a cell located on a goal line without hitting a wall or taking
too many steps.

In the following, we will formalize Racetrack as an MDP such that we can apply RL
to it. The states s ∈ S in Racetrack consist of the agent’s coordinates c = (x, y), its
velocity v = (vx, vy), and the distances to the nearest goal lines, and walls. Note that
the coordinates and the current map determine the latter. The velocity represents a
two-dimensional vector that defines the direction and distance the agent will travel
between two consecutive time steps t and t+ 1. So given the current coordinates ct and
the new velocity vt+1, the agent’s new coordinates ct+1 are computed by

ct+1 = (xt + vxt+1, yt + vyt+1).

The actions a ∈ A in Racetrack correspond to accelerating in any of 8 directions by at

7

CHAPTER 2. BACKGROUND

most one unit. Thus, at each time step, the agent chooses an acceleration

at = (axt, ayt) ∈ {−1, 0, 1}2 ,

which results in the new velocity

vt+1 = (vxt + axt, vyt + ayt).

Furthermore, every action has a small probability of not affecting the velocity, in which
case the acceleration is at = (0, 0). This simulates slippery road conditions and allows
for adjusting the task’s difficulty by changing this noise probability.

Note that in Figure 2.4 the agent’s transitions between coordinates are defined by
two-dimensional vectors in N2 of variable length and direction, whereas the map consists
of quadratic cells of the same size. This means each transition can cross several cells

Figure 2.4 Transitions of an agent on the Barto-small map. The agent begins
on the starting line (purple) and successfully drives to the goal line (green).

arbitrarily, making it difficult to recognize when the agent enters a cell hosting a wall or
a cell of a goal line. Therefore, after every transition from coordinates ct to ct+1, we
compute a discretized trajectory

T = ⟨(x, y), (x1, y1), (x2, y2), ..., (xk, yk)⟩

of crossed cell coordinates. We utilize the same discretization as Gros et al. [17], which
is given by

T =



⟨(x, y)⟩ if vxt+1 = 0 ∧ vyt+1 = 0

⟨(x, y) , (x + σx, y) , (x + 2 · σx, y) , ..., (xk, yk)⟩ if vxt+1 ̸= 0 ∧ vyt+1 = 0

⟨(x, y) , (x, y + σy) , (x, y + 2 · σy) , ..., (xk, yk)⟩ if vxt+1 = 0 ∧ vyt+1 ̸= 0

⟨(x, y) , (x + σx, ⌊y + my⌉) , (x + 2 · σx, ⌊y + 2 · my⌉) , ..., (xk, yk)⟩ if vxt+1 ̸= 0 ∧ vyt+1 ̸= 0

∧ |vxt+1| ≥ |vyt+1|
⟨(x, y) , (⌊x + mx⌉, y + σy) , (⌊x + 2 · mx⌉, y + 2 · σy) , ..., (xk, yk)⟩ if vxt+1 ̸= 0 ∧ vyt+1 ̸= 0

∧ |vxt+1| < |vyt+1|

,

where σx = sgn(vxt+1), σy = sgn(vyt+1), mx = vxt+1
|vyt+1| , and my = vyt+1

|vxt+1| .

8

2.4. THE RACETRACK BENCHMARK

If the agent transitions from ct to ct+1 on a vertical or horizontal line (vxt+1 = 0 or
vyt+1 = 0) then T consists of all coordinates between ct and ct+1. If the vertical and
horizontal velocities are non-zero, we compute the linear interpolation between ct and
ct+1, and pick n = max(|vxt|, |vyt|) equidistant points on it. We then map each point to
the closest coordinates on the map, resulting in T . Thus, after every state transition, we
have a set of visited cell coordinates and can compute whether the episode continues or
is finished due to the agent hitting a wall, reaching the goal, or exceeding the maximum
number of time steps.

We will use one of the reward functions recommended by Gros [13], which is given by

r(st, at, st+1) =


100 if T contains goal coordinates and no wall coordinates
−20 if T contains wall coordinates
0 otherwise

.

Furthermore, if the agent takes more than 100 steps, it earns a reward of 0, and the
episode ends. The discount factor corresponds to γ = 0.99.

What makes Racetrack an appealing benchmark for the development and evaluation
of RL algorithms is that it represents a simplification of autonomous driving, one of
the most challenging RL applications [20]. Furthermore, it allows for testing a wide
range of scenarios by utilizing different maps and noise probabilities. Racetrack can also
be easily extended to accommodate more complex use cases such as multiple drivers,
difficult weather conditions, or obstacles on the road.

Figure 2.5 shows the River-deadend, Maze, and Hansen-bigger maps, which vary in
their difficulty and the challenges that they pose to the agents, making them ideal for
our experiments in chapter 6. The River-deadend map has five goal lines that can be
reached through various routes, allowing the agents to explore different paths to the
goals. However, reaching a goal line requires only driving in a single direction on most
routes, making it less challenging. The Maze map is characterized by its narrow paths
and numerous dead ends, which put the agents at high risk of crashing once they deviate
from the direct path to the goal line. The Hansen-bigger map is less intricate than the
other maps, yet it requires agents to drive the farthest distance from starting line to
the goal line. Furthermore, this map frequently alternates between straight and curvy
passages, forcing agents to adapt their velocity constantly.

9

CHAPTER 2. BACKGROUND

Figure 2.5 The River-deadend (top), Maze (middle), and Hansen-bigger
(bottom) maps.

10

3. Reinforcement Learning Algorithms

Using the previously introduced RL framework, we can derive algorithms for learning
policies that solve any given RL task. This chapter introduces value-based algorithms
and how they can be improved using deep neural networks (DNN). Afterward, we will
look upon an alternative to value-based algorithms, called policy-gradient algorithms.

3.1. Value-based Algorithms

Recall that an RL agent’s goal is to learn an optimal policy π∗, enabling it to take
actions at that maximize its return Gt. Given the optimal action-value function q∗, we
can construct the policy

π∗(st) = argmax
a∈A(st)

q∗(st, a),

which is optimal since it returns the action at that leads to the highest expected return
for every state st.

Since we cannot expect to have access to the optimal action-values q∗(st, at), we learn
approximations called Q-values using algorithms such as Q-learning [34].

Definition 3.1 (Q-value [32]). The Q-value Q(st, at) of a state-action pair (st, at) is
an approximation of its action-value qπ(st, at).

Q-learning is based on the principle of value iteration [6], which is shown in Figure
3.1. The left diagram depicts how, in each iteration, Q-learning first makes the Q-value
Q(st, at) of the visited state-action pair (st, at) more accurate to its action-value qπ(st, at)
under the current policy π. After Q(st, at) has been updated, another action a′ might
achieve a higher Q-value, indicating that a higher return can be earned by taking a′ in
st. Thus, in the second step, Q-learning changes π such that it is greedy with respect
to the updated Q-values, resulting in the improved policy

π′(st) = argmax
a∈A(st)

Q(st, a).

The right side of Figure 3.1 illustrates how this cycle of alternating policy evaluation
and policy improvement repeats until it reaches a fixed point where π is optimal.

11

CHAPTER 3. REINFORCEMENT LEARNING ALGORITHMS

Figure 3.1 Value iteration for Q-values.

At the beginning of the training, Q-learning initializes the Q-values and stores them in
a lookup table, called the Q-table. The accuracy of each Q-value can then be evaluated
with the temporal-difference error (TD-error).

Definition 3.2 (Temporal-difference Error [32]). The temporal-difference error

TD(st, at) = rt+1 + γ · max
a′

Q(st+1, a
′) − Q(st, at)

is a function TD : S × A → R that maps state-action pairs (st, at) to an approximation
of

qπ(st, at) −Q(st, at).

The term
rt+1 + γ · max

a′
Q(st+1, a

′)

estimates qπ(st, at) by incorporating the earned reward rt+1 and then estimating the
return’s remainder assuming that the agent will take the greedy action

a = argmax
a′∈A(st)

Q(st+1, a
′)

in time step t + 1. This term is a more accurate estimate of qπ(st, at) than Q(st, at)
since the latter estimates the return starting already at time step t. Because the
TD-error computes the difference between these two estimates, it approximates how far
off Q(st, at) is from qπ(st, at). Thus, a positive TD-error indicates Q(st, at) should be
increased and vice versa. Once we computed the TD-error of a state-action pair (st, at),
we can improve Q(st, at) using the update rule

Q ′(st, at) = Q(st, at) + α

[
rt+1 + γ · max

a′
Q(st+1, a

′) −Q(st, at)
]
,

which increases Q(st, at)’s accuracy by using the step size α to compute a fraction of
TD(st, at), and adding it to Q(st, at).

12

3.1. VALUE-BASED ALGORITHMS

Figure 3.2 shows an example of how Q-learning updates Q-values in the simplified
autonomous driving task from Figure 2.1. The agent takes in the initial state s0 the
action a1 since it achieves the highest Q-value. This causes the agent to transition to
the state s1, in which crashing into a cat is inevitable, so all applicable actions have a
Q-value of −1. Afterward, Q-learning updates Q(s0, a1) as

Q ′(s0, a1) = Q(s0, a1) + α [rt+1 + γ ·Q(s1, a2) −Q(s0, a1)]
= 1 + 0.8 [0 + 0.9 · (−1) − 1]
= −0.52

,

meaning that now Q(s0, a1) < Q(s0, a2) holds. Therefore, the agent will take in the
next episode the action a2 in the state s0, making it possible to drive past the cats in
the subsequent time step.

Figure 3.2 State transition (top) and partial Q-table (bottom) from the
simplified autonomous driving task. The agent receives a reward of
−1 for crashing into a cat, a reward of 1 for driving past the cats, and 0
otherwise. The discount factor γ is 0.9 and the step size α is 0.8.

If the agent always takes greedy actions, it will not discover optimal strategies requiring

13

CHAPTER 3. REINFORCEMENT LEARNING ALGORITHMS

taking actions that initially seem unbeneficial. To ensure that the agent sufficiently
explores the state space, Q-learning utilizes an ϵ-greedy policy

π(st) =


argmax
a∈A(st)

Q(st, a) with probability 1 − ϵ

random a ∈ A(st) with probability ϵ
,

meaning that the agent will execute a random action with probability ϵ. We will
exponentially decay ϵ throughout the training [16], meaning we update ϵ as ϵ = ϵ · ϵdecay
with ϵdecay < 1 after every episode until we reach ϵ = ϵend . This way, the agent will
explore taking different actions at the beginning of the training, and after sufficient
exploration, it will focus on taking greedy actions.

Note that Q-learning gathers samples using an ϵ-greedy policy but updates its Q-values
as if following a greedy policy. This way, we can enforce exploration while ensuring that
the final policy will not take random actions. RL algorithms that do not gather samples
according to the policy they optimize are called off-policy algorithms, as opposed to
on-policy algorithms that gather samples using the policy they optimize [32].

Algorithm 1 shows the basic Q-learning algorithm that we can construct from all the
previously explained techniques. Every episode begins, in line 2, with sampling the
initial state s0 ∈ I from the initial state distribution µ. At every following time step
t, from lines 4 to 6, the agent acts in the environment using its ϵ-greedy policy, and
gathers new observations. In line 7, Q-learning updates the Q-value of the current
state-action pair according to its TD-error, and the next iteration begins.

Algorithm 1 Q-learning
1: for episodes e = 0 to E − 1 do
2: sample s0 ∈ I from µ
3: for steps t = 0 to T − 1 do
4: with probability ϵ select random action at ∈ A(st)
5: otherwise with probability 1 − ϵ select at = argmax

a∈A(st)
Q(st, a)

6: execute at; observe st+1 and rt+1
7:

Q ′(st, at) =


Q(st, at) + α [rt+1 − Q(st, at)] st+1 terminal

Q(st, at) + α

[
rt+1 + γ · max

a′
Q(st+1, a

′) − Q(st, at)
]

else

8: end for
9: end for

14

3.2. DEEP REINFORCEMENT LEARNING

3.2. Deep Reinforcement Learning

In practice, most sequential decision-making problems are so complex that we require
MDPs with gigantic state and action spaces to model them accurately. This leads
to tremendous memory requirements for storing the Q-values of all state-action pairs,
making value-based RL algorithms, such as Q-learning, inapplicable. Even with sufficient
memory, value-based RL algorithms are still undesirable since, in large MDPs, many
state-action pairs will never be visited during training, which prevents agents from
learning their Q-values. We can address these problems by exchanging the Q-table in
value-based algorithms with function approximators that map given state-action pairs
to their Q-values. Function approximators have the advantage of requiring drastically
less memory than lookup tables. Additionally, they can generalize to unseen data,
allowing agents to learn Q-values for state-action pairs that were not encountered during
training.

In general, we will refer to RL algorithms that utilize function approximators belonging
to the class of deep neural networks (DNN) as deep reinforcement learning (DRL)
algorithms. DNNs consist of multiple layers of neurons that compute non-linear functions
of their inputs. Figure 3.3 shows a neuron, which receives the outputs of the previous
layer’s neurons as input. The neuron then multiplies each input Ii by a weight wi, takes
the sum, and adds a bias term b to the weighted sum. The result is a linear function
of the neuron’s inputs. To enable the neuron to model non-linear relationships, its
computation is passed to a non-linear activation function. The output is then given to
the neurons in the next layer, and the process repeats. We will call the entirety of the
weights and biases of a DNN its parameters θ.

I1

I2

w1 · I1 + w2 · I2 + b ϕ (w1 · I1 + w2 · I2 + b)

O1

O2

w1

w2

Previous Layer

Neuron

Activation Function

Next Layer

Figure 3.3 A neuron’s computation.

In value-based DRL algorithms, we replace the Q-table with a DNN, called the Q-
network, so we designate the Q-values as Qθ to express that they are computed by a
DNN with parameters θ. Figure 3.4 depicts how we can stack multiple layers of neurons
to build a Q-network for a Racetrack agent. First, the current state is passed to the

15

CHAPTER 3. REINFORCEMENT LEARNING ALGORITHMS

input layer, the output of which is then given to the first hidden layer. This process
repeats for the second hidden layer. In the last step, the output layer receives the second
hidden layer’s output and computes the Q-values for every action. This Q-network
belongs to the class of fully connected DNNs since each neuron is connected to every
neuron in the previous and succeeding layer [2].

15

64 64

9

Qθ(st, a
1)

Qθ(st, a
2)

Qθ(st, a
3)

Qθ(st, a
4)

Qθ(st, a
5)

Qθ(st, a
6)

Qθ(st, a
7)

Qθ(st, a
8)

Qθ(st, a
9)

x

y

vx

vy

d1

d2

d3

d4

d5

d6

d7

d8

d9

d10

d11

Current state Input layer Hidden layer Output layer Q-values

Figure 3.4 A Q-network for Racetrack. Each layer is annotated with its number
of neurons.

Assuming that our Q-network’s architecture has a sufficient number of neurons and layers,
we can compute accurate Q-values Qθ ≈ qπ by finding the corresponding parameters θ.
We can achieve this by iteratively optimizing our parameters θi with respect to a loss
function L(θi) that measures the expected difference between the Q-network’s current
function and the target function qπ. In each iteration, the loss function is then given
by

L(θi) = Eθi

[(
yθ′(St, At) − Qθi

(St, At)
)2

]
, (I)

16

3.2. DEEP REINFORCEMENT LEARNING

where the target yθ corresponds to

yθ(s, a) = Eθ

[
Rt+1 + γ · max

a′
Qθ(St+1, a

′)
∣∣∣∣St = s,At = a

]
[23].

The expectation in L(θi) is taken over the transitions that were gathered by the policy
π, induced by the Q-network with parameters θi.

Algorithm 2 depicts the DRL version of Q-learning, called deep Q-learning (DQN) [23].
At the beginning of each Q-network update, DQN needs to sample a minibatch of samples
on which it can compute the loss. However, popular algorithms for the optimization
of DNNs, such as stochastic gradient descent [26] or Adam [19], assume that these
samples are identically and independently distributed (i.i.d.), yet subsequent transitions
collected by a DRL agent are highly correlated. In line 7, DQN resolves this by storing
encountered transitions in a replay buffer D and then sampling the transitions with
uniform probability from the buffer during each update. Additionally, this allows the
same transition to be used several times to update the Q-network, potentially decreasing
the number of individual samples needed to fit its parameters. After sampling the
minibatch of samples (sj , aj , rj+1, sj+1) in line 9, DQN computes the loss

L(θi) =
(
rj+1 + γ · max

a′
Qθ′(sj+1, a

′) −Qθi
(sj , aj)

)2
, (II)

which approximates the loss function (I). Next, DQN computes the Q-network’s new
parameters θi+1 by performing a gradient descent step on L(θi). We will utilize the Adam
optimizer for this since it has empirically been shown to achieve high performance [19].

DQN is known to suffer from unstable performance [33], and this can primarily be
attributed to the fact that updating Q(st, at) will likely also change Q(st+1, at+1) for
succeeding state-action pairs. This means a destructive Q-network update will make
both Q(st, at) and Q(st+1, at+1) inaccurate, thus making the TD-error TD(st, at) less
informative in future updates. This severely limits the agent’s ability to recover accurate
Q-values, meaning more destructive updates are likely to follow, creating a cycle of
decreasing performance. To facilitate this problem, we utilize in DQN’s loss function (II)
a local Q-network with parameters θi that we directly optimize and a target Q-network
with parameters θ′ for which the update rule is given by

θ′ = (1 − τ) · θi + τ · θ′,

where τ ∈ (0, 1). In line 10, the target network is then used to compute the target

rj+1 + γ · max
a′

Qθ′(sj+1, a
′),

whereas the local network computes Qθi
(sj , aj) in line 11. In the case of a destructive

update, the local network will become inaccurate, whereas the target network is only
partially affected due to the soft update to θ′ [21] in line 12. This means the target will
remain sufficiently accurate for multiple iterations, which preserves the informativeness

17

CHAPTER 3. REINFORCEMENT LEARNING ALGORITHMS

of the TD-error.

Algorithm 2 Deep Q-learning
1: for episodes e = 0 to E − 1 do
2: sample s0 ∈ I from µ
3: for steps t = 0 to T − 1 do
4: with probability ϵ select random action at ∈ A(st)
5: otherwise with probability 1 − ϵ select at = argmax

a∈A(st)
Qθi

(st, a)

6: execute at; observe st+1 and rt+1
7: store transition (st, at, rt+1, st+1) in replay buffer D
8: every K steps do
9: sample minibatch of samples (sj , aj , rj+1, sj+1) from D

10:

set target yj =

rj+1 sj+1 terminal
rj+1 + γ · max

a′
Qθ′(sj+1, a

′) else

11: perform gradient descent step on loss (yj − Qθi
(sj , aj))2

12: soft-update the network weights θ′ = (1 − τ) · θi + τ · θ′

13: end every
14: end for
15: end for

A popular extension of the DQN algorithm, called deep Q-learning with prioritized
experience replay (DQNPR) [28], is shown in Algorithm 3. It is based on the idea
that transition samples with a low TD-error do not contribute as much to the learning
process as samples with a high TD-error since they carry less relevant information.
Therefore, in line 8, DQNPR stores every transition in the replay buffer along with a
sampling priority

δ =
((

Qθ′(st, at) −
(
rt+1 + γ · max

a′
Qθi

(st+1, a
′)

))
+ ϵp

)α

,

that is based on the TD-error. Note that DQNPR utilizes two hyperparameters: ϵp > 0
ensures that every sample will have a non-zero sampling priority δ, preventing the agent
from neglecting low TD-error samples completely. α ∈ (0, 1) controls the amount of
prioritization and the closer it is to 1, the stronger the prioritization of high TD-error
samples. During the Q-network update, in line 10, the minibatch’s transitions are then
sampled with probabilities that are proportional to their priority δ. This ensures that
high TD-error samples are used more frequently to update the Q-network. By not
sampling the transitions randomly but according to their priority δ, we introduce bias
into the estimation of the Q-network’s loss. To reduce this bias, in line 13, DQNPR
multiplies the current loss by importance sampling weights

wi =
(1

|D|
· 1
P (i)

)β

· 1
max

i
wi
,

18

3.2. DEEP REINFORCEMENT LEARNING

where |D| corresponds to the number of currently stored samples and P (i) corresponds
to the sampling probability. Thus, the higher the sampling probability P (i), the more
we decrease the sample’s impact on the Q-network update. β controls how much we
compensate for the altered sampling probabilities, so we achieve full compensation for
β = 1. The authors proposed to start with β < 1 and gradually increase it towards 1
during the training since annealing the bias becomes more important as the Q-values
start to converge towards the action-values. To further increase stability, they divide
each weight wi by the largest weight max

i
wi such that all wi are at most 1, meaning

that the Q-network updates can only be scaled downwards.

Algorithm 3 Deep Q-learning with Prioritized Experience Replay
1: for episodes e = 0 to E − 1 do
2: sample s0 ∈ I from µ
3: for steps t = 0 to T − 1 do
4: with probability ϵ select random action at ∈ A(st)
5: otherwise with probability 1 − ϵ select at = argmax

a∈A(st)
Qθi

(st, a)

6: execute at; observe st+1 and rt+1
7: compute δ using the TD-error
8: store (st, at, rt+1, st+1, δ) in replay buffer D
9: every K steps do

10: sample minibatch of samples (sj , aj , rj+1, sj+1, δ) from D w.r.t. δ
11: compute importance sampling weight wj

12:

set target yj =

rj+1 sj+1 terminal
rj+1 + γ · max

a′
Qθ′(sj+1, a

′) else

13: perform gradient descent step on loss wj · (yj − Qθi
(sj , aj))2

14: soft-update the network weights θ′ = (1 − τ) · θi + τ · θ′

15: end every
16: end for
17: end for

19

CHAPTER 3. REINFORCEMENT LEARNING ALGORITHMS

3.3. Policy-gradient Algorithms

We introduced value-based algorithms based on the principle that we can learn Q-values
to construct a policy. The motivation behind policy-gradient algorithms is that we can
instead directly learn a stochastic policy πθ, which is parameterized by θ.

Definition 3.3 (Stochastic Policy [31]). A stochastic policy πθ is a function πθ : S →
D(A) that returns a probability distribution πθ(st) over all actions a ∈ A for a given
state st.

We can learn an optimal stochastic policy π∗(st) by optimizing our parameters θ
according to the policy-gradient

gθ = ∇θvπθ
(S0),

corresponding to maximizing the expected return that the policy πθ achieves. However,
we cannot expect to have access to the state-value function vπθ

, so policy-gradient
algorithms utilize surrogate objectives whose gradient approximates gθ. In the context
of DRL, we parameterize the policy πθ with a DNN and base our loss function on such
a surrogate objective. One of the most successful policy-gradient DRL algorithms is
called proximal policy optimization (PPO) [31], and it maximizes a surrogate objective
that is based on the objective

LCP I
t (θ) = Êt

[
πθ(at|st)
πθold(at|st)

Ât

]
= Êt

[
rt(θ)Ât

]
.

In LCP I
t , Êt corresponds to the sample mean over a trajectory of k transitions, generated

by the policy πθold . LCP I
t ’s first term is the probability ratio rt(θ), which quantifies

how much the policy πθ deviates from the previous policy πθold
. The second term Ât

estimates the advantage function.

Definition 3.4 (Advantage Function [30]). The advantage function

Aπ(st, at) = qπ(st, at) − vπ(st)

is a function A : S × A → R that computes the difference in expected return between
following the policy π after taking the action at in the state st and following π already
in st.

We can improve the expected return of a stochastic policy πθ in the state st, by
increasing the sampling probabilities πθ(at|st) of actions at that achieve a positive
advantage Aπθ

(st, at) > 0, and by decreasing πθ(at|st) of at that achieve a negative
advantage Aπθ

(st, at) < 0. Therefore, we compute in LCP I
t for each of the k given

20

3.3. POLICY-GRADIENT ALGORITHMS

samples an estimate of the advantage function. To do so, we utilize an approximation
of the state-value function vπθ

, which is called the critic V . We can then compute

Q(st, at) ≈ rt+1 + γV (st+1),

which allows us to approximate Aπθ
(st, at) as

δt = rt+1 + γV (st+1) − V (st).

However, δt induces bias if V ≈ vπθ
does not hold. We can reduce this bias by

incorporating more earned rewards rt+i in our approximation of Q(st, at). If we use all
of the current trajectory’s remaining rewards ⟨rt+1, ..., rt+k⟩, we get the estimator

Ât = rt+1 + γrt+2 + ...γk−1rt+k + γkV (st+k) − V (st)

=
k−1∑
i=0

γiδt+i

,

which has a lower bias than δt but a higher variance due to using more samples. We can
trade-off bias and variance in Ât by introducing the hyperparameter λ ∈ (0, 1), giving
us the advantage estimator called generalized advantage estimation (GAE) [30]

Ât =
k−1∑
i=0

(γλ)iδt+i,

where for λ = 0, we minimize variance but attain high bias, and for λ = 1, we minimize
bias but attain high variance.

If we would use LCP I
t to train a PPO agent, we may experience destructively large

policy updates, meaning that πθ deviates from πθold significantly, which leads to the
probability ratio rt(θ) being much larger or smaller than 1. To penalize such large
policy updates, we first clip rt(θ) to a small interval around 1, giving us the clipped
objective

LCLIP
t (θ) = Êt

[
clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât

]
.

Additionally, we take the minimum over the clipped and unclipped objectives, giving us
the objective

LCLIP
t (θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât)

]
,

which represents a pessimistic lower bound on the unclipped objective LCP I
t . This means

we restrict how much a single update can improve the maximization objective LCLIP
t

by increasing the probability πθ(at|st) of actions at with Â(st, at) > 0. Conversely, we
restrict how much LCLIP

t can be improved by decreasing the probability πθ(at|st) of
actions at with Â(st, at) < 0. However, we do not limit how much the maximization
objective LCLIP

t can be decreased by increasing the probability of unbeneficial actions,
or by decreasing the probability of beneficial actions. Thus, we remove the incentives

21

CHAPTER 3. REINFORCEMENT LEARNING ALGORITHMS

for making policy updates that make the probability ratio rt(θ) go beyond the interval
[1 − ϵ, 1 + ϵ].

Since PPO uses a critic V to compute its objective, it belongs to the class of actor-critic
algorithms [32]. In this context, the policy πθ is also referred to as the actor or, in the
case of DRL, the DNN that computes πθ is called the actor network. To compute the
critic V , we use a DNN, called the critic network, and optimize it using an objective
that measures the difference between V and our target function vπθ

LV F
t (θ) =

(
V (st) − V targ

t

)2
,

where we can compute the target V targ
t =

∑k
i=t γ

i−tri+1 using the remaining rewards
in our trajectory. Furthermore, we can reduce the total number of parameters by
combining the policy and critic network into one DNN with separate output layers,
allowing us to optimize both using a single objective, given by

LCLIP +V F
t (θ) = Êt

[
LCLIP

t (θ) − c1L
V F
t (θ)

]
.

To enforce exploration, we add to LCLIP +V F
t an entropy bonus S[πθ](st), which measures

the randomness of πθ in the state st. This way, the agent attempts to learn one of the
most random policies among all optimal policies, meaning it achieves both exploration
and exploitation. PPO’s final maximization objective is then given by

LCLIP +V F +S
t (θ) = Êt

[
LCLIP

t (θ) − c1L
V F
t (θ) + c2S[πθ](st)

]
.

Exploration can be further increased by using multiple agents that share the same policy
and gather samples in parallel. However, this version of PPO requires significantly more
computing resources, so it will not be used in this thesis.

The pseudo-code of PPO is shown in Algorithm 4, and it follows the same basic structure
of alternating between gathering samples and updating the policy as the previously
introduced value-based algorithms. The most notable difference is that the policy update
computes M updates on a single minibatch, called epochs. To do so, PPO first loads
transitions gathered by the most recent policy πθi

in line 8, and then computes their
advantage estimates. Afterward, it computes the loss, takes a gradient descent step,
and repeats it M times from lines 11 to 13.

One of the advantages of policy-gradient algorithms like PPO is that by updating
their policy’s parameters θ with gradient steps, they make smooth changes to the
action probabilities πθ(at|st). This is in contrast to value-based algorithms like DQN
and DQNPR, where a slight change in Q-values can change which actions achieve
the highest Q-value, causing drastic changes to the policy. Therefore, policy-gradient
algorithms have better convergence guarantees than value-based algorithms [5, 32].
However, making smooth gradient-based updates increases the likelihood of getting
stuck in local optima. Furthermore, estimates of the policy-gradient gθ tend to suffer

22

3.3. POLICY-GRADIENT ALGORITHMS

from high variance [3]. PPO is an on-policy algorithm since LCLIP +V F +S
t assumes that

the given samples are generated by the previous policy πθold
. Thus, PPO cannot use a

replay buffer, meaning that gathered samples can be considered only for one epoch of
policy updates. This may increase the number of samples required to fit the policy’s
parameters θ.

Algorithm 4 Proximal Policy Optimization (single agent)
1: for episodes e = 0 to E − 1 do
2: sample s0 ∈ I from µ
3: for steps t = 0 to T − 1 do
4: sample at ∼ πθi

(st)
5: execute at; observe st+1 and rt+1
6: store transition (st, at, rt+1, st+1)
7: every K steps do
8: Load minibatch of samples gathered by πθi

9: Compute advantage estimates Ât using GAE
10: θ1

i = θi

11: for steps m = 1 to M do
12: perform gradient descent step on loss −LCLIP +V F +S

t (θm
i) to get θm+1

i

13: end for
14: θi+1 = θM

i

15: end every
16: end for
17: end for

23

4. DSMC Evaluation Stages

A multitude of DRL applications require agents not only to solve the given task but do so
in a safe manner. However, training DRL agents to act safely often involves comprising
in performance. This chapter introduces the field of safe reinforcement learning and
common causes for safety issues in DRL. We will then present how an agent’s behavior
can be evaluated using deep statistical model checking (DSMC). Afterward, we will
utilize DSMC’s evaluations in the DSMC evaluation stages (DSMC ES) algorithms,
which allow us to achieve safe behavior without sacrificing performance.

4.1. Safe Reinforcement Learning

Safe reinforcement learning aims to train agents that solve a given task while obeying
safety constraints [11]. These measures are necessary for safety-critical applications
where violating such a constraint might have catastrophic consequences. In the context
of this thesis, we will assume that an agent disregarding any such constraint corresponds
to a safety error that leads to the immediate termination of the current episode.

Assume we have a real-life model of the Racetrack map Barto-big, including a racecar,
and our goal is to make it drive autonomously using DRL. Recall that a Racetrack agent
receives a reward of 100 for reaching the goal line and that we use a discount factor of
γ = 0.99. Thus, when reaching the goal line, an Racetrack agent’s return corresponds to
0.99T −1 ·100, where T is the number of steps taken. Figure 4.1 compares the trajectories
of two agents. Agent A achieved a return of 75.5 by reaching the goal line in 29 steps,
whereas agent B achieved a lower return of 69.6 due to taking 37 steps. Nevertheless,
agent A’s behavior is undesirable since it drives with a high velocity and close to the
map’s walls, resulting in a high chance of crashes that could destroy the racecar. Thus,
we would deploy agent B, which slowly drives in the middle of the racetrack, giving it a
high probability of reaching the goal line. This example illustrates that even though the
return and the probability of reaching a goal state (GRP) are correlated, maximizing
the return often does not correspond to maximizing the GRP. This is one of the root
causes of safety problems in DRL, and, in theory, we can prevent it by using a binary
reward function

rbinary(st, at, st+1) =
{

1 if task solved
0 otherwise

.

Given this reward function and no discounting, the average return corresponds to the
fraction of episodes ending in goal states and, thus, to the probability of solving the
task. However, maximizing this objective is extraordinarily difficult since it does not
provide any feedback to the agent unless it reaches a goal state. To increase the learning

25

CHAPTER 4. DSMC EVALUATION STAGES

Figure 4.1 Trajectories of agent A (left) and agent B (right) on the Barto-big
map.

speed, we can utilize a more informative reward function that provides the agent with
intermediate feedback. For instance, the reward function that we use in Racetrack
penalizes the agent with negative rewards whenever it crashes into a wall. Nevertheless,
using a reward function other than rbinary means the agent’s maximization objective does
not correspond to the GRP (Problem 1). One way to counteract this safety negligence is
to use an informative reward function that also enforces safe behavior. Despite resulting
in shorter training times than rbinary, these functions are known to cause substantially
poorer performance than reward functions designed for quick learning [11]. This is
due to the challenging maximization objectives that result from safety-focused reward
functions. For example, if we give a Racetrack agent a reward of −1000 for crashing,
it is likely to stop driving since it tries to avoid the large negative reward but cannot
explore the map without crashing.

Another aspect that reduces safety in DRL is that many algorithms, such as DQN,DQNPR,
and PPO, maximize the average return. This means safety errors leading to low returns
are disregarded when they rarely occur since they do not affect the average return
noticeably (Problem 2). However, even a low probability of error is unacceptable in
safety-critical applications.

4.2. Deep Statistical Model Checking

Since a high average return does not ensure safe behavior, we must evaluate an agent’s
policy according to metrics relevant to safety. To do so, we utilize deep statistical model
checking (DSMC) [15], which is a technique that analyzes properties of DNN-induced
policies using statistical model checking [18].

26

4.2. DEEP STATISTICAL MODEL CHECKING

Starting at an initial state s0, DSMC repeatedly queries from the policy’s DNN an
action at in order to transition to the next state st+1, until a terminal state is reached.
Thus, the DNN acts as a black-box oracle, which resolves the non-determinism of the
task’s MDP at every visited state. This process results in a sequence of state transitions
corresponding to a deterministic Markov chain.

Definition 4.1 (Oracle-induced Markov Chain [15]). Let M = ⟨S,A, T , µ⟩ be an MDP
and π : S → A an action oracle given by a DRL agent’s policy. Then π induces in M
the Markov chain Cπ = ⟨S, T ′, s0⟩ that comprises a set of states s ∈ S, an initial state
s0, and a transition probability function T ′ : S → D(S), for which T ′(s) = T (s, π(s))
holds.

Next, DSMC analyzes the deterministic Markov chain with respect to the desired
property q, giving us the estimate q′. The model executions and Markov chain evaluations
are then repeated until the error |q′ − q| is within the statistical confidence bound

P (|q′ − q| > ϵ) < κ,

meaning that the probability of the error in q′ being larger than ϵ is smaller than κ.

Consider we trained a Racetrack agent on the Barto-big map with the random restart
setting activated and want to know if it has learned safe behavior. We can evaluate
this by computing with DSMC the agent’s GRP when starting on each initial state.
Additionally, we evaluate the agent’s expected return in each initial state. The left side
of Figure 4.2 visualizes the results of DSMC as a heatmap, where the greener a cell is,
the higher the agent’s GRP when starting on it. It shows that the agent lacks safety in
the upper and left areas of the map since these areas are colored yellow and orange. The
right side of Figure 4.2 shows the results of evaluating with DSMC the agent’s expected
return when starting on each map cell. Comparing this heatmap to the former, we can
observe a correlation between GRP and expected return. In the following, we will call
such heatmaps global GRP and global return heatmaps.

27

CHAPTER 4. DSMC EVALUATION STAGES

Figure 4.2 Global GRP (left) and global return (right) heatmap of the Barto-
big map.

4.3. DSMC Evaluation Stages

Although DSMC can evaluate a DRL agent’s behavior, it does not tell us how to train
safe agents. However, we can use DSMC to analyze certain properties of the agent’s
policy throughout the training and then focus the training on the initial states in which
these properties are the most deficient. The agent will then attempt to increase its
return in these difficult regions, which likely addresses the deficient properties. This is
the basic principle that allows DSMC evaluation stages [16] (DSMC ES) to train safe
DRL agents. To apply DSMC ES, we first need to compute a partition of the task’s set
of initial states

P = {J1, J2, ..., Jk} where ∀i ∈ 1, 2, ..., k : Ji ̸= ∅ and
⋃

i∈1,2,...,k

Ji = I,

and then choose for each initial state region Ji a representative state si ∈ Ji. DSMC ES
then executes an evaluation stage by running DSMC on the representatives of each region.
The resulting evaluation values E(Ji) are passed to an underlying training algorithm
and utilized accordingly. The evaluation stages are repeated at regular intervals since
the evaluation values E(Ji) may become inaccurate as the agent’s policy changes.

Gros et al. [16] utilized two configurations of DSMC ES: The first configuration computes
the evaluation values E(Ji) as the agent’s GRP, and the second one computes E(Ji)
as the agent’s expected return, which is linearly interpolated between 0 and 1. The
first configuration addresses Problem 1 by focusing the training on initial state regions
where the agent’s GRP is low, such that the agent may learn to increase its GRP.
Thus, we can incorporate the safety objective of increasing the GRP into the training
process without requiring a reward function that decreases performance. The second
configuration addresses Problem 2 since it allows us to focus the training on initial state

28

4.3. DSMC EVALUATION STAGES

regions where low returns occur when starting in them, such that ameliorating these
deficiencies becomes significant to maximizing the average return.

4.3.1. Evaluation-based Initial Distribution

Evaluation-based initial distribution (EID) is one of two algorithms that utilize DSMC
ES during training. EID makes the probabilities of starting in an initial state s0 ∼ Ji

inversely proportional to the evaluation value E(Ji) of the corresponding initial state
region Ji. Thus, the agent will start more frequently in regions Ji where E(Ji) is
low, allowing it to gather samples from which it can learn to increase its performance.
Given the MDP’s initial state distribution µ, EID first defines an initial probability
distribution

β(Ji) = µ(si)∑k
j=1 µ(sj)

,

over the regions Ji, using their representatives si. After the first evaluation stage, EID
shifts β such that Ji with a low E(Ji) have an increased probability of being sampled.
Additionally, a minimum priority ϵp is used to ensure that every Ji has a non-zero
probability of being sampled

p(Ji) = (1 − E(Ji) + ϵp) · β(Ji)∑
j(1 − E(Jj) + ϵp) · β(Jj) .

This measure stops EID from ignoring regions Ji in which E(Ji) is high. In the last
step, the initial state s0 is uniformly sampled from the sampled region Ji.

Algorithm 5 shows the pseudo-code of an EID variant that uses DQN as its basis. The
first difference between this EID variant and DQN is that, from lines 2 to 3, it samples
the initial state according to the results of the previous evaluation stage. The second
difference is that, from lines 16 to 20, EID updates the evaluation values E(Ji) by
computing a new evaluation stage. Note that the first E(Ji) are only computed after W
episodes since an agent that did not receive minimum training likely performs poorly in
all regions Ji, making it redundant to evaluate its policy. Since EID neither changes how
the agent gathers samples nor how the policy is updated, it can be used in conjunction
with any other DRL algorithm, such as PPO.

29

CHAPTER 4. DSMC EVALUATION STAGES

Algorithm 5 Evaluation-based Initial Distribution (DQN version)
1: for episodes e = 0 to E − 1 do
2: sample Ji w.r.t. p(Ji)
3: sample s0 ∼ Ji uniformly
4: for steps t = 0 to T − 1 do
5: with probability ϵ select random action at ∈ A(st)
6: otherwise with probability 1 − ϵ select at = argmax

a∈A(st)
Qθi

(st, a)

7: execute at; observe st+1 and rt+1
8: store (st, at, rt+1, st+1) in replay buffer D
9: every K steps do

10: sample minibatch of samples (sj , aj , rj+1, sj+1) from D
11:

set target yj =

rj+1 sj+1 terminal
rj+1 + γ · max

a′
Qθ′(sj+1, a

′) else

12: perform gradient descent step on loss (yj − Qθi
(sj , aj))2

13: soft-update the network weights θ′ = (1 − τ) · θi + τ · θ′

14: end every
15: end for
16: if e > W then
17: every L episodes do
18: compute E(Ji) for all Ji ∈ P
19: end every
20: end if
21: end for

We will represent whether we use the GRP or expected return configuration of EID
using the subscripts G and R, and we will omit the subscript whenever the configuration
is not relevant.

Like Gros et al. [16], we apply DSMC ES to the Racetrack task by defining that every
initial state si ∈ I forms an initial state region Ji = {si}. To assess how DSMC ES
affects the training in Racetrack, we can count for each map cell how often a state
with the corresponding coordinates was considered for a Q-network update and then
visualize these counts as a heatmap, which we call a considered states heatmap.

Figure 4.3 shows an example in which DQN and EIDG agents were trained on the Maze
map with the random restart setting activated. Comparing the global GRP heatmaps,
we can see that DQN attained deficient GRPs on the rightmost area of the map, whereas
EIDG achieved significantly higher GRPs. Looking at the considered states heatmaps,
we see that EIDG’s heatmap shows more bright yellow cells in this area, which means
EIDG considered it more for training than DQN, leading to a higher GRP. EIDG also
achieved with 72% a noticeably higher average GRP in the initial states than DQN,
which only achieved 62%.

30

4.3. DSMC EVALUATION STAGES

Figure 4.3 Comparison of considered states and GRPs between DQN and
EIDG on the Maze map.

4.3.2. Evaluation-based Prioritized Replay

The second DSMC ES algorithm is called evaluation-based prioritized replay (EPR).
Contrary to EID, EPR leaves the initial state distribution µ unchanged, but during the
Q-network update, it prioritizes samples from episodes starting in initial state regions
Ji with a low evaluation value E(Ji). This focuses the updates on using experiences
from starting in regions Ji where E(Ji) is low, such that the agent’s performance may
improve. So instead of generating more transitions from starting in problematic regions
like EID, EPR uses the already gathered transitions more. EPR computes for every
transition a sampling priority

δ = (1 − E(Ji) + ϵp)α,

which is based on the evaluation value E(Ji) of the current episode’s initial state s0 ∈ Ji.
The hyperparameter ϵp ensures that transitions from starting in regions Ji where E(Ji)
is high are not neglected, and α ∈ (0, 1) controls the amount of prioritization.

Algorithm 6 corresponds to an EPR variant based on DQNPR. Unlike EID, in line 2,
EID samples the initial states according to the initial state distribution µ, but it also
periodically updates the evaluation values E(Ji) from lines 16 to 20. What differentiates
EPR from DQNPR is that, in line 7, it computes δ according to the results of the

31

CHAPTER 4. DSMC EVALUATION STAGES

previous evaluation stage and not with respect to the TD-error. So when updating
the Q-network, transitions from episodes starting in initial state regions Ji with a low
evaluation value E(Ji) have a high probability of being sampled. Another difference to
DQNPR is that EPR does not use importance sampling weights wi to compensate for
the altered sampling probabilities. Since EPR works by changing how transitions are
sampled from the replay buffer, it can only be used in conjunction with DRL algorithms
that also use replay buffers.

Algorithm 6 Evaluation-based Prioritized Replay (DQNPR version)
1: for episodes e = 0 to E − 1 do
2: sample s0 ∈ Ji w.r.t. µ
3: for steps t = 0 to T − 1 do
4: with probability ϵ select random action at ∈ A(st)
5: otherwise with probability 1 − ϵ select at = argmax

a∈A(st)
Qθi

(st, a)

6: execute at; observe st+1 and rt+1
7: compute δ = (1 − E(Ji) + ϵp)α

8: store (st, at, rt+1, st+1, δ) in replay buffer D
9: every K steps do

10: sample minibatch of samples (sj , aj , rj+1, sj+1, δ) from D w.r.t. δ
11:

set target yj =

rj+1 sj+1 terminal
rj+1 + γ · max

a′
Qθ′(sj+1, a

′) else

12: perform gradient descent step on loss (yj − Qθi
(sj , aj))2

13: soft-update the network weights θ′ = (1 − τ) · θi + τ · θ′

14: end every
15: end for
16: if e > W then
17: every L episodes do
18: compute E(Ji) for all Ji ∈ P
19: end every
20: end if
21: end for

As with EID, we will use subscripts to indicate whether we use EPR’s GRP or return
configuration whenever it is relevant.

In Figure 4.4, we can see an example that compares a DQNPR agent and an EPRR

agent, which were trained on the Maze map with the random restart setting activated.
DQNPR’s global return heatmap shows that it only achieved a sufficient return in
the upper left area of the map since it concentrated the training too intensely on this
area, which can be seen in its considered states heatmap. On the other hand, EPRR

focused less on this area, which balanced the training across the map, and resulted in
a significantly higher average expected return in the initial states of 47 compared to

32

4.3. DSMC EVALUATION STAGES

DQNPR, which only achieved an average return of 0.

Figure 4.4 Comparison of considered states and returns between DQNPR
and EPRR on the Maze map.

33

5. DSMC Evaluation Stages with Restart

The EID and EPR algorithms allow us to train safe DRL agents by focusing their training
on initial state regions Ji where they have low evaluation values E(Ji). However, both
methods require that the regions Ji cover large parts of the state space to achieve
noticeable increases in E(Ji). This chapter introduces the concept of pseudo initial
states, how we can use them to address EID and EPR’s limitations, and how we can
find them.

5.1. Limitations of DSMC Evaluation Stages

DSMC ES analyzes initial state regions Ji to identify deficiencies in the agent’s policy
and concentrate the training on the problematic regions such that the agent improves
its behavior. However, this principle breaks down if the task’s initial states only cover
a small part of the state space. In such cases, the state space regions where deficient
behaviors occur might be so distant from the initial state regions Ji, that focusing
the training on regions Ji with low evaluation values E(Ji) does not lead to sufficient
training in the relevant state space regions. Since the MDPs of complex tasks tend
to have gigantic state spaces, we cannot always expect that their initial states are
distributed such that we can successfully apply DSMC ES.

We can simulate a lack of initial states by training a Racetrack agent on the River-
deadend map using EIDG and restricting the initial states to the starting line, meaning
we deactivate the random restart setting. After the training is completed, we find that
the agent has only an 80% probability of reaching a goal line from the starting line. To
assess in which parts of the map the agent has difficulty driving, we computed a global
GRP and considered states heatmap, which can be seen in Figure 5.1. The heatmap
at the top shows that the agent’s GRP is only sufficient when starting on the leftmost
area of the map, suggesting that its low GRP at the starting line is due to the inability
to reach a goal line whenever it enters the map’s right areas. We see in the heatmap
at the bottom that the training disproportionally concentrated on the leftmost map
area, despite the agent’s deficiencies on the remaining parts. Thus, it is likely that if
the training had been focused to some extent on the neglected map areas, the agent
would have learned to drive in them, resulting in higher GRPs at the starting line.

35

CHAPTER 5. DSMC EVALUATION STAGES WITH RESTART

Figure 5.1 Global GRP (top) and considered states heatmap (bottom) of
the River-deadend map.

5.2. Pseudo Initial States

This thesis proposes that we can remove DSMC ES’ dependence on appropriately
distributed initial state regions Ji by collecting visited states during training and using
them to define additional pseudo initial state regions JP

i . This means that between
each evaluation stage, we collect a set of states Pj+1 that will be given to the following
evaluation stage. These states will be evaluated like the representatives si of the initial
state regions Ji, so we call them pseudo initial states sP

i , and each will form a pseudo
initial state region JP

i = {sP
i }. From now on, we will refer to the initial state regions Ji

as original initial state regions JO
i , and to the initial states si ∈ I as original initial states

sO
i . If chosen correctly, the pseudo initial state regions JP

i will enable the DSMC ES
algorithms to focus the training on state space regions where deficient behaviors occur,
such that it increases the agent’s performance in the original initial states. Because
we add to the DSMC ES framework the collection of pseudo initial states sP

i in which
subsequent episodes will restart, we call the resulting technique DSMC evaluation stages

36

5.2. PSEUDO INITIAL STATES

with restart (DSMC ESR), and the corresponding algorithms will be designated EIDP

and EPRP . The general approach of DSMC ESR can be divided into 3 steps:

1. The first step is to store certain visited states as candidates c ∈ C and evaluate
how qualified they are to become pseudo initial states. This qualification measure
should reflect whether the resulting pseudo initial state regions JP

i are suitable
for focusing the training on them.

2. In the second step, we select from the set of candidates C the set of most qualified
pseudo initial states Pj+1 =

{
sP

1 , s
P
2 , ..., s

P
B

}
, where |Pj+1| is upper bounded

by B to avoid an excessively high computational cost of the evaluation stage.
Additionally, we enforce a minimum distance limit between the pseudo initial
states sP

i to ensure they cover a substantial portion of the state space. In general,
this can be accomplished by defining a norm over the sP

i and a corresponding
distance measure.

3. The last step is to define for each sP
i ∈ Pj+1 a pseudo initial state region JP

i , and
pass them and the original initial states regions JO

i to the evaluation stage. Until
the next evaluation stage, the representatives sP

i of the pseudo initial state regions
JP

i will be used as additional initial states. The collection process repeats for the
following evaluation stage, meaning we compute a new set Pj+2. This ensures
that the most qualified pseudo initial states will be used in each iteration. The
only exception is that |Pj+2| may not exhaust the upper bound B. In this case,
the most qualified pseudo initial states from the previous sets Pj+1, Pj , ..., P0 are
added to Pj+2 until |Pj+2| = B holds.

In Figure 5.2 we can see an example of a DSMC ESR agent collecting candidates (cells
with crosses) and selecting pseudo initial states (colored cells) in the Racetrack task.
The maximum number of pseudo initial states is B = 5, and the distance limit is that
no pseudo initial states can be located on the same cells. Our qualification measure is
the distance to the goal line. Thus, in each iteration, we need to select the 5 candidates
that are closest to the goal line and located on different cells as pseudo initial states.
Before the first evaluation stage, the agent can only begin episodes on the starting line.
In the image at the top, we can see red crosses, which mark the location of the visited
states that the agent stored as candidates. Now the first evaluation stage is due, so we
add the 5 most qualified candidates to our first set of pseudo initial states P1, which
are shown as red cells in the center image. In the next iteration, episodes can start on
the starting line or in states sP

i ∈ P1. However, the agent’s policy suffered destructive
updates, so the agent kept crashing into walls. Therefore, it could only collect 3 new
candidates, which are represented by blue crosses. In this case, we add all candidates to
the new set of pseudo initial states P2, and, additionally, add to P2 the states from P1
that were closest to the goal line. This allows us to provide the agent with a diverse
set of pseudo initial states P2, despite the agent’s inability to collect promising new
candidates in the previous iteration. In the last picture, restarting in states sP

i ∈ P2,
shown as blue and red cells, enabled the agent to recover its performance and collect

37

CHAPTER 5. DSMC EVALUATION STAGES WITH RESTART

highly qualified new candidates, which are depicted as orange crosses.

Figure 5.2 Selection of pseudo initial states on the Barto-small map. The
agent collects the first candidates (top), collects the next candidates after
selecting the first set of pseudo initial states P1 (middle), and then collects
further candidates after selecting the second set of pseudo initial states P2
by reusing states from P1 (bottom).

Early experiments showed that the disadvantage of introducing pseudo initial state
regions JP

i is that if we concentrate the training too heavily on them, the agent may

38

5.2. PSEUDO INITIAL STATES

forget how to act when starting in the original initial state regions JO
i , meaning it

cannot solve the original task. Thus, we need to ensure that we only utilize the regions
JP

i to the extent that they increase the agent’s evaluation values E(JO
i) in the regions

JO
i . We achieve this by making the utilization of the pseudo initial state regions JP

i

proportional to the average evaluation value in the original initial state regions

E(JO
i) =

∑
E(JO

i)
|P|

,

where P is the set of all original initial state regions JO
i . So when E(JO

i) decreases, we
concentrate the training less on pseudo initial state regions JP

i , allowing the agent to
recover its performance in the original initial state regions JO

i . If E(JO
i) is very close

to 0, the agent struggles to reach a goal state from the regions JO
i , which might be

due to insufficient exploration of the state space. In this case, the agent could benefit
from starting episodes in pseudo initial state regions JP

i since they might be closer to
goal states. If E(JO

i) is very close to 1, the agent has a high probability of reaching
goal states from regions JO

i , so we allow it to start in pseudo initial state regions JP
i

frequently. However, if the agent now starts too often in regions JP
i , it will forget again

how to act in the original initial state regions JO
i , leading to unstable performance. To

ensure exploration and avoid instability, we compute the pseudo initial state region
priority as

ψ = clip
(
E(JO

i), 1 − ψmax , 0 + ψmin
)
,

by clipping E(JO
i) to an interval between 0 and 1 using the lower and upper pseudo

initial state region priority bounds ψmin and ψmax .

In Algorithm 7, we can see in the highlighted lines how to incorporate pseudo initial
states in EIDP and EPRP . Similar to the EID and EPR algorithms introduced in
chapter 4, this algorithm is based on the DQN algorithm and only modifies how initial
states are sampled and how transitions are sampled for the Q-network update. The
main difference between this algorithm and the previously introduced EID and EPR
algorithms is that we need to differentiate between episodes starting in original initial
state regions JO

i and episodes starting in pseudo initial state regions JP
i . Furthermore,

we store certain visited states and select pseudo initial states before computing an
evaluation stage. In line 4, we control how many episodes start in pseudo initial state
regions JP

i by using initial state distributions that account for the pseudo initial state
region priority ψ. In the case of EIDP , we sample the episode’s initial state s0 uniformly
from Ji, which is sampled according to

p′(Ji) =
{

(1 − ψ) · p(Ji) if Ji = JO
i

ψ · p(Ji) if Ji = JP
i

.

This means we compute the sampling probability p(Ji) of each region Ji according to
the evaluation value E(Ji), as in the EID algorithm, and then scale each p(Ji) with
regard to ψ to get the final sampling probabilities p′(Ji). Therefore, the higher ψ, the

39

CHAPTER 5. DSMC EVALUATION STAGES WITH RESTART

more we increase the probability of episodes starting in pseudo initial state state regions
JP

i . In EPRP , we sample with equal probability either an original initial state sO
i ∈ I

from µ or a pseudo initial state sP
i ∈ Pj uniformly from the current set of pseudo initial

states Pj , giving us

µ′(s0) =


1
2 · µ(s0) if s0 ∈ I
1
2 · 1

|Pj | if s0 ∈ Pj
.

The next modification is that every time the agent gathers a new transition, in line 9,
we check whether the current state st should be stored as a candidate and, if so, add it
to the set of candidates C. In the case of EPRP , in line 10, we compute the current
transition’s sampling priority as

δ′ =
{

(1 − ψ) · (1 − E(JO
i) + ϵp)α if s0 ∈ JO

i

ψ · (1 − E(JP
i) + ϵp)α if s0 ∈ JP

i

.

Thus, we compute the sampling priorities, as in the EPR algorithm, and then scale
them by ψ if the corresponding episodes started in pseudo initial state state regions JP

i

and by 1 − ψ otherwise. Therefore, the higher ψ, the more we increase the sampling
probabilities of transitions gathered in episodes that started in pseudo initial state
regions JP

i . From lines 20 to 23, we update the original initial state regions’ evaluation
values E(JO

i) and ψ every L episodes. From lines 24 to 31, we select every U episodes
the new pseudo initial states Pj+1, and if they do not exhaust the size limit B, we add
pseudo initial states from Pj , Pj−1, ..., P0 to Pj+1, until we have |Pj+1| = B. Afterward,
we evaluate all pseudo initial state regions JP

i and clear the set of candidates C to
avoid excessive memory usage. Since we assume that the original initial state regions
JO

i only cover a small part of the state space, they may also be small in number. We
can exploit this by updating the evaluation values E(JO

i) separately and at a higher
frequency than E(JP

i), meaning we can update E(JO
i) every L << U episodes without

adding too much computational overhead. This allows us to update ψ frequently, so we
can accurately balance the utilization of pseudo initial state regions.

40

5.2. PSEUDO INITIAL STATES

Algorithm 7 EIDP /EPRP (DQN version)
1: initialize set of candidates C
2: initialize pseudo initial state region priority ψ = 0.0
3: for episodes e = 0 to E − 1 do

4: sample s0 according to
{
p′(Ji) EIDP

µ′(s0) EPRP

5: for steps t = 0 to T − 1 do
6: with probability ϵ select random action at ∈ A(st)
7: otherwise with probability 1 − ϵ select at = argmax

a∈A(st)
Qθi

(st, a)

8: execute at; observe st+1 and rt+1
9: selectCandidate(st, st+1)

10: compute δ =
{

constant EIDP

δ′ EPRP

11: store (st, at, rt+1, st+1, δ) in replay buffer D
12: every K steps do
13: sample minibatch of samples (sj , aj , rj+1, sj+1, δ) from D w.r.t. δ
14:

set target yj =

rj+1 sj+1 terminal
rj+1 + γ · max

a′
Qθ′(sj+1, a

′) else

15: perform gradient descent step on loss (yj − Qθ(sj , aj))2

16: soft-update the network weights θ′ = (1 − τ) · θi + τ · θ′

17: end every
18: end for
19: if e > W then
20: every L episodes do
21: compute E(JO

i) for all JO
i ∈ P

22: update pseudo initial state region priority ψ
23: end every
24: every U episodes do
25: Pj+1 = selectPseudos(C)
26: if |Pj+1| < B then
27: add the B − |Pj+1| most qualified sP

i ∈ Pj , Pj−1, ..., P0 to Pj+1
28: end if
29: compute E(JP

i) for all JP
i = {sP

i } where sP
i ∈ Pj+1

30: clear C
31: end every
32: end if
33: end for

41

CHAPTER 5. DSMC EVALUATION STAGES WITH RESTART

5.3. Pseudo Initial State Selection Strategies

So far, we have established how to utilize pseudo initial states sP
i ∈ Pj in the EIDP and

EPRP algorithms, but we have not yet considered which visited states should be stored
as candidates c ∈ C and how Pj should be chosen from C. Since we can only evaluate
small parts of enormous state spaces, we want to ensure that Pj allows DSMC ESR
to focus the training on the regions that enable the largest improvements in our safety
metrics, i.e., the average GRP or the average expected return and return variance. This
thesis introduces four pseudo initial state selection strategies, which select Pj according
to different properties that indicate the potential for significant improvements in safety.
To evaluate these properties, we require efficiently computable qualification measures
since we will collect a large number of candidates. Furthermore, we will only evaluate
the candidates’ qualifications upon visiting them since recomputing the qualifications
of all candidates before each evaluation stage may result in high computational costs.
Thus, we assume that if a candidate was highly qualified at its visitation, it would
remain sufficiently qualified until we select it as pseudo initial state.

5.3.1. Random Strategy

From lines 2 to 4, the random strategy’s (Algorithm 8) selectCandidate method
uniformly selects visited states as candidates if they are no original initial states. From
lines 8 to 13, the selectPseudos method then uniformly selects B candidates as
pseudo initial states. To ensure that they cover large parts of the state space, in line 10,
the method checks for each candidate that it adds to Pj+1 whether it has a sufficient
distance to the already selected pseudo initial states sP

i ∈ Pj+1. Since every visited
state has the same probability of being selected, Pj+1 will cover the visited parts of the
state space evenly, allowing us to focus the training on a large variety of regions.

42

5.3. PSEUDO INITIAL STATE SELECTION STRATEGIES

Algorithm 8 Random Strategy
1: function selectCandidate(st, st+1)
2: if st /∈ I then
3: with probability 50% add st to C
4: end if
5: end function
6:
7: function selectPseudos(C)
8: Pj+1 = {}
9: for candidate c in C do

10: if distanceLimit(c, Pj+1) and |Pj+1| < B then
11: with probability 50% add c to Pj+1
12: end if
13: end for
14: return Pj+1
15: end function

5.3.2. Crash Strategy

Instead of providing the evaluation stage with pseudo initial state regions JP
i that

represent large parts of the state space, we can only provide it with regions JP
i where

the agent is prone to take actions that lead to safety errors. Therefore, we force the
agent to address its most deficient behaviors. Whenever the agent makes a safety
error, the episode finishes, and the crash strategy’s (Algorithm 9) selectCandidate
method stores the state in which the agent was n time steps ago as a candidate from
lines 2 to 7. If the episode was shorter than n time steps, the initial state s0 is added
to C, given that s0 /∈ I. This way, pseudo initial states sP

i ∈ Pj will be considered
as candidates for Pj+1 if the agent kept making safety errors. Given that we set the
hyperparameter n suitably, this method will select the states where the agent takes
the actions leading to safety errors. We can find a suitable value of n by using domain
knowledge or by starting at n = 1 and training agents with increasing values of n until
we achieve adequate performance. The crash strategy’s selectPseudos method selects
as pseudo initial states the B candidates for which the most safety errors occurred
after visiting them. However, we cannot simply count how often each candidate was
encountered n steps before a safety error since the same state is rarely visited twice in a
large state space. Therefore, from lines 11 to 15, we define groups of similar states and
assign each candidate to its respective group. In general, we could achieve this by using
clustering algorithms [35], but in Racetrack, we assign all candidates with the same x
and y coordinates to the same group. From lines 16 to 22, selectPseudos then builds
the set of pseudo initial states Pj+1 by choosing a random candidate from each of the
B groups containing the most candidates.

43

CHAPTER 5. DSMC EVALUATION STAGES WITH RESTART

Algorithm 9 Crash Strategy
1: function selectCandidate(st, st+1)
2: if safetyError(st+1) then
3: n = min(n, t+ 1)
4: if st+1−n /∈ I then
5: add st+1−n to C
6: end if
7: end if
8: end function
9:

10: function selectPseudos(C)
11: initialize list of groups G = [G1, G2, ..., Gk]
12: Pj+1 = {}
13: for candidate c in C do
14: add c to corresponding group Gi

15: end for
16: sort G according to |Gi| in descending order
17: for group Gi in G do
18: sample random candidate c ∼ Gi

19: if distanceLimit(c, Pj+1) and |Pj+1| < B then
20: add c to Pj+1
21: end if
22: end for
23: return Pj+1
24: end function

5.3.3. Value Strategy

When the agent makes a safety error, it means that at some point, it deviated from its
path to a goal state and transitioned into state space regions where it could not reach
a goal state. If we use the states from which the agent enters these regions as pseudo
initial states, we can focus the training on them such that the agent may learn to stay on
the goal path. From lines 2 to 4, the value strategy’s (Algorithm 10) selectCandidate
method stores every visited state st as a candidate, along with the approximated drop
in state-value

drop(st, st+1) = V (st) − V (st+1),

that occurred when the agent transitioned to the successor state st+1. From lines 8 to
14, the selectPseudos method then selects the B candidates with the highest drop
as pseudo initial states since a significant drop in state-value indicates that the agent
became unlikely to reach a goal state after transitioning to st+1.

44

5.3. PSEUDO INITIAL STATE SELECTION STRATEGIES

Algorithm 10 Value Strategy
1: function selectCandidate(st, st+1)
2: if st /∈ I then
3: add (st, drop(st, st+1)) to C
4: end if
5: end function
6:
7: function selectPseudos(C)
8: sort C according to drop in descending order
9: Pj+1 = {}

10: for candidate c in C do
11: if distanceLimit(c, Pj+1) and |Pj+1| < B then
12: add c to Pj+1
13: end if
14: end for
15: return Pj+1
16: end function

5.3.4. Novelty Strategy

We already established that agents perform poorly when they do not sufficiently explore
the task’s state space. If we use pseudo initial state regions JP

i that are novel to the agent,
we will focus the training on unexplored state space regions and increase exploration.
From lines 2 to 4, the novelty strategy (Algorithm 11) uses its selectCandidate
method to save all visited states as candidates along with their novelty. From lines 8 to
14, it uses its selectPseudos method to select the B most novel candidates as pseudo
initial states. We measure novelty using random network distillation (RND) [7], which
utilizes two randomly initialized DNNs with identical architectures that take as input
the visited states and return a random output. One of these networks is designated
as the target network, meaning its parameters will remain fixed, whereas the other
is the predictor network. The goal of the latter is to predict the random outputs of
the target network. During training, the current state will be passed to the predictor
and target network at each time step. RND then computes the error in the predictor
network’s prediction and updates its parameters accordingly. If the agent visits similar
states frequently, the predictor network’s loss will decrease since it will learn the target
network’s outputs for the corresponding type of state. This is possible since DNNs
generalize over their input data, meaning they will return similar outputs for similar
inputs. Thus, the predictor network’s loss encapsulates the agent’s lack of experience in
a given state, corresponding to the novelty. Note that, instead of RND, we could also
utilize other novelty measures [1, 24].

45

CHAPTER 5. DSMC EVALUATION STAGES WITH RESTART

Algorithm 11 Novelty Strategy
1: function selectCandidate(st, st+1)
2: if st /∈ I then
3: add (st,novelty(st)) to C
4: end if
5: end function
6:
7: function selectPseudos(C)
8: sort C according to novelty in descending order
9: Pj+1 = {}

10: for candidate c in C do
11: if distanceLimit(c, Pj+1) and |Pj+1| < B then
12: add c to Pj+1
13: end if
14: end for
15: return Pj+1
16: end function

5.4. Application to Racetrack

Selecting a suitable distance limit is crucial for successfully applying EIDP and EPRP .
If the limit is too small, we may collect pseudo initial states that do not cover large
parts of the state space since states from the same state space regions likely have
similar qualifications, meaning that the most qualified candidates will be concentrated
in the same regions. If the distance limit is too large, we may inadvertently reject
the most qualified candidates during the selection process. Thus, choosing a distance
limit corresponds to trading off the qualification of pseudo initial states and state
space coverage. To find an appropriate distance limit, we can start with an initial
value and train EIDP /EPRP agents with increasing limits until we achieve satisfactory
performance. However, a more efficient approach is to construct distance limits using
domain knowledge, which is how we will define four limits to be used in the Racetrack
task. The first distance limit is called the single cell limit, and it requires that no
pseudo initial states may have the same x and y coordinates, meaning that for every
map cell, we only consider the most qualified candidate as pseudo initial state. This
way, we can avoid that pseudo initial states accumulate on single cells. We can achieve
a larger distance limit by grouping single map cells into regions and only considering
the most qualified candidates of each region as pseudo initial states. To do so, we lay
a grid over the map so that it partitions it into square-shaped regions, among which
we choose the best candidates. However, if we can only select less than B pseudo
initial states sP

i ∈ Pj+1 from the regions, we will identify the remaining most qualified
candidates using the single cell distance limit and add them to Pj+1 until we have added
all candidates or |Pj+1| = B holds. In our experiments, we will group the cells into 2 by

46

5.4. APPLICATION TO RACETRACK

2 and 3 by 3 regions, an example of which is shown in Figure 5.3. We will call these
two distance limits 2 × 2 regions and 3 × 3 regions.

Figure 5.3 2 × 2 (left) and 3 × 3 (right) regions on the Maze map.

Our last distance limit is called the max distance limit and it aims to select pseudo
initial states sP

i ∈ Pj+1 that cover as much of the state space as possible. Therefore, we
require that every candidate c we add to Pj+1 must fulfill

c = argmax
c∈C

min
sP

i ∈Pj+1

∥∥∥c, sP
i

∥∥∥
2
,

meaning that c has the largest minimum euclidean distance to all of the already selected
pseudo initial states sP

i ∈ Pj+1. Note that we take the norm over the entire states,
meaning that, unlike the previous distance limits, this limit considers the states’ velocities
in addition to their coordinates.

47

6. Results

This chapter will investigate the results of using DSMC ESR to train Racetrack agents.
We examine EIDP

G/EPRP
G and EIDP

R/EPRP
R using DQN and DQNPR as their basis,

respectively. Furthermore, we will discuss experiments using EIDP
G with PPO as its

basis. The experiments were conducted on the River-deadend, the Maze, and the
Hansen-bigger maps, which were introduced in section 2.4. A noise probability of 50%
was used on River-deadend, and a lower noise probability of 25% was used on the more
challenging Maze and Hansen-bigger maps. In all experiments, the random restart
setting was deactivated such that the initial states I were located only on the starting
line, allowing us to show that the DSMC ESR algorithms work in tasks where I only
covers a small portion of the state space.

The goal of the EIDP
G/EPRP

G experiments was to train agents that drive from the
starting line to a goal line without crashing. This corresponds to having a high GRP
in all initial states I, so our primary performance metric will be the average GRP in
I, which we call the initial GRP. It is also interesting to assess the agent’s GRP when
starting in states that are not in I since DSMC ESR restarts episodes in various state
space regions. Thus, we will use the average GRP across the whole state space as a
secondary performance metric, which we approximate by taking the average over the
agent’s GRP when starting on each cell of the map. We will refer to this metric as the
global GRP.

The EIDP
R/EPRP

R experiments aimed to train agents that achieve high average returns
when driving from the starting line while only earning a minimum number of large
negative returns, which are due to crashing. Thus, we will use the average expected
return and average return variance in I as our primary performance metrics, which we
call the initial return and initial variance. Similarly to the EIDP

G/EPRP
G experiments,

we will use the agent’s average expected return when starting on each map cell, called
the global return, as our secondary performance metric.

Similar to Gros et al. [16], we saved the agents’ policies during training at regular
intervals and then, for each agent type, evaluated all stored policies with regard to the
primary performance metrics.

6.1. EIDP
G and EPRP

G Results

The first experiments incorporated training EIDP
G and EPRP

G agents. Additionally, DQN
and DQNPR agents were trained as performance baselines. The EIDP

G/EPRP
G agents

49

CHAPTER 6. RESULTS

were trained using the four pseudo initial state selection strategies and four distance
limits, totaling 34 agent types, including the baselines. For each agent type, the training
was run on each map for E = 100.000 episodes and repeated five times using different
random seeds, resulting in a total of 510 agents. The EIDP

G/EPRP
G agents selected and

evaluated the pseudo initial states every U = 10.000 episodes and evaluated the original
initial states every L = 100 episodes. The maximum number of pseudo initial states in
each iteration was chosen as

B = |free map cells|
4 ,

and the lower and upper pseudo initial state region priority bounds were both set to
ψmin = ψmax = 0.2. The DSMC ESR agents that utilized the crash strategy stored
the state in which they were n = 5 steps ago as a candidate whenever they crashed.
This hyperparameter was chosen by training agents with increasing values of n until
we achieved adequate performance. The architecture of the Q-network was the same
as depicted in Figure 3.4. A full list of hyperparameter choices can be found in the
appendix A.1. The experiments were run on an Apple M1 Pro CPU with 10 cores and
took approximately 224 hours (EIDP

G: 70 hours, EPRP
G: 154 hours) to complete.

Figure 6.1 and Figure 6.2 show the initial GRPs of the best-performing baseline agents
and best-performing EIDP

G/EPRP
G agents for each pseudo initial state selection strategy.

A table containing the configurations of all best-performing agents can be found in
the appendix A.2. We can see that EIDP

G outperforms the DQN baselines in 9 out of
12 instances, and EPRP

G outperforms the DQNPR baselines in 10 out of 12 instances.
Furthermore, EPRP

G attained equal or higher initial GRPs than EIDP
G in all cases except

for the value strategy agent on the Maze map. For both EIDP
G and EPRP

G, we can see
that the improvements over the baselines are relatively small on the River-deadend map,
which is likely due to this map being unchallenging, making it difficult to outperform
baselines that already achieve very high initial GRPs. However, it is remarkable that in
both cases, the random strategy agents achieved an initial GRP of 1.0, meaning that
they learned perfectly safe driving behavior. On the more challenging Maze map, we
see that EIDP

G could only outperform DQN by 3% using the value or novelty strategy,
whereas all EPRP

G agents achieved higher initial GRPs than DQNPR, with improvements
of up to 15%. The fact that the EPRP

G agent that used the novelty strategy achieved
the highest initial GRP suggests that focusing on unexplored state space regions is
beneficial on the Maze map. On Hansen-bigger, it is striking that neither DQN nor
DQNPR learned to reach the goal line, yet all EPRP

G/EIDP
G agents attained high initial

GRPs.

50

6.1. EIDP
G AND EPRP

G RESULTS

Figure 6.1 Initial GRPs of the best-performing EIDP
G and DQN agents.

Figure 6.2 Initial GRPs of the best-performing EPRP
G and DQNPR agents.

We can illustrate which states the selection strategies selected as pseudo initial states
by counting for each cell how often a pseudo initial state was located on it and then
visualizing these counts as heatmaps, which we call pseudo heatmaps. We will also
annotate each heatmap with the distance limit that the corresponding agent utilized.
To gain further insights into how the pseudo initial state selection strategies influenced
the training, we will compare the pseudo, considered states, and global GRP heatmaps
of some of the best-performing DSMC ESR and baseline agents on all three maps.

Figures 6.3, 6.4, 6.5 show the pseudo, considered states, and global GRP heatmaps of
the EIDP

G and baseline agents, trained on the River-deadend map. On the River-deadend

51

CHAPTER 6. RESULTS

map, the random, crash, and novelty strategy agents outperformed DQN in terms of
initial GRP. If we compare their pseudo initial states heatmaps to those of the value
strategy agent, we can see that they selected significantly more states from the map’s
center areas. Subsequently, we observe in the considered states heatmaps of the random,
crash, and novelty strategy agents that they considered these areas more intensely for
training than the value strategy, DQN, and DQNPR agents. Therefore, we can see in
the global GRP heatmaps that these agents attained higher GRPs in the central map
areas, leading to higher global GRPs. The random, crash, and novelty agents likely
achieved higher initial GRPs than the DQN agent because they could reach the goal line
from more of the map’s central areas. However, reaching a goal from the starting line
only requires driving in a straight line, making it unlikely for agents to enter the central
map areas, which could explain why the agents only achieved small improvements.

Figure 6.3 Pseudo heatmaps of the best-performing EIDP
G agents on River-

deadend.

52

6.1. EIDP
G AND EPRP

G RESULTS

Figure 6.4 Considered states heatmaps of the best-performing EIDP
G,

DQNPR, and DQN agents on River-deadend.

Figure 6.5 Global GRP heatmaps of the best-performing EIDP
G, DQNPR,

and DQN agents on River-deadend.

53

CHAPTER 6. RESULTS

Figures 6.6, 6.7, 6.8 show the pseudo, considered states, and global GRP heatmaps
of the EPRP

G and baseline agents, trained on the Maze map. The pseudo heatmaps
show that the random, value, and novelty strategy agents evenly distributed the pseudo
initial states across the whole Maze map, whereas the crash strategy agent neglected
some of the upper and lower map areas. We observe in the considered states heatmaps
that the EPRP

G agents considered states on the direct path through the Maze map less
than DQN and DQNPR, but focused noticeably more on the remaining map areas. The
global GRP heatmaps show that the crash, value, and novelty strategy agents achieved
drastically higher GRPs than the baseline agents in the map areas beyond the direct
goal path, whereas the random strategy agent only attained higher GRPs in some areas.
This suggests that the EPRP

G agents that achieved higher initial GRPs than the DQN
and DQNPR agents did so because they could reach the goal line from various map
areas, whereas the DQN and DQNPR agents were unlikely to reach the goal once they
deviated from the direct path to the goal.

Figure 6.6 Pseudo heatmaps of the best-performing EPRP
G agents on Maze.

54

6.1. EIDP
G AND EPRP

G RESULTS

Figure 6.7 Considered states heatmaps of the best-performing EPRP
G,

DQNPR, and DQN agents on Maze.

Figure 6.8 Global GRP heatmaps of the best-performing EPRP
G, DQNPR,

and DQN agents on Maze.

55

CHAPTER 6. RESULTS

In Figures 6.9, 6.10, 6.11, we can see the heatmaps of the EPRP
G and baseline agents,

trained on the Hansen-bigger map. The first noticeable result is that the baselines’ global
GRP heatmaps show small average GRPs of 7% and 1%. We see in the corresponding
considered states heatmaps that this is due to not reaching the goal line. However,
all EPRP

G agents reach the goal and achieve a high global GRP. This highlights the
importance of using a lower bound ψmin for the pseudo initial state region priority ψ
since otherwise, the EPRP

G agents would not have utilized pseudo initial state regions as
long as they could not reach the goal from the starting line. The pseudo initial states
collected by the random, value, and novelty strategy agents cover all map areas. On
the contrary, the crash strategy selected pseudo initial states on the racetrack’s center,
forming a path from start to goal. This pattern translates to the considered states,
which can also be seen in the considered states of the other EPRP

G agents. Since the
EPRP

G agents attained high initial and global GRPs, we can conclude that focusing on
the center areas of Hansen-bigger is more relevant than exploring its edges. Comparing
the EPRP

G agents’ global GRP heatmaps, we observe that all achieve higher GRPs on
the map’s right areas than on its left areas. This indicates that navigating through
Hansen-bigger’s left part poses the greatest challenge for reaching the goal line.

Figure 6.9 Pseudo heatmaps of the best-performing EPRP
G agents on Hansen-

bigger.

56

6.1. EIDP
G AND EPRP

G RESULTS

Figure 6.10 Considered states heatmaps of the best-performing EPRP
G,

DQNPR, and DQN agents on Hansen-bigger.

Figure 6.11 Global GRP heatmaps of the best-performing EPRP
G, DQNPR,

and DQN agents on Hansen-bigger.

57

CHAPTER 6. RESULTS

6.2. EIDP
R and EPRP

R Results

Here, we will discuss the results of training EIDP
R/EPRP

R agents. Initial experiments
utilized the same training setup as the EIDP

G/EPRP
G experiments. However, they showed

that the training progressed significantly slower when evaluating the expected return
instead of evaluating the GRP since the evaluation stages required much more time
to compute the evaluation values. Therefore, we made the following adjustments to
the training setup: For each agent type, the training was repeated only 3 times with
different random seeds, and the EIDP

R/EPRP
R agents only evaluated the original initial

state regions every L = 500 episodes. The experiments took approximately 127 hours
(EIDP

R: 50 hours, EPRP
R: 57 hours) to complete.

Figure 6.12 shows the initial returns of the best-performing EIDP
R and DQN agents and

Figure 6.13 shows their achieved initial variances. On the River-deadend map, we can
see that all EIDP

R agents achieved higher initial returns and lower initial variances than
DQN, indicating that the agents could reduce the number of situations in which they
earned large negative returns. On the Maze map, only the EIDP

R agent that utilized the
value strategy could match the baseline’s initial return. However, the agent achieved a
noticeably lower initial variance. Lastly, we see that the DQN agent failed to attain a
suitable initial return on the Hansen-bigger map, whereas the EIDP

R agents achieved
high initial returns and low variances.

58

6.2. EIDP
R AND EPRP

R RESULTS

Figure 6.12 Initial returns of the best-performing EIDP
R and DQN agents.

Figure 6.13 Initial variances of the best-performing EIDP
R and DQN agents.

59

CHAPTER 6. RESULTS

In Figure 6.14 and Figure 6.15 we can see the initial returns and initial variances of the
best-performing EPRP

R and DQNPR agents. Contrary to the EIDP
R agents, the EPRP

R

agents could neither achieve higher initial returns nor lower initial variances than the
DQNPR baseline on the River-deadend map. On the Maze map, the random, crash,
and value strategy agents performed similarly to the DQNPR baseline, but the EPRP

R

agent that utilized the novelty strategy achieved a significantly higher initial return and
lower initial variance. On the Hansen-bigger map, we observe the same behavior as in
the EIDP

R experiments.

Figure 6.14 Initial returns of the best-performing EPRP
R and DQNPR agents.

Figure 6.15 Initial variances of the best-performing EPRP
R and DQNPR

agents.

60

6.2. EIDP
R AND EPRP

R RESULTS

As in the previous section, we will investigate how some of the best-performing agents
behaved during training. Figures 6.16, 6.17, 6.18 show the pseudo, considered states,
and global return heatmaps of the best-performing EIDP

R and baseline agents on the
River-deadend map. We can see in the pseudo heatmaps that the random, value, and
novelty strategy agents selected pseudo initial states across the whole map, whereas the
crash strategy agent solely selected states on the direct paths between starting line and
goal lines. Thus, we observe in the considered states heatmaps that the agents explored
the map more thoroughly than the DQN, DQNPR, and crash strategy agents. The
global GRP heatmaps show that all EIDP

R agents achieved higher global returns than
the DQN and DQNPR agents, which is likely why most of them also achieved higher
initial returns and lower initial variances.

Figure 6.16 Pseudo heatmaps of the best-performing EIDP
R agents on River-

deadend.

61

CHAPTER 6. RESULTS

Figure 6.17 Considered states heatmaps of the best-performing EIDP
R,

DQNPR, and DQN agents on River-deadend.

Figure 6.18 Global GRP heatmaps of the best-performing EIDP
R, DQNPR,

and DQN agents on River-deadend.

62

6.2. EIDP
R AND EPRP

R RESULTS

In Figures 6.19, 6.20, 6.21, we see the pseudo, considered states, and global return
heatmaps of the best-performing EPRP

R and baseline agents. The pseudo heatmaps show
that the novelty strategy agent selected pseudo initial states that were mostly located
on the same cells, yet the other EPRP

R agents selected states from a large portion of
map cells. However, the only difference that we can observe in the considered states
heatmaps is that the novelty strategy agent did not focus on states from the map’s lower
areas, whereas the other EPRP

R agents considered the areas beyond the direct path
through the Maze map evenly. In general, all EPRP

R agents considered these map areas
significantly more than the DQN and DQNPR agents. Therefore, the EPRP

R agents
achieve much higher global returns than the DQN and DQNPR agents. Based on these
results, it is remarkable that the only EPRP

R agent that achieved a higher initial return
and a lower initial variance compared to a baseline agent was the novelty strategy agent,
which outperformed the DQNPR agent.

Figure 6.19 Pseudo heatmaps of the best-performing EPRP
R agents on Maze.

63

CHAPTER 6. RESULTS

Figure 6.20 Considered states heatmaps of the best-performing EPRP
R,

DQNPR, and DQN agents on Maze.

Figure 6.21 Global GRP heatmaps of the best-performing EPRP
R, DQNPR,

and DQN agents on Maze.

64

6.2. EIDP
R AND EPRP

R RESULTS

In Figures 6.22, 6.23, 6.24, we can observe that the best-performing EIDP
R and baseline

agents behaved on the Hansen-bigger map similarly to the best-performing EPRP
G and

baseline agents in Figures 6.9, 6.10, 6.11. All EIDP
R agents selected pseudo initial states

across the whole map, allowing them to reach the goal line, whereas the DQN and
DQNPR agents remained stuck in the map’s left part. Thus, the EIDP

R agents achieved
high global returns, which enabled them to attain high initial returns and low initial
variances.

Figure 6.22 Pseudo heatmaps of the best-performing EIDP
R agents on Hansen-

bigger.

65

CHAPTER 6. RESULTS

Figure 6.23 Considered states heatmaps of the best-performing EIDP
R,

DQNPR, and DQN agents on Hansen-bigger.

Figure 6.24 Global GRP heatmaps of the best-performing EIDP
R, DQNPR,

and DQN agents on Hansen-bigger.

66

6.3. PPO AS THE BASIS OF EIDP
G

6.3. PPO as the Basis of EIDP
G

As we presented in chapter 3, policy-gradient algorithms, such as PPO, have a funda-
mentally different approach to learning policies than value-based algorithms like DQN
and DQNPR. Therefore, it is interesting to investigate using PPO as the underlying
training algorithm of DSMC ESR. Since PPO cannot utilize a replay buffer, we will
only conduct experiments with EIDP .

The first experiments involved training EIDP
G agents and utilized the same training

setup as the DQN-based EIDP
G experiments. However, we observed that the PPO-based

agents learned very slowly since all of them either could not reach the goal line or
achieved an insufficient initial GRP. To ensure that these behaviors were not due to
inadequate hyperparameter choices, a grid search over the actor network’s learning rate
αActor ∈ {5e−4, 8e−4} and the entropy coefficient c2 ∈ {1e−3, 4e−3} was conducted in
the following experiments. These showed to be the most influential hyperparameters,
and their initial values αActor = 5e−4 and c2 = 1e−3 were taken from an existing
implementation of the actor-critic algorithm A2C [22]. Furthermore, the number of
episodes was increased to E = 400.000. These modifications significantly prolonged
the required training time, so the experiments were not repeated for every distance
limit. Instead, we experimentally selected a suitable distance limit for each EIDP

G

agent on each map. Furthermore, the lower pseudo initial state region priority bound
ψmin was increased to ψmin = 0.4 to increase exploration. Two DNNs with the same
architecture as in Figure 3.4 were used for the actor and critic networks, where the
latter had only one output node. The remaining hyperparameters that are not specific
to PPO had the same values as in the DQN-based experiments, and a complete list of
hyperparameters can be found in the appendix A.1. The training took approximately
45 hours to complete.

67

CHAPTER 6. RESULTS

We see in Figure 6.25 that the best-performing PPO and EIDP
G agents could only achieve

non-zero initial GRPs on the River-deadend map, where the value strategy agent was
able to outperform the baseline, although with an insufficient initial GRP.

Figure 6.25 Initial GRPs of the best-performing EIDP
G and PPO agents.

To understand why these agents performed worse than the agents in the DQN-based
experiments, we will investigate which pseudo initial states the strategies selected, which
states were considered for training, and how this affected the global GRP. Note that
the bounds in the considered states heatmaps were lowered by a factor of 10.

68

6.3. PPO AS THE BASIS OF EIDP
G

Figures 6.26, 6.27, 6.28 show the pseudo, considered states, and global GRP heatmaps
of the best-performing EIDP

G and PPO agents on River-deadend. The pseudo heatmaps
show similar patterns as those of the DQN-based EIDP

G agents since the PPO-based EIDP
G

agents selected pseudo initial states in all map areas, except for the crash strategy agent.
However, all EIDP

G agents demonstrate a lack of exploration in their considered states
heatmaps since they mainly considered cells close to the starting line. This deficiency is
even more severe in the PPO agent’s considered states heatmap. Comparing the global
GRP heatmaps of the random and crash strategy with that of the PPO agent suggests
that they all learned a similar behavior of driving right and in a straight line. The
novelty strategy also learned such behavior, but it drove left. This leads to a smaller
global GRP since the agent will more often get stuck in the map’s dead end. The value
strategy achieved the highest global GRP because its GRP exceeded 25% on more cells
than the other agents. This suggests that the agent learned a more complex policy,
allowing it to reach goal lines by driving in multiple directions, which also lead to a
higher initial GRP. The better performance of the value strategy agent is likely due to
higher exploration since it considered the most states from the map’s center.

Figure 6.26 Pseudo heatmaps of the best-performing EIDP
G agents on River-

deadend.

69

CHAPTER 6. RESULTS

Figure 6.27 Considered states heatmaps of the best-performing EIDP
G and

PPO agents on River-deadend.

Figure 6.28 Global GRP heatmaps of the best-performing EIDP
G and PPO

agents on River-deadend.

70

6.3. PPO AS THE BASIS OF EIDP
G

Figures 6.29, 6.30, 6.31 depict the pseudo, considered states, and global GRP heatmaps
of the Maze map. We observe that the EIDP

G agents selected states from most parts of
the map. However, we can see in none of their considered states heatmaps that they
focused the training on a path from the starting line to the goal line. The random, crash,
and value strategy agents’ heatmaps show multiple small map areas with bright yellow
cells, indicating that the agents were stuck in these areas since we cannot see any pattern
resembling a path through the Maze. We see in the PPO and novelty strategy agents’
heatmaps that they rarely visited areas beyond the starting line, although the novelty
strategy agent explored the map significantly more than the PPO agent. The global
GRP heatmaps show that no agents learned to reach the goal line from a considerable
number of map areas.

Figure 6.29 Pseudo heatmaps of the best-performing EIDP
G agents on Maze.

71

CHAPTER 6. RESULTS

Figure 6.30 Considered states heatmaps of the best-performing EIDP
G and

PPO agents on Maze.

Figure 6.31 Global GRP heatmaps of the best-performing EIDP
G and PPO

agents on Maze.

72

6.3. PPO AS THE BASIS OF EIDP
G

In Figures 6.32, 6.33, 6.34, we can see the pseudo, considered states, and global GRP
heatmaps on the Hansen-bigger map. The pseudo heatmaps show that the random
and value strategy agents selected only a few pseudo initial states on the map’s right
side, whereas the crash and novelty strategy agents did not select any states from these
areas. Looking at the considered states heatmaps, we see that only the random and
value strategy agents selected pseudo initial states from the map’s right side because
only they could drive to these areas. Since they were the only ones to reach the goal
line, the random and value strategy agents attained the highest global GRPs with 24%
and 21%, respectively. However, we see in their global GRP heatmaps that they could
only reach the goal from cells close to the goal line.

Figure 6.32 Pseudo heatmaps of the best-performing EIDP
G agents on Hansen-

bigger.

73

CHAPTER 6. RESULTS

Figure 6.33 Considered states heatmaps of the best-performing EIDP
G and

PPO agents on Hansen-bigger.

Figure 6.34 Global GRP heatmaps of the best-performing EIDP
G and PPO

agents on Hansen-bigger.

74

6.4. USING THE SINGLE CELL LIMIT

In section 3.3, we discussed that policy-gradient algorithms are prone to get stuck in
local optima and often suffer from gradient estimates with high variance. These inherent
problems and the fact that PPO cannot utilize a replay buffer may explain why the
PPO-based EIDP

G agents learned so slowly in comparison to the DQN-based EIDP
G

agents. Unfortunately, exactly determining which of these problems caused the poor
training results requires further analysis beyond the scope of this thesis. However, the
results on River-deadend are good examples of the agents getting stuck in local optima.
Driving in a straight line from the starting point is a simple behavior that achieves a
decent average return. To increase their returns, agents need to learn to drive in curves,
which would at first lead to many crashes and a decreased average return. Therefore, the
„drive-in-a-straight-line“ policy represents a local optimum in which all agents, except
the value strategy agent, got stuck. This is further confirmed by the fact that these
agents already achieve the same initial and global GRPs after 100.000 episodes, and
their policies do not noticeably change during the remaining 300.000 episodes. Getting
stuck in local optima may also explain the unusual patterns in the considered states
heatmaps of the EIDP

G agents that utilized the random, crash, and value strategies on
the Maze map. We observed in these heatmaps multiple small map regions on which
the training was heavily focused but no clear pattern indicating that the agents found a
path to the goal line. This could be caused by the agents learning to only drive in these
regions, allowing them to avoid immediately crashing and thus large negative rewards.
Attaining larger returns would require the agents to drive beyond these map regions,
which would, at first, result in more crashes, leading to decreased returns.

It is unlikely that the underwhelming results of the PPO-based experiments are due to
bad hyperparameter choices since we conducted a grid search over the most influential
hyperparameters. Furthermore, additional experiments using an existing A2C imple-
mentation showed the same lack of performance. Therefore, it is likely that the number
of training episodes was too small to compensate for PPO’s comparatively slow learning
speeds in the Racetrack task. For this reason, we did not expect PPO-based EIDP

R

to perform better than PPO-based EIDP
G, so we did not conduct the corresponding

experiments.

We saw in all considered states heatmaps that the agents exhibited a lack of exploration.
It is reasonable to assume that given more training steps, the agents could gather
the necessary experiences to learn better policies. In such a scenario, we can expect
the EIDP

G agents to learn faster than the PPO agents since they explored the maps
significantly more than the PPO agents.

6.4. Using the Single Cell Limit

The single cell limit imposes the least constraints on prospective pseudo initial states,
meaning that their qualifications, evaluated by the corresponding selection strategies, are
the main factor in deciding which candidates will be selected. Thus, the strategies behave

75

CHAPTER 6. RESULTS

the most characteristically when using this distance limit, making it insightful to analyze
their selections. In the following, we will investigate the pseudo heatmaps of EIDP

G

agents that used the single cell distance limit since their behaviors are representative of
the other DSMC ESR agents.

In Figure 6.35, we can see the pseudo heatmaps of River-deadend. We observe that the
random strategy agent selected states across the whole map, with a tendency for the
outer areas. The agent drove through these areas in most episodes because traversing
them is the quickest way of reaching a goal line from the start. Since this strategy selects
states that the agent encounters with uniform probability, it collects more pseudo initial
states in such frequently visited regions. The crash strategy agent’s pseudo heatmap
shows a distinctively different behavior of concentrating the pseudo initial states on the
outer areas and, to a lesser extent, on the center areas. This indicates that mistakes
leading to crashes usually occur when the agent is still on a direct path to a goal line
and not when it has already deviated from such paths. We can observe a similar pattern
in the value strategy agent’s heatmap, which shows that this strategy selects states
located on paths to goal states. In the novelty strategy agent’s heatmap, we see that
states close to the starting line have only been selected once, and in fact, these states
were used as pseudo initial states only during the first evaluation stage. This is because
these states were located in a frequently visited area and quickly became familiar to the
agent. The remaining pseudo initial states were selected mainly from the center and
right map areas. Comparing this to the considered states heatmap in Figure 6.38 shows
that these were rarely visited areas, from which we can follow that random network
distillation successfully identified novel states.

Figure 6.35 Pseudo heatmaps of EIDP
G agents that utilized the single cell

distance limit on the River-deadend map.

76

6.4. USING THE SINGLE CELL LIMIT

In Figure 6.36, we see that all strategies behaved similarly on the Maze map. It is
clearly visible how the random strategy agent selected more states in the map’s center
areas, which were frequently visited. The crash strategy agent focused its pseudo initial
state selection on only a few areas but did not reach the goal line, suggesting that the
agent could not learn to avoid crashing after starting in the pseudo initial states. The
value strategy agent’s heatmap shows it focused on the shortest path to the goal while
neglecting the rest of the map, whereas the novelty strategy selected pseudo initial
states in an almost opposite way. This highlights how the value and novelty strategies
focus on exploitation and exploration.

Figure 6.36 Pseudo heatmaps of EIDP
G agents that utilized the single cell

distance limit on the Maze map.

77

CHAPTER 6. RESULTS

In the pseudo heatmaps of Hansen-bigger, shown in Figure 6.37, we see that the random
strategy agent’s heatmap depicts that significantly more pseudo initial states were
selected on the map’s left side, suggesting that the agent struggled to drive beyond
this area. The crash strategy agent’s selected states formed a pattern resembling a
path from start to goal through the center of the racetrack. This further validates that
fatal mistakes mostly happen when the agent is still on the correct path. Although
less distinct, we see the same pattern of selected states with the value strategy agent.
In contrast to the random strategy, the novelty strategy agent primarily focused on
the right part of the map, which seems difficult to reach since Figure 6.38 shows that
only a few states were considered from this area. Thus, the right side of Hansen-bigger
contained the most novel states.

Figure 6.37 Pseudo heatmaps of EIDP
G agents that utilized the single cell

distance limit on the Hansen-bigger map.

78

6.5. SUMMARY

Figure 6.38 Considered states heatmaps of the novelty strategy agent that
utilized the single cell distance limit on all maps.

6.5. Summary

Our experiments showed that the DQN-based EIDP and DQNPR-based EPRP algo-
rithms could achieve higher initial GRPs and higher initial returns with lower variances
compared to the regular DQN and DQNPR algorithms. In most instances, we observed
that the DSMC ESR agents explored the maps significantly more than the baseline
agents, enabling them to perform better when starting in various map regions. Therefore,
we followed that the DSMC ESR agents likely outperformed the baseline agents in the
initial states because they had a smaller chance of crashing once they deviated from the
direct paths between the starting and the goal line.

On the River-deadend map, our methods achieved only small improvements because it
is easy for agents to reach a goal line on this map without driving through various map
areas. Thus, the increased exploration had a smaller benefit for the DSMC ESR agents.
We achieved more extensive performance improvements on the Maze map since the
agents were much more likely to deviate from the direct path to the goal line. Therefore,
the DSMC ESR agents benefited significantly from the increased exploration. This need
for exploration also explains why the best-performing EIDP

G, EPRP
G, and EPRP

R agents
utilized the novelty strategy. The Hansen-bigger map posed a significant challenge to
the DQNPR and DQN agents since they could not reach the goal line. On the contrary,
all DSMC ESR agents performed very well since restarting episodes in states between
the starting and goal line allowed them to reach the goal line.

We generally saw no clear pattern indicating which strategies work best in which
scenarios, except for the novelty strategy on the Maze map. However, most of the

79

CHAPTER 6. RESULTS

best-performing DSMC ESR agents utilized distance limits larger than the single cell
limit, which enabled them to select pseudo initial states across all map areas. This
suggests that on the Racetrack benchmark, the DSMC ESR algorithms are not sensitive
to the selected pseudo initial state selection strategy when given a sufficiently large
distance limit.

We were unable to attain satisfactory performances in the PPO-based experiments,
which can be attributed to PPO learning significantly slower than DQN and DQNPR
in the Racetrack task. However, we observed that the DSMC ESR agents explored
the maps significantly more than the PPO agents, indicating that given more training
time, the DSMC ESR agents would attain suitable performance faster than the PPO
agents.

Lastly, we examined the locations of the pseudo initial states selected by DSMC ESR
agents that utilized the single cell limit. This showed us that the qualification measures
could significantly impact the pseudo initial state selection. We observed that the
random strategy covered all map areas with a tendency for frequently visited areas. The
crash and value strategies selected states that were located on the direct path between
the starting and goal lines. This suggests that fatal mistakes and significant drops in
state-values occur when agents deviate from these paths. The novelty strategy selected
states almost oppositely since its pseudo initial states were concentrated in the most
infrequently visited map areas.

80

7. Related Work

Collecting promising states and restarting episodes in them is a paradigm that has
been proven to be successful in DRL by the Go-Explore algorithms [9], which achieved
state-of-the-art performance on several hard-exploration Atari benchmarks. The au-
thors hypothesize that two main factors hinder an agent’s exploration and, thus, its
performance: Detachment occurs when an agent stops exploring promising state space
regions too early, which may cause it to forget how to return to them at later time steps.
Derailment occurs when agents fail to return to promising states because exploration
techniques, such as ϵ-greedy policies or entropy bonuses, induce randomness in their
decision-making. Go-Explore addresses these issues by strictly separating the returning
to states from exploring the state space. Starting with the initial states, Go-Explore
iteratively builds an archive of visited states suitable for exploration. Returning to an
archived state is then achieved by resetting the environment to that state, allowing the
agent to begin exploring. Thus, promising states will not be forgotten and can always
be returned to, which avoids detachment and derailment.

In Figure 7.1, we see a schematic of the basic Go-Explore algorithm. Each exploration
phase begins by sampling an archived state with a probability inversely proportional to
how often similar states have been visited in previous exploration phases. Afterward,
the algorithm returns to the selected state by resetting the environment, and the agent
begins exploring by taking random actions until the episode is finished. To update the
archive with the encountered states, Go-Explore maps each state to a lower-dimensional
cell representation such that only one state of each cell can be stored in the archive.
This is necessary because non-trivial tasks have gigantic state spaces, making storing
all states visited throughout the training intractable. If the archive entry of a cell
already stores a state, the new state replaces the old state only if it was encountered in
a better-performing trajectory than the old state. If no archive entry exists for a visited
state’s cell, a new entry is added, and the corresponding state is stored. The exploration
phase then repeats for several iterations, after which the robustification phase begins.
In this phase, the best-performing trajectories encountered during the exploration phase
are used to update the policy. To ensure the robustness of the policy, the authors add
stochasticity to the environment and train the agent on the best-performing trajectories
T using the backward algorithm [27]. This algorithm trains the agent to reach each
trajectory’s goal state s|T | ∈ T from every other state si ∈ T . Starting at s|T |−1, the
agent is trained to reach s|T | from si until it achieves suitable performance. This process
repeats for si−1 until the agent can reliably reach s|T | from s0. Once robustification is
completed, the next exploration phases begin.

In environments that do not allow resetting to an arbitrary state, we can use policy-based
Go-Explore, which enables returning to states, in step 2 of the exploration phase, by
using a policy that is conditioned on guiding the agent towards them. Once the agent

81

CHAPTER 7. RELATED WORK

Figure 7.1 Diagram of the Go-Explore algorithm.

reaches a state with the same cell representation as the desired state, the exploration
begins by conditioning the policy on reaching a state with a new cell representation.
The authors find that this policy-based exploration is superior to taking random actions
since, in their experiments, the agents discover significantly more states with unique
cell representations than the regular Go-Explore agents. The policy-based exploration
also allows using the gathered transitions to update the policy using a DRL algorithm,
in their case PPO, eliminating the need for a computationally expensive robustification
phase.

Although we developed DSMC ESR to increase safe behavior and not to increase
exploration, it shares many similarities with Go-Explore, making it interesting to
compare both methods. DSMC ESR starts episodes in previously encountered states
like the regular Go-Explore algorithm but then explores from its starting point according
to its policy, similar to policy-based Go-Explore. However, DSMC ESR does not explore
using a conditioned policy. This means our method’s agents do not explicitly try to
find new state space regions when episodes are restarted but focus on reaching a goal
state. Since DSMC ESR collects states from visited state space regions, we can still
achieve significant exploration by utilizing large distance limits, such that the pseudo
initial states are distributed across all visited regions, and by using the novelty strategy,
meaning we restart episodes in unexplored regions.

Instead of building an archive of all visited states like Go-Explore, DSMC ESR computes
a set of promising states between each evaluation stage in which later episodes will
restart. Thus, DSMC ESR may suffer from detachment, i.e., forgetting how to return to
promising states, since only the most recent pseudo initial states are stored. However,

82

we mitigate this problem by reusing pseudo initial states from previous iterations if the
agent could only discover fewer than B new candidates or if old pseudo initial states
were stored among the B most qualified new candidates. Go-Explore avoids excessive
memory requirements by archiving only one state for each cell representation. DSMC
ESR achieves this by clearing the set of stored candidates C after every evaluation stage
and by limiting the number of pseudo initial states to B.

Whereas Go-Explore restarts episodes in the least frequently visited archived states, the
DSMC ESR algorithm EIDP selects episodes’ initial states according to how poor the
agent’s behavior is in the corresponding initial state regions. We discussed that agents
tend to perform badly in unexplored state space regions, making it likely that EIDP

also restarts episodes in rarely visited states.

83

8. Conclusion

In this thesis, we developed an extension of the DSMC ES algorithms, called DSMC
ESR, to make their performance independent of the given task’s set of initial states.

We showed that using the DSMC ES algorithms is only sensible if the given task’s initial
states I cover a significant portion of the state space. Otherwise, the algorithms will
fail to focus the training on the state space regions where deficient behaviors occur.

We addressed the shortcomings of DSMC ES by developing the DSMC ESR algorithms.
To do so, we relied on the concept of restarting episodes in previously encountered
states, which we called pseudo initial states. This allowed us to focus the training
on state space regions where the agent behaved unsafely. We made the utilization of
pseudo initial states proportional to the agent’s performance in the initial states I, so
the training was only focused on pseudo initial states to the extent that it benefited
the performance in I. Furthermore, we introduced four pseudo initial state selection
strategies, which gave us additional control over which state space regions the training
was focused on. The random strategy selected states randomly, providing the agent
with a diverse set of pseudo initial states. The crash strategy selected states where
the agent made fatal decisions such that it learned to avoid them. The value strategy
selected states where the agent deviated from paths of high return so that it learned
to stay on them. The novelty strategy selected the most novel states to increase the
agent’s exploration.

Lastly, we evaluated the results of training DSMC ESR agents on the popular Racetrack
benchmark. We found that the EIDP

G / EPRP
G algorithms can achieve higher GRPs in

the initial states I and that the EIDP
R / EPRP

R algorithms can achieve higher expected
returns with lower variances in I compared to DQN and DQNPR. We followed that
these performance increases were likely due to the DSMC ESR agents being able to
drive in many more map areas than the DQN and DQNPR agents. Furthermore, we
found that the performance of the DSMC ESR algorithms was not sensitive with regard
to the utilized pseudo initial state section strategy, given that we enforced sufficient
distance between the pseudo initial states. Using PPO as the basis of EIDP

G showed how
PPO learned significantly slower than DQN and DQNPR on the Racetrack benchmark.
However, our methods could significantly increase exploration compared to the regular
PPO algorithm. Additionally, we compared in which map areas the pseudo initial state
selection strategies selected pseudo initial states to gain insights into how they could
affect an DSMC ESR agent’s training.

85

CHAPTER 8. CONCLUSION

8.1. Future Work

Since we developed DSMC ESR intending to make it applicable to any task, the logical
next step is to test it on other benchmarks and investigate whether it can achieve the
same performance improvements as in Racetrack.

We used in our work a fixed minimum distance limit to ensure that the pseudo initial
states cover a sufficient portion of the state space. However, gradually decreasing the
distance limit throughout the training might be advantageous. This means that at the
beginning of the training, we would focus on pseudo initial states that cover large parts
of the state space, and after sufficient exploration, we would focus on only the most
qualified pseudo initial states.

Another possibility for future work is the development of further pseudo initial state
selection strategies. A promising approach would be to select states according to the
policy’s uncertainty, which quantifies how uncertain the agent is about which action to
take in a given state.

One limitation of the DSMC ESR algorithms is that in tasks with high-dimensional
state representations, like RGB images, we might encounter memory issues when storing
visited states as candidates c ∈ C, despite clearing C after every evaluation stage. Thus,
a valuable addition to DSMC ESR might be to store candidates using a cell-based
archive as in Go-Explore [9].

86

Bibliography

[1] Joshua Achiam and Shankar Sastry. Surprise-based intrinsic motivation for deep
reinforcement learning, 2017.

[2] Laith Alzubaidi, Jinglan Zhang, Amjad J. Humaidi, Ayad Al-Dujaili, Ye Duan,
Omran Al-Shamma, J. Santamaría, Mohammed A. Fadhel, Muthana Al-Amidie,
and Laith Farhan. Review of deep learning: concepts, cnn architectures, challenges,
applications, future directions. Journal of Big Data, 8(1):53, Mar 2021.

[3] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony
Bharath. Deep reinforcement learning: A brief survey. IEEE Signal Processing
Magazine, 34(6):26–38, nov 2017.

[4] Christel Baier, Maria Christakis, Timo P. Gros, David Groß, Stefan Gumhold,
Holger Hermanns, Jörg Hoffmann, and Michaela Klauck. Lab conditions for
research on explainable automated decisions. In Fredrik Heintz, Michela Milano,
and Barry O’Sullivan, editors, Trustworthy AI - Integrating Learning, Optimization
and Reasoning, pages 83–90, Cham, 2021. Springer International Publishing.

[5] Josh Beitelspacher, Jason Fager, Greg Henriques, and Amy Mcgovern. Policy
gradient vs. value function approximation: A reinforcement learning shootout. 03
2006.

[6] Richard Bellman. Dynamic programming. Princeton University Press, 1957.

[7] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by
random network distillation, 2018.

[8] Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey,
Francesco Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego
de las Casas, Craig Donner, Leslie Fritz, Cristian Galperti, Andrea Huber, James
Keeling, Maria Tsimpoukelli, Jackie Kay, Antoine Merle, Jean-Marc Moret, Seb
Noury, Federico Pesamosca, David Pfau, Olivier Sauter, Cristian Sommariva,
Stefano Coda, Basil Duval, Ambrogio Fasoli, Pushmeet Kohli, Koray Kavukcuoglu,
Demis Hassabis, and Martin Riedmiller. Magnetic control of tokamak plasmas
through deep reinforcement learning. Nature, 602(7897):414–419, Feb 2022.

[9] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune.
First return, then explore. Nature, 590(7847):580–586, 2021.

[10] Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-

87

Bibliography

Paredes, Mohammadamin Barekatain, Alexander Novikov, Francisco J. R. Ruiz,
Julian Schrittwieser, Grzegorz Swirszcz, David Silver, Demis Hassabis, and Push-
meet Kohli. Discovering faster matrix multiplication algorithms with reinforcement
learning. Nature, 610(7930):47–53, Oct 2022.

[11] Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforce-
ment learning. Journal of Machine Learning Research, 16(1):1437–1480, 2015.

[12] Martin Gardner. Mathematical games. Scientific American, 229:104–109, 1973.

[13] Timo P. Gros. Tracking the race: Analyzing racetrack agents trained with imitation
learning and deep reinforcement learning. Master’s thesis, Saarland University,
2021.

[14] Timo P. Gros, David Groß, Stefan Gumhold, Jörg Hoffmann, Michaela Klauck,
and Marcel Steinmetz. Tracevis: Towards visualization for deep statistical model
checking. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Appli-
cations of Formal Methods, Verification and Validation: Tools and Trends, pages
27–46, Cham, 2021. Springer International Publishing.

[15] Timo P. Gros, Holger Hermanns, Jörg Hoffmann, Michaela Klauck, and Marcel
Steinmetz. Deep statistical model checking. In Alexey Gotsman and Ana Sokolova,
editors, Formal Techniques for Distributed Objects, Components, and Systems,
pages 96–114, Cham, 2020. Springer International Publishing.

[16] Timo P. Gros, Daniel Höller, Jörg Hoffmann, Michaela Klauck, Hendrik Meerkamp,
and Verena Wolf. Dsmc evaluation stages: Fostering robust and safe behavior in
deep reinforcement learning. In Alessandro Abate and Andrea Marin, editors, Quan-
titative Evaluation of Systems, pages 197–216, Cham, 2021. Springer International
Publishing.

[17] Timo P. Gros, Daniel Höller, Jörg Hoffmann, and Verena Wolf. Tracking the race
between deep reinforcement learning and imitation learning - extended version.
CoRR, abs/2008.00766, 2020.

[18] Thomas Hérault, Richard Lassaigne, Frédéric Magniette, and Sylvain Peyronnet.
Approximate probabilistic model checking. In Bernhard Steffen and Giorgio Levi,
editors, Verification, Model Checking, and Abstract Interpretation, pages 73–84,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[19] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2014.

[20] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al
Sallab, Senthil Yogamani, and Patrick Px00E9;rez. Deep reinforcement learning for

88

Bibliography

autonomous driving: A survey. IEEE Transactions on Intelligent Transportation
Systems, 23(6):4909–4926, 2022.

[21] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep
reinforcement learning, 2015.

[22] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timo-
thy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. 2016.

[23] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning, 2013.

[24] Georg Ostrovski, Marc G. Bellemare, Aaron van den Oord, and Remi Munos.
Count-based exploration with neural density models, 2017.

[25] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander
Novikov, Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias
Springenberg, Tom Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess,
Yutian Chen, Raia Hadsell, Oriol Vinyals, Mahyar Bordbar, and Nando de Freitas.
A generalist agent, 2022.

[26] Herbert E. Robbins. A stochastic approximation method. Annals of Mathematical
Statistics, 22:400–407, 2007.

[27] Tim Salimans and Richard Chen. Learning montezuma’s revenge from a single
demonstration, 2018.

[28] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experi-
ence replay, 2015.

[29] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Lau-
rent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore
Graepel, Timothy Lillicrap, and David Silver. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839):604–609, dec 2020.

[30] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.
High-dimensional continuous control using generalized advantage estimation, 2015.

[31] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms, 2017.

89

Bibliography

[32] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018.

[33] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning
with double q-learning, 2015.

[34] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning,
8(3):279–292, May 1992.

[35] Dongkuan Xu and Yingjie Tian. A comprehensive survey of clustering algorithms.
Annals of Data Science, 2(2):165–193, Jun 2015.

90

Appendices

91

A. Appendix

A.1. Hyperparameters

Hyperparameters that are used in multiple algorithms but only have one table entry
have the same value in all instances.

Parameter Description Value

DQN:

E Number of episodes 100.000
T Maximum episode length 100
γ Discount factor 0.99
K Q-network update frequency 4

Batch size 512
τ Soft update coefficient 0.001

ϵstart Initial exploration coefficient of ϵ-greedy policy 1
ϵdecay Decay factor of ϵ in each episode 0.999
ϵend Value of ϵ at the end of the training 0.05
|D| Size of replay buffer 108

αAdam Learning rate of Adam optimizer 8 · 10−4

s Seeds used for each agent type 0, 1, 2, 3, 4

DQNPR:

α Prioritization coefficient for sampling priorities 1
ϵp Minimum priority 10−6

93

APPENDIX A. APPENDIX

PPO:

E Number of episodes 400.000
K Batch size 4
M Number of epochs 4
ϵclip Clipping range 0.2

αActor Learning rate of actor 5 · 10−4,
8 · 10−4

αCritic Learning rate of critic 10−3

c2 Entropy weight 10−3,
4 · 10−3

λ Bias-variance trade-off parameter in GAE 0.9

EIDP
G/ EPRP

G:

W Number of pre-training episodes 10.000
L Original initial state region evaluation frequency 100
U Pseudo initial state region evaluation frequency 10.000

ψmin Lower pseudo initial state region priority bound 0.2,
0.4 (PPO)

ψmax Upper pseudo initial state region priority bound 0.2
B Maximum size of Pj

|free map cells|
4

ϵp Minimum priority 0.2
ϵerr Error in DSMC’s evaluation 0.05
κ Probability that DSMC’s error is at most ϵerr 0.05
n Crash strategy n 5

EIDP
R/ EPRP

R:

L Original initial state region evaluation frequency 500
ϵerr Error in DSMC’s evaluation 4
s Seeds used for each agent type 0, 1, 2

94

A.2. CONFIGURATIONS OF THE BEST-PERFORMING AGENTS

A.2. Configurations of the Best-performing Agents

Strategy Distance limit Map

EIDP
G:

Random Max distance

River-deadendCrash Regions 3 × 3
Value Single cell

Novelty Regions 3 × 3

Random Single cell

MazeCrash Regions 3 × 3
Value Max distance

Novelty Max distance

Random Regions 2 × 2

Hansen-biggerCrash Single cell
Value Regions 3 × 3

Novelty Regions 3 × 3

EPRP
G:

Random Max distance

River-deadendCrash Single cell
Value Single cell

Novelty Max distance

Random Max distance

MazeCrash Regions 2 × 2
Value Max distance

Novelty Max distance

Random Regions 2 × 2

Hansen-biggerCrash Single cell
Value Max distance

Novelty Max distance

95

APPENDIX A. APPENDIX

Strategy Distance limit Map

EIDP
R:

Random Regions 3 × 3

River-deadendCrash Single cell
Value Max distance

Novelty Regions 2 × 2

Random Regions 2 × 2

MazeCrash Max distance
Value Regions 3 × 3

Novelty Regions 3 × 3

Random Single cell

Hansen-biggerCrash Regions 2 × 2
Value Regions 3 × 3

Novelty Regions 3 × 3

EPRP
R:

Random Regions 3 × 3

River-deadendCrash Max distance
Value Regions 3 × 3

Novelty Regions 3 × 3

Random Regions 3 × 3

MazeCrash Regions 2 × 2
Value Regions 2 × 2

Novelty Regions 2 × 2

Random Regions 3 × 3

Hansen-biggerCrash Max distance
Value Regions 2 × 2

Novelty Max distance

96

A.2. CONFIGURATIONS OF THE BEST-PERFORMING AGENTS

Strategy Distance limit Map

EIDP
G with PPO as basis:

Random Single cell

River-deadendCrash Single cell
Value Regions 2 × 2

Novelty Regions 2 × 2

Random Regions 2 × 2

MazeCrash Regions 2 × 2
Value Regions 3 × 3

Novelty Regions 2 × 2

Random Single cell

Hansen-biggerCrash Single cell
Value Max distance

Novelty Max distance

Strategy/Baseline Learning rate Entropy coefficient Map

PPO 5 · 10−4 1 · 10−3

River-deadend
Random 8 · 10−4 1 · 10−3

Crash 8 · 10−4 1 · 10−3

Value 5 · 10−4 1 · 10−3

Novelty 5 · 10−4 1 · 10−3

PPO 5 · 10−4 4 · 10−3

Maze
Random 5 · 10−4 4 · 10−3

Crash 5 · 10−4 4 · 10−3

Value 5 · 10−4 1 · 10−3

Novelty 8 · 10−4 4 · 10−3

PPO 5 · 10−4 4 · 10−3

Hansen-bigger
Random 5 · 10−4 1 · 10−3

Crash 8 · 10−4 1 · 10−3

Value 8 · 10−4 4 · 10−3

Novelty 5 · 10−4 1 · 10−3

97

	Introduction
	Background
	Sequential Decision-making Problems
	Markov Decision Processes
	The Reinforcement Learning Framework
	The Racetrack Benchmark

	Reinforcement Learning Algorithms
	Value-based Algorithms
	Deep Reinforcement Learning
	Policy-gradient Algorithms

	DSMC Evaluation Stages
	Safe Reinforcement Learning
	Deep Statistical Model Checking
	DSMC Evaluation Stages
	Evaluation-based Initial Distribution
	Evaluation-based Prioritized Replay

	DSMC Evaluation Stages with Restart
	Limitations of DSMC Evaluation Stages
	Pseudo Initial States
	Pseudo Initial State Selection Strategies
	Random Strategy
	Crash Strategy
	Value Strategy
	Novelty Strategy

	Application to Racetrack

	Results
	EIDtoPG and EPRtoPG Results
	EIDtoPR and EPRtoPR Results
	PPO as the Basis of EIDtoPG
	Using the Single Cell Limit
	Summary

	Related Work
	Conclusion
	Future Work

	Appendices
	Appendix
	Hyperparameters
	Configurations of the Best-performing Agents

