Registration is closed (you can still apply for the waiting list).
For any issues regarding the seminar, please e-mail Gerrit Großmann and have [DeepDiffusion]
in the subject line.
Prof. Dr. Verena Wolf
Gerrit Großmann, MSc
Dr. Michael Backenköhler
Monday, January 9, 14:15
in room 328 (E 1.3). Send three topics preferences (unordered) by Friday 23:59 to Gerrit.March, 6 and 7, 2023
in room 1.06 (E1.1)
(we start at 9:30
!).January 30, 2023
.Diffusion models are a powerful machine learning tool and a thriving area of research. They enable the generation of new samples with extraordinary and unprecedented quality. This seminar explores the theoretical foundations rooted in the theory of stochastic processes and explores their potential in various domains.
General background knowledge in deep learning is recommended.
To pass the seminar, you have to:
The final grade consists of: your presentation (50%), reports (35%), and participation during the seminar discussions (15%). The practical project can be failed or passed. Extronary submission will earn you a bonus on your final grade.
Identify the key ideas and concepts and give a self-consistent presentation explaining these concepts to your fellow students.
The presentation should be about 20 minutes long (no longer than 25 minutes!).
Here are some suggestions for a good presentation (we will use this as a basis for grading the presentations):
Send the first draft of your slides as a .pdf
file to your supervisor 7 days
before the presentation.
You will also be required to give an ungraded mock presentation in your group (see topic list) by March 5. You can meet in our seminar room or online (Zoom/Teams). For more information, please refer to the email (Seminar Information VI).
Every participant has to write three short reports (two to four pages each). You can choose freely from the twelve topics (you may also choose your own topic). The report should contain a short summary of (what you consider to be) the main contribution or most intriguing idea of the paper. Otherwise, you can freely express your own thoughts on the topic. For instance: What did you like/dislike about the paper (both methodically and didactically)? What are connections to other seminar papers? Can you suggest improvements? What do you think is missing?
The report deadline is 14 days after the last presentation (March 21, 23:59
).
You can use the Neurips (activate the preprint flag) or any other reasonable format (don’t write an abstract). Please use a spell+grammar checker like languagetool or grammarly before submitting.
Please email the report to your advisor.
Read each presented paper in advance (of course, we do not expect you to understand them entirely) and actively participate in the discussion.
You can work on the project alone or in groups of two. The deadline is 28 days after the last presentation (April 11, 23:59
).
You may find the specifications here.
Student (Group, Superviser) | Topic | Additional Material |
---|---|---|
Maryam Meghdadi Esfahani (1, GG) | Generative Modeling by Estimating Gradients of the Data Distribution (2019) | [1,2,3] |
Mohammad Sadegh Akhondzadeh (2, MB) | Permutation Invariant Graph Generation via Score-Based Generative Modeling (2020) | [1,2,7,8] |
Jorge Augusto Calvimontes Robles (3, GG) | Denoising Diffusion Probabilistic Models (2020) | [4,5,6] |
Devikalyan Das (1 , MB) | Score-Based Generative Modeling through Stochastic Differential Equations (2021) | [1,2,7,F] |
Lisa Dargasz (3, GG) | High-resolution image synthesis with latent diffusion models (2022) | [10,11,12,F] |
Simone Antonelli (4, MB) | Equivariant diffusion for molecule generation in 3D (2022) | [17,26,27] |
Student (Group, Superviser) | Topic | Additional Material |
---|---|---|
[7,13,14] | ||
Simon Graf (2, MB) | Structure-based Drug Design with Equivariant Diffusion Models (2022) | [15,16,17,18] |
Tim Valentin Kruse (4, GG) | 3D Shape Generation and Completion through Point-Voxel Diffusion (2022) | [19,20] |
[17,21,22,23] | ||
Shreyash Arya (3, GG) | Make-A-Video: Text-to-Video Generation without Text-Video Data (2022) | [10,12,24,25] |
[2,27,28] |
The group is only relevant for the mock presentation. Your supervisors are either Gerrit Großmann (GG) or Michael Backenköhler (MB).
A non-exhaustive list of supplemental materials that we think might be helpful to you is provided here. We encourage you to seek and consult additional resources.
The header image was created using DALL-E with the prompt a robot painting a picture, abstract oil painting.